28.12.2013 Views

Relax and Randomize: From Value to Algorithms

Relax and Randomize: From Value to Algorithms

Relax and Randomize: From Value to Algorithms

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

which can be re-written as<br />

ŷ t (ɛ) = (sup<br />

f∈F<br />

{<br />

T<br />

∑<br />

i=t+1<br />

ɛ i f[i] − 1<br />

2L L t−1(f) + 1 2<br />

f[t]} − sup<br />

f∈F<br />

{<br />

T<br />

∑<br />

i=t+1<br />

By this choice of ŷ t (ɛ), plugging back in Equation (44) we see that<br />

sup { E<br />

y t<br />

⎡<br />

≤ E<br />

ɛ ⎢<br />

⎣<br />

[l(ŷ t , y t )] + E<br />

ŷ t∼q t ɛ<br />

[sup<br />

f∈F<br />

{2L<br />

T<br />

∑<br />

i=t+1<br />

ɛ i f[i] − L t (f)}]}<br />

ɛ i f[i] − 1<br />

2L L t−1(f) − 1 2 f[t]})<br />

T<br />

⎤<br />

sup {r t ⋅ ŷ t (ɛ) + sup {2L ∑ ɛ i f[i] − L t−1 (f) − r t ⋅ f[t]}}<br />

r t∈{±L}<br />

f∈F<br />

⎥<br />

i=t+1<br />

⎦<br />

⎡<br />

T<br />

⎤<br />

= E<br />

ɛ ⎢<br />

inf<br />

sup {r t ⋅ ŷ t + sup {2L ∑ ɛ i f[i] − L t−1 (f) − r t ⋅ f[t]}}<br />

⎣ ŷ t r t∈{±L}<br />

f∈F<br />

⎥<br />

i=t+1<br />

⎦<br />

⎡<br />

T<br />

⎤<br />

= E<br />

ɛ ⎢<br />

inf<br />

sup E rt∼p t<br />

{r t ⋅ ŷ t + sup {2L ∑ ɛ i f[i] − L t−1 (f) − r t ⋅ f[t]}}<br />

⎣ ŷ t p t∈∆({±L})<br />

f∈F<br />

⎥<br />

i=t+1<br />

⎦<br />

The expression inside the supremum is linear in p t , as it is an expectation. Also note that the term<br />

is convex in ŷ t , <strong>and</strong> the domain ŷ t ∈ [− sup f∈F ∣f[t]∣, sup f∈F ∣f[t]∣] is a bounded interval (hence,<br />

compact). We conclude that we can use the minimax theorem, yielding<br />

⎡<br />

T<br />

⎤<br />

E<br />

sup inf E [r<br />

ɛ ⎢<br />

t ⋅ ŷ t + sup {2L ∑ ɛ i f[i] − L t−1 (f) − r t ⋅ f[t]}]<br />

⎣p t∈∆({±L}) ŷ t r t∼p t f∈F<br />

⎥<br />

i=t+1<br />

⎦<br />

⎡<br />

T<br />

⎤<br />

= E<br />

sup {inf E [r<br />

ɛ ⎢<br />

t ⋅ ŷ t ] + E [sup {2L ∑ ɛ i f[i] − L t−1 (f) − r t ⋅ f[t]}]}<br />

⎣p t∈∆({±L}) ŷ t r t∼p t r t∼p t f∈F<br />

⎥<br />

i=t+1<br />

⎦<br />

⎡<br />

T<br />

⎤<br />

= E<br />

sup { E [sup {inf E [r<br />

ɛ ⎢<br />

t ⋅ ŷ t ] + 2L ∑ ɛ i f[i] − L t−1 (f) − r t ⋅ f[t]}]}<br />

⎣p t∈∆({±L}) r t∼p t f∈F ŷ t r t∼p t<br />

⎥<br />

i=t+1<br />

⎦<br />

⎡<br />

T<br />

⎤<br />

≤ E<br />

sup { E [sup { E [r<br />

ɛ ⎢<br />

t ⋅ f[t]] + 2L ∑ ɛ i f[i] − L t−1 (f) − r t ⋅ f[t]}]}<br />

⎣p t∈∆({±L}) r t∼p t f∈F r t∼p t<br />

⎥<br />

i=t+1<br />

⎦<br />

In the last step, we replaced the infimum over ŷ t with f[t], only increasing the quantity. Introducing<br />

an i.i.d. copy r t ′ of r t ,<br />

⎡<br />

T<br />

⎤<br />

= E<br />

sup { E [sup {2L<br />

ɛ ⎢<br />

∑ ɛ i f[i] − L t−1 (f) + ( E [r t ] − r t ) ⋅ f[t]}]}<br />

⎣p t∈∆({±L}) r t∼p t f∈F i=t+1<br />

r t∼p t<br />

⎥<br />

⎦<br />

⎡<br />

T<br />

⎤<br />

≤ E<br />

⎧⎪<br />

⎫⎪<br />

sup ⎨ E [sup {2L ∑ ɛ i f[i] − L t−1 (f) + (r ′ t − r t ) ⋅ f[t]}] ⎬<br />

ɛ ⎢p ⎣ t∈∆({±L}) r ⎪⎩ t,r t ′ ∼pt f∈F i=t+1<br />

⎪⎭<br />

⎥<br />

⎦<br />

Introducing the r<strong>and</strong>om sign ɛ t <strong>and</strong> passing <strong>to</strong> the supremum over r t , r t, ′ yields the upper bound<br />

⎡<br />

T<br />

⎤<br />

E<br />

sup {E<br />

ɛ ⎢<br />

rt,r ′ E [sup {2L ∑ ɛ<br />

t<br />

⎣<br />

∼pt i f[i] − L t−1 (f) + (r ′ t − r t ) ⋅ f[t]}]}<br />

p t∈∆({±L})<br />

ɛ t f∈F<br />

⎥<br />

i=t+1<br />

⎦<br />

⎡<br />

T<br />

⎤<br />

≤ E<br />

sup {E [sup {2L ∑ ɛ i f[i] − L t−1 (f) + ɛ t (r ′ ɛ ⎢r ⎣ t,r t ′ ∈{±L} t − r t ) ⋅ f[t]}]}<br />

ɛ t f∈F i=t+1<br />

⎥<br />

⎦<br />

⎡<br />

T<br />

≤ E<br />

sup {E [sup {L ∑ ɛ i f[i] − 1 ⎤<br />

ɛ ⎢r ⎣ t,r t ′ ∈{±L} ɛ t f∈F i=t+1 2 L t−1(f) + ɛ t r t ′ ⋅ f[t]}]}<br />

⎥<br />

⎦<br />

⎡<br />

T<br />

+ E<br />

sup {E [sup {L ∑ ɛ i f[i] − 1 ⎤<br />

ɛ ⎢r ⎣ t,r t ′ ∈{±L} ɛ t f∈F i=t+1 2 L t−1(f) − ɛ t r t ⋅ f[t]}]}<br />

⎥<br />

⎦<br />

In the above we split the term in the supremum as the sum of two terms one involving r t <strong>and</strong> other<br />

r t ′ (other terms are equally split by dividing by 2), yielding<br />

⎡<br />

T<br />

⎤<br />

E<br />

sup {E [sup {2L<br />

ɛ ⎢<br />

∑ ɛ i f[i] − L t−1 (f) + 2 ɛ t r t ⋅ f[t]}]}<br />

⎣r t∈{±L} ɛ t f∈F<br />

⎥<br />

i=t+1<br />

⎦<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!