28.12.2013 Views

Relax and Randomize: From Value to Algorithms

Relax and Randomize: From Value to Algorithms

Relax and Randomize: From Value to Algorithms

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

However this argmin calculation is identical <strong>to</strong> the one in the proof of Proposition 4 (with C = 1 <strong>and</strong><br />

T − t = 0) <strong>and</strong> the solution is given by<br />

Thus we conclude the proof.<br />

f ∗ t = f t =<br />

− ∑ t−1<br />

i=1 x i + 4 √ 2 ∑ T i=t+1 x i<br />

√<br />

∥− ∑ t−1<br />

i=1 x i + 4 √ 2 ∑ T i=t+1 ɛ i x i ∥ 2 + 1 2<br />

Proof of Lemma 11. We shall start by showing that the relaxation is admissible for the game where<br />

we pick prediction ŷ t <strong>and</strong> the adversary then directly picks the gradient ∂l(ŷ t , y t ). To this end note<br />

that<br />

inf<br />

ŷ t<br />

sup<br />

∂l(ŷ t,y t)<br />

{∂l(ŷ t , y t ) ⋅ ŷ t + Rel T (F∣∂l(ŷ 1 , y 1 ), . . . , ∂l(ŷ t , y t ))}<br />

= inf<br />

ŷ t<br />

≤ inf<br />

ŷ t<br />

sup<br />

∂l(ŷ t,y t)<br />

sup<br />

r t∈[−L,L]<br />

{∂l(ŷ t , y t ) ⋅ ŷ t + E<br />

ɛ<br />

{r t ⋅ ŷ t + E<br />

ɛ<br />

[sup<br />

f∈F<br />

2L<br />

[sup<br />

f∈F<br />

T<br />

∑<br />

i=t+1<br />

2L<br />

T<br />

∑<br />

i=t+1<br />

t<br />

ɛ i f[t] − ∑ ∂l(ŷ i , y i ) ⋅ f[i]]}<br />

i=1<br />

ɛ i f[t] − L t−1 (f) − r t ⋅ f[t]]}<br />

Let us use the notation L t−1 (f) = ∑ t−1<br />

i=1 ∂l(ŷ i , y i ) ⋅ f[i] for the present proof. The supremum over<br />

r t ∈ [−L, L] is achieved at the endpoints since the expression is convex in r t . Therefore, the last<br />

expression is equal <strong>to</strong><br />

inf<br />

ŷ t<br />

= inf<br />

ŷ t<br />

sup<br />

r t∈{−L,L}<br />

sup<br />

p t∈∆({−L,L})<br />

= sup inf<br />

p t∈∆({−L,L}) ŷ t<br />

{r t ⋅ ŷ t + E ɛ sup<br />

f∈F<br />

[2L<br />

T<br />

∑<br />

i=t+1<br />

E [r t ⋅ ŷ t + E ɛ sup [2L<br />

r t∼p t<br />

f∈F<br />

E [r t ⋅ ŷ t + E ɛ sup [2L<br />

r t∼p t<br />

f∈F<br />

ɛ i f[t] − L t−1 (f) − r t ⋅ f[t]]}<br />

T<br />

∑<br />

i=t+1<br />

T<br />

∑<br />

i=t+1<br />

ɛ i f[t] − L t−1 (f) − r t ⋅ f[t]]]<br />

ɛ i f[t] − L t−1 (f) − r t ⋅ f[t]]]<br />

where the last step is due <strong>to</strong> the minimax theorem. The last quantity is equal <strong>to</strong><br />

sup<br />

p t∈∆({−L,L})<br />

≤<br />

≤<br />

sup<br />

p t∈∆({−L,L})<br />

sup<br />

p t∈∆({−L,L})<br />

= sup<br />

p t∈∆({−L,L})<br />

E [ E<br />

ɛ<br />

[inf E [r t ] ⋅ ŷ t + sup (2L<br />

r t∼p t r t∼p t<br />

ŷ t<br />

E [ E [sup (2L<br />

ɛ r t∼p t<br />

f∈F<br />

E [E ɛ sup [2L<br />

r t,r t ′ ∼pt f∈F<br />

E [E ɛ sup [2L<br />

r t,r t ′ ∼pt f∈F<br />

T<br />

∑<br />

i=t+1<br />

T<br />

∑<br />

i=t+1<br />

T<br />

∑<br />

i=t+1<br />

f∈F<br />

T<br />

∑<br />

i=t+1<br />

ɛ i f[t] − L t−1 (f) − r t ⋅ f[t])]]<br />

ɛ i f[t] − L t−1 (f) + ( E<br />

r t∼p t<br />

[r t ] − r t ) ⋅ f[t])]]<br />

ɛ i f[t] − L t−1 (f) + (r ′ t − r t ) ⋅ f[t]]]<br />

ɛ i f[t] − L t−1 (f) + ɛ t (r ′ t − r t ) ⋅ f[t]]]<br />

By passing <strong>to</strong> the worst-case choice of r t , r ′ t (which is achieved at the endpoints because of convexity),<br />

we obtain a further upper bound<br />

sup E ɛ sup [2L<br />

r t,r t ′ ∈{L,−L} f∈F<br />

≤<br />

sup<br />

r t∈{L,−L}<br />

E ɛ sup<br />

f∈F<br />

[2L<br />

T<br />

∑<br />

i=t+1<br />

T<br />

∑<br />

i=t+1<br />

ɛ i f[t] − L t−1 (f) + ɛ t (r ′ t − r t ) ⋅ f[t]]<br />

ɛ i f[t] − L t−1 (f) + 2ɛ t r t ⋅ f[t]]<br />

= sup E ɛ sup [2L ∑ ɛ i f[t] − L t−1 (f)]<br />

r t∈{L,−L} f∈F<br />

T<br />

i=t<br />

= Rel T (F∣∂l(ŷ 1 , y 1 ), . . . , ∂l(ŷ t−1 , y t−1 ))<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!