28.12.2013 Views

MAGNETISM — A Few Basics

MAGNETISM — A Few Basics

MAGNETISM — A Few Basics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MAGNETISM</strong> <strong>—</strong> A <strong>Few</strong> <strong>Basics</strong><br />

1<br />

A. HISTORY<br />

Magnetite or lodestone (Fe II OFe III 2O 3 )<br />

mineral in its natural state often has a strong attraction for iron and steel...mined in magnesia<br />

but Pliny says it was named for the discoverer, a shepherd, magnes, "the nails of whose shoes<br />

and the tip of whose staff stuck fast in a magnetick field while he pastured his flocks."<br />

Lodestone appears in Greek writings by 800 B.C.<br />

First magnetic technological invention <strong>—</strong> compass: in China, sometime between 2637 B.C. and<br />

1100 A.D. (!)<br />

others say it was introduced to China in 1200s by Italians or Arabs<br />

Early theories and experiments on magnetism were developed by the great minds of all times <strong>—</strong><br />

Gilbert, Descartes, Coulomb, Poisson, Green, Oertsted, Ampere, Davy, Freesnel, Faraday,<br />

Maxwell...<br />

But: Quantum Mechanics is necessary to develop a viable model, and the model continues to<br />

evolve: <strong>MAGNETISM</strong> IS NOT A SOLVED PROBLEM<br />

B. BASICS<br />

All materials respond to an external magnetic field (H). The magnetization (M) of a sample is<br />

proportional to H:<br />

M = χH. The proportionality constant, χ, is the magnetic susceptibility<br />

C. TYPES OF <strong>MAGNETISM</strong> - see chart<br />

The Big five<br />

1. Diamagnetism<br />

electrons in closed shells cause a material to be repelled by H (χ < 0).<br />

Typically, χ m = -1x10 -6 emu/mol<br />

usually a very small contribution to χ exp<br />

χ exp = χ dia + χ para + χ Pauli<br />

χ dia <strong>—</strong> diamagnetic term due to closed-shell (core) electrons. ALL materials have this. For our<br />

systems, which will probably have a very small χ, the diamagnetic correction is non-trivial <strong>—</strong><br />

can be obtained from atom/group additivities or the Curie plot (see below).<br />

χ dia is temperature and field independent.<br />

χ para is due to unpaired electrons (= χ p )<br />

χ Pauli is typically seen in metals and other conductors - due to mixing excited states that are not<br />

thermally populated into the ground (singlet) state - temperature independent. Presumably not<br />

important in our systems.<br />

ALL OTHER TYPES OF <strong>MAGNETISM</strong> REQUIRE UNPAIRED SPINS (MOMENTS) <strong>—</strong> THE<br />

INTERACTIONS AMONG SPINS DETERMINES THE TYPE OF <strong>MAGNETISM</strong><br />

2. Paramagnetism<br />

randomly oriented, rapidly reorienting moments; no permanent, spontaneous magnetic moment<br />

(M = 0 if H = 0)<br />

spins are non-interacting (non-cooperative)<br />

all other forms of magnetism have a critical temperature, T C , below which there is some<br />

interaction of moments. Above T C ⇒ paramagnet<br />

χ p varies with T empirically according to the Curie Law:<br />

χ p<br />

= C T<br />

or the Curie-Weiss Law:<br />

C = Curie constant


χ p<br />

=<br />

C<br />

θ = Weiss constant<br />

T −θ<br />

θ is indicative of intermolecular interactions among the moments<br />

θ > 0 - ferromagnetic interactions (NOT ferromagnetism)<br />

θ < 0 - antiferromagnetic interactions (NOT antiferromagnetism)<br />

2<br />

DIA<strong>MAGNETISM</strong><br />

INCIPIENT<br />

FERRO<strong>MAGNETISM</strong><br />

META<strong>MAGNETISM</strong><br />

ANTI-<br />

FERRO<strong>MAGNETISM</strong><br />

FERRO<strong>MAGNETISM</strong><br />

FERRI<strong>MAGNETISM</strong><br />

SPERI<strong>MAGNETISM</strong><br />

SUPER-<br />

PARA<strong>MAGNETISM</strong><br />

PARA<strong>MAGNETISM</strong><br />

SPERO<strong>MAGNETISM</strong><br />

ASPERO<strong>MAGNETISM</strong><br />

SPIN GLASS<br />

HELI<strong>MAGNETISM</strong><br />

MICTO<strong>MAGNETISM</strong><br />

Using the Curie Plot:<br />

χ exp<br />

=<br />

C<br />

T −θ + χ T<br />

χ exp<br />

= C T +χ T<br />

(χ T = χ dia + χ Pauli = temperature independent contribution)<br />

(at high temperature if θ is small)


Plot χ exp vs 1/T<br />

0.4<br />

0.35<br />

para<br />

3<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Paramagnetic Susceptibility<br />

ferro<br />

antiferro<br />

slope = C; intercept = χ T; ⇒ χ exp - χ T = χ p<br />

...then plot 1/χ p vs. T<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

1/Temperature (1/K)<br />

50<br />

θ = 0<br />

40<br />

30<br />

20<br />

10<br />

Paramagnetic Susceptibility<br />

θ = +2<br />

θ = -2<br />

slope = 1/C; intercept = θ/C<br />

0<br />

0 5 10 15 20<br />

1/Temperature (1/K)<br />

A magnetometer measures M which gives χ. Do the first plot to get χ T . Then at all T and H, χ p<br />

= χ exp - χ T<br />

The magnetization plot<br />

For an atom with spin m s , its energy in H is:<br />

E(m s<br />

) = m s<br />

gµ B<br />

H µ = -m s gµ B


µ B is Bohr magneton (= 9.27x10 -24 J/T); g is the Lande constant (= 2.0023192778)<br />

Consider N particles, with n i in ith level<br />

∑ n<br />

i i<br />

= N<br />

4<br />

⎛<br />

P i<br />

= n exp − ε i ⎞<br />

⎜ ⎟<br />

kT<br />

i<br />

N = ⎝ ⎠<br />

⎛<br />

exp − ε i ⎞<br />

∑ ⎜ ⎟<br />

i ⎝ kT ⎠<br />

M = N ∑ µ<br />

i i<br />

P i<br />

now, consider two spin states (m s = ± 1/2),<br />

+1/2<br />

⎛<br />

( −m s<br />

gµ B )exp −m s gµ B H ⎞<br />

∑<br />

⎜ ⎟<br />

ms=−1/2<br />

⎝ kT ⎠<br />

M = N<br />

+1/2 ⎛<br />

exp −m s gµ B H ⎞<br />

∑ ⎜ ⎟<br />

ms=−1/2 ⎝ kT ⎠<br />

= Ngµ B<br />

2<br />

= Ngµ B<br />

2<br />

⎡ ⎛<br />

exp gµ B H ⎞ ⎛<br />

⎜ ⎟ − exp − gµ B H ⎞ ⎤<br />

⎜<br />

⎢<br />

⎟<br />

⎝ 2kT ⎠ ⎝ 2kT ⎠<br />

⎥<br />

⎢<br />

⎛<br />

exp⎜<br />

gµ B H ⎞ ⎛<br />

⎟ + exp⎜<br />

− gµ B H ⎥<br />

⎢<br />

⎞<br />

⎟ ⎥<br />

⎣<br />

⎢ ⎝ 2kT ⎠ ⎝ 2kT ⎠ ⎦<br />

⎥<br />

⎛<br />

tanh gµ B H ⎞<br />

⎜ ⎟ since tanh(y) = (e y -e -y )/(e y +e -y )<br />

⎝ 2kT ⎠<br />

if y


a) For x >> 1, B S<br />

x<br />

⎡<br />

( ) − 1 2<br />

( ) = 1 S S+ 1 ⎣ 2<br />

⎤<br />

⎦ = 1<br />

x = gµ B H<br />

kT >> 1 means H T >> k<br />

= 1.38x10−23 J / K<br />

gµ B 2x9.27x10 −24 J/ T = 0.7T / K<br />

b) For x


S=1/2<br />

S=1<br />

S=3/2<br />

S=2<br />

S=5/2<br />

S=3<br />

S=7/2<br />

S=4<br />

S=9/2<br />

S=5<br />

M<br />

molar<br />

( µ B<br />

)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

6<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7<br />

H/T (Tesla/Kelvin)<br />

The effective magnetic moment<br />

directly relates to number of spins:<br />

µ eff = g[S(S+1)] 1/2 µ B<br />

S µ eff / µ B<br />

1/2 1.73<br />

1 2.83<br />

2 4.89<br />

related to molar susceptibility (χ m = emu/mol)<br />

χ m<br />

= Nµ 2<br />

eff<br />

3kT<br />

= C'<br />

T<br />

µ eff<br />

= 3kC' = 2.82 C'<br />

Therefore,<br />

N<br />

µ eff<br />

= 2.824 χ m<br />

T<br />

3. Ferromagnetism<br />

moments throughout a material in 3-D tend to align parallel<br />

can lead to a spontaneous permanent M (in absence of H)<br />

but, in a macroscopic system, it is energetically favorable for spins to segregate into regions<br />

called DOMAINS - domains need not be aligned with each other<br />

A Domain<br />

may or may not have spontaneous M<br />

application of H causes aligned domains to grow at the expense of misaligned<br />

domains...alignment persists when H is removed


7<br />

Ferromagnetism is a critical phenomenon, involving a phase transition that occurs at a critical<br />

temperature, T c = Curie Temperature. Above T c ⇒ paramagnet<br />

T C is directly proportional to S(S+1)<br />

It takes energy to move domain walls - hysteresis:<br />

M = χH app<br />

Sample Magnetization<br />

M(+)<br />

M sat<br />

H app<br />

(-) (+)<br />

H app<br />

Applied Field M R<br />

2H C<br />

M(-)<br />

M R<br />

= Remnant Magnetization (M at H app<br />

= 0)<br />

M sat<br />

= Saturation Magnetization (M sat<br />

= Ngµ B<br />

S)<br />

H C<br />

= Coercive Field (H app<br />

required to flip M)<br />

"Hard" magnetic material = high Coercivity<br />

"Soft" magnetic material = low Coercivity<br />

Remanence: Magnetization of sample after H is removed<br />

Coercive field: Field required to flip M (+M to -M)<br />

4. Antiferromagnetism<br />

spins tend to align antiparallel in 3-D<br />

no spontaneous M<br />

no permanent M<br />

critical temperature: T N (Neel Temperature)<br />

above T N ⇒ paramagnet<br />

5. Ferrimagnetism<br />

requires two chemically distinct species with different moments<br />

they couple antiferomagnetically:<br />

no M; critical T = T C (Curie Temperature)<br />

bulk behavior very similar to ferromagnetism<br />

Magnetite is a ferrimagnet<br />

6. Other types<br />

M sat = Νgµ B S<br />

Electromagnets<br />

• High M R and Low H C<br />

Electromagnetic Relays<br />

• High M sat , Low M R , and Low H C<br />

Magnetic Recording Materials<br />

• High M R<br />

and relatively High H C<br />

Permanent Magnets<br />

• High M R<br />

and High H C


DIA<strong>MAGNETISM</strong><br />

INCIPIENT<br />

FERRO<strong>MAGNETISM</strong><br />

Low T; temporary alignment of moments<br />

of ions & itinerant electrons<br />

8<br />

META<strong>MAGNETISM</strong><br />

Field-induced transition to magnetic<br />

state;<br />

must be below Neel temperature<br />

ANTI-<br />

FERRO<strong>MAGNETISM</strong><br />

FERRO<strong>MAGNETISM</strong><br />

FERRI<strong>MAGNETISM</strong><br />

SPERI<strong>MAGNETISM</strong><br />

Two species frozen as in speromagnet;<br />

often net magnetication<br />

SUPER-<br />

PARA<strong>MAGNETISM</strong><br />

Small particle size allows single<br />

domain fluctuation; destroyed by<br />

cooling below blocking temperature<br />

PARA<strong>MAGNETISM</strong><br />

SPERO<strong>MAGNETISM</strong><br />

Local moments licked into random<br />

orientation;no net magnetiztion<br />

ASPERO<strong>MAGNETISM</strong><br />

As in speromagnetism, but some orientation;<br />

net magnetization<br />

SPIN GLASS<br />

Magnetic ions cooled in a nonmagnetic host;<br />

usually dilute; RKKY coupling only (?)<br />

HELI<strong>MAGNETISM</strong><br />

Crystalline asperomagnet<br />

MICTO<strong>MAGNETISM</strong><br />

Cluster glass; local correlations dominant<br />

D. SPECIAL TOPICS<br />

1. Magnetooptical Disks<br />

a. Reading<br />

Magnetic materials rotate plane polarized light<br />

in transmission: Faraday effect<br />

in reflection: Kerr effect (used in devices)<br />

Direction of rotation depends on polarization of M<br />

b. Writing<br />

actually a thermo-magnetic process since a high-powered laser is used to heat the sample<br />

1) Curie point writing-heat above T C , then cool in applied field<br />

2) Threshold (or compensation point) writing - if material has a temperature dependent<br />

coercive field heat to point where H > H c , then on cooling H < H c<br />

c. Materials<br />

Typically rare-earth transition metal alloys (RE-TM) RE: Gd, Tb; TM: Fe, Co


9<br />

Many factors to tune: T c , H c , Magnetic anisotropy, reflectivity, Kerr rotation, stability, etc.<br />

2. Spin Glasses <strong>—</strong> one of the more intriguing new forms of magnetism<br />

may be a new state of matter, maybe not<br />

prototypical SG is an alloy, with 1-10% of a paramagnetic impurity (e.g., Fe or Mn) in a<br />

diamagnetic metal (e.g. Cu or Au)<br />

Spin coupling is mediated through the conduction electrons through the RKKY interaction<br />

(Ruderman, Kittel, Kasuya, Yosida) - oscillatory in nature<br />

A<br />

B<br />

This leads to frustration:<br />

• •<br />

• •<br />

unfrustrated<br />

• ≡ ≡<br />

• •<br />

frustrated<br />

ferromagnetic coupling<br />

antiferromagnetic coupling<br />

• spin center<br />

C<br />

• • • •<br />

• • • •<br />

unfrustrated<br />

frustrated<br />

A critical consequence of Frustration is a highly degenerate ground state - there are<br />

MANY equally probable, equally acceptable combinations of spins<br />

Therefore, even at 0 Kelvin, many states are populated - novel thermodynamic and<br />

magnetic properties<br />

Experimentally, the hallmark of a SG is a cusp in the AC susceptibility - defines a critical<br />

temperature - T SG<br />

Heat capacity measurements do not reveal the some critical temperature<br />

SG do show remanence and hysteresis effects<br />

SG theory has been adopted to other problems, including:<br />

combinatorial optimization (traveling salesman) problems<br />

neural networks<br />

pre-biotic evolution<br />

E. MISCELLANY<br />

1. Units and fundamental constants<br />

N = 6.022 x 10 23 mol -1<br />

g = 2.0023<br />

k = 1.3807 x 10 -23 J/K<br />

µ B = 9.274 x 10 -24 J/T<br />

Nµ B 2 /k = 0.375 emu K/mol<br />

gµ B /k = 1.3449 K/T<br />

G = g 1/2 cm -1/2 s -1<br />

T = 10 4 G<br />

T 2 = 10 J/emu<br />

2. Saturation behavior of S-only paramagnets<br />

M = M sat B S (gµ B H/kT)<br />

B S (x) = (1/S)((S + 1/2)x coth(S + 1/2)x - (x/2) coth(x/2))


M sat = Ngµ B S = 11.18245 S J/mol•T = 1.118245 x 10 4 S emu•G/mol<br />

3. Curie Law for paramagnets<br />

M = χH<br />

χT = C = Ng 2 µ 2 B<br />

S(S +1)<br />

= 0.125g<br />

3k<br />

2 S(S+1) emu•K/mol<br />

µ eff = (g 2 S(S+1) 1/2 = (8χT) 1/2<br />

4. Relation between saturation and Curie behaviors<br />

C( emu •K)<br />

M sat<br />

( emu •G) = Ng 2 µ 2 B<br />

S(S +1)<br />

= gµ (S +1)<br />

B<br />

=<br />

3kNgµ B<br />

S<br />

3k<br />

10<br />

2.0023•9.274x10 −28 J/ G<br />

3•1.3807x10 −23 J / K (S +1) = 4.4831x10 −5 K (S +1)<br />

G<br />

F. MAGNETIC DIMERS – THE HEISENBERG-DIRAC-VAN VLECK HAMILTONIAN<br />

1. Introduction<br />

In section C.2 we examined primary magnetochemistry relationships for paramagnets –<br />

species with non-interacting spins. The magnetic properties of such materials can be described<br />

by the Curie-Weiss law (for small values of H/T), or more generally by:<br />

M = Ngµ B<br />

SB S<br />

However, in the next simplest case – a molecule with two exchange-coupled unpaired<br />

electrons – the magnetic properties cannot usually be described by this relation except at very<br />

low temperatures. This will be the case when the exchange coupling creates thermally accessible<br />

states of different spin multiplicity. Such is the case for most organic biradicals.<br />

The Heisenberg-Dirac-Van Vleck (HDVV) Hamiltonian, eq 1, is an empirical operator that<br />

models interaction (coupling) of unpaired electrons. The form of the Hamiltonian suggests that<br />

coupling arises through interaction of spin angular momentum operators. The magnitude of the<br />

interaction depends on the interaction parameter, J ij (called the exchange parameter). The J ij<br />

term embodies all of the interactions that determine the ground state spin preference. The<br />

product of spin operators is a reasonable component since interaction of species containing<br />

unpaired electrons results in either a decrease (antiferromagnetic coupling) or increase<br />

(ferromagnetic coupling) in spin angular momentum. For example, two doublets can couple to<br />

yield a singlet and a triplet, the relative energies of which depend on J ij . By definition, for<br />

ferromagnetic (high-spin) coupling J ij > 0, while for antiferromagnetic coupling, J ij < 0.<br />

H ˆ ij<br />

= −2J ˆ ij<br />

S ˆ i<br />

S j<br />

(1)<br />

The product of spin angular momentum operators may be expressed in terms of component<br />

and product (total) spin angular momentum operators,<br />

S ˆ 2<br />

Tot<br />

=<br />

⎛<br />

⎝<br />

S ˆ i<br />

+ S ˆ j<br />

therefore, ˆ S i ˆ<br />

2<br />

⎞<br />

⎠ = S ˆ i<br />

+ S ˆ j<br />

+ 2S ˆ ˆ i<br />

S j<br />

(2)<br />

S j<br />

= 1 ⎛<br />

S<br />

2 ˆ 2<br />

Tot<br />

− S ˆ i<br />

−S ˆ 2 ⎞<br />

⎝<br />

j ⎠<br />

(3)<br />

Since the eigenvalue of S ˆ 2 is S( S +1), the energy of the state with spin S Tot<br />

resulting from<br />

interaction of species with spins S i<br />

and S j<br />

is given by,


[ ( ) −S i ( S i<br />

+1) − S j ( S j<br />

+1)<br />

] (4)<br />

E Tot<br />

= −J ij<br />

S Tot<br />

S Tot<br />

+1<br />

Thus for two doublets (2 x multiplicity 2 = 4 states), coupling results in a triplet and a singlet<br />

(multiplicity 3 and multiplicity 1 = 4 states). In the case of ferromagnetic coupling (J > 0), the<br />

energy of the triplet state (S = 1) is,<br />

[ ] = − J 2<br />

E T<br />

= −J 11 ( +1) − 1 1<br />

2( 2 +1 )− 1 1<br />

[ 2( 2 +1 )] = −J 2 − 3 4 − 3 4<br />

The energy of the singlet state (S = 0) is,<br />

[ ] = 3J 2<br />

E S<br />

= −J 0( 0 +1) − 1 1<br />

2<br />

(<br />

2 +1 ) − 1 1<br />

[ 2<br />

(<br />

2 +1 )] = −J 0 − 3 4 − 3 4<br />

The singlet triplet gap, ∆E ST , is given by,<br />

∆E ST<br />

= E S<br />

− E T<br />

= 3J 2 − ( −J<br />

2 ) = 2J (8)<br />

The energy level diagram for ferromagnetic coupling is shown below.<br />

Singlet, S = 0<br />

11<br />

(6)<br />

(7)<br />

S = 1/2<br />

E ST<br />

S = 1/2<br />

Triplet, S = 1<br />

The energy level diagram for antiferromagnetic coupling is shown below.<br />

Triplet, S = 1<br />

S = 1/2<br />

E ST<br />

S = 1/2<br />

Singlet, S = 0<br />

Note that by definition of the Hamiltonian, J < 0 describes antiferromagnetic coupling and J<br />

> 0. Had we defined the Hamiltonian as H ˆ ij = 2J ˆ ij S ˆ i S j<br />

, then J < 0 would be for<br />

ferromagnetically coupled spins. Therefore, when reading the literature, always note the form of<br />

the Hamiltonian to be sure of the nature of the type of exchange coupling.<br />

2. Measuring J by Electron Paramagnetic Resonance Spectroscopy<br />

The intensity of the EPR signal is directly proportional to the paramagnetism which can be<br />

given by the Curie Law,<br />

I EPR<br />

∝χ = C T<br />

(9)


Although the paramagnetism of the triplet follows the Curie Law, the concentration of triplet<br />

is temperature dependent and is given by the Boltzmann distribution,<br />

n T<br />

= [ TRIPLET] n T<br />

+ n rel =<br />

S<br />

⎛<br />

3exp⎜<br />

−ε T ⎞<br />

⎟<br />

⎝ RT ⎠<br />

⎛<br />

3exp⎜<br />

−ε T ⎞<br />

⎟ + exp −ε (10)<br />

⎛<br />

⎜ S ⎞<br />

⎟<br />

⎝ RT ⎠ ⎝ RT ⎠<br />

⎛<br />

Multiplication of the numerator and denominator by exp⎜<br />

ε S ⎞<br />

⎟ , and letting ε<br />

⎝ RT<br />

T - ε S = ∆E ST gives,<br />

⎠<br />

⎛<br />

3exp⎜<br />

−∆E ST ⎞<br />

⎟<br />

⎝ RT ⎠<br />

[ TRIPLET] rel =<br />

1 + 3exp −∆E (11)<br />

⎛<br />

⎜ ST ⎞<br />

⎟<br />

⎝ RT ⎠<br />

Thus, the EPR signal intensity is given by,<br />

12<br />

I EPR<br />

= C T [ TRIPLET]<br />

rel = C T<br />

⎡ ⎛<br />

3exp⎜<br />

−∆E ST ⎞ ⎤<br />

⎟<br />

⎢ ⎝ RT ⎠ ⎥<br />

⎢<br />

⎛<br />

1 +3exp ⎜<br />

−∆E ⎥<br />

ST ⎞<br />

⎢<br />

⎟ ⎥<br />

⎣ ⎝ RT ⎠ ⎦<br />

(12)<br />

A plot of EPR signal intensity versus 1/T for different singlet-triplet gaps is shown below. Note<br />

that very little change in the slope of the plot occurs as the triplet becomes more stable.<br />

0.25<br />

EPR Signal Intensity vs 1/T for Several Values of E TS<br />

∆E = -10 cal<br />

∆E = -5 cal<br />

0.2<br />

∆E = -20 cal<br />

∆E = 5 cal<br />

0.15<br />

∆E = -50 cal<br />

∆E = 10 cal<br />

I EPR<br />

0.1<br />

0.1275 0.255 0.3825 0.51<br />

0.05<br />

∆E = 20 cal<br />

∆E = 50 cal<br />

0<br />

0<br />

1/T (1/K)<br />

3. Measuring J by Magnetometry 1<br />

Van Vleck derived a general equation for calculating paramagnetic susceptibility as a<br />

function of temperature. 2 Use of the equation requires knowledge of the energy levels, which<br />

we calculate with the HDVV Hamiltonian (see previous section). Van Vleck began the


13<br />

derivation by letting the energy levels of the system be developed as a power series expansion in<br />

the applied field.<br />

E n = E n<br />

0 + HEn<br />

(1) + H<br />

2 E n<br />

(2) + H<br />

3 En<br />

(3) +... (13)<br />

The term which is independent of H is the zero-order term (and has units of J, the exchange<br />

parameter), while the term linear in H is the first-order Zeeman term, and the term that scales as<br />

H 2 is the second-order Zeeman term, and so on. Neglecting Zero-field splitting, and assuming<br />

isotropic g, the total magnetic moment, M, for the system is:<br />

( )<br />

∑ µ n exp −E n k B T<br />

n<br />

M = N<br />

∑exp −E n<br />

( kB T)<br />

n<br />

Where µ n is the magnetic moment of state n (µ n = - ∂E n /∂H). Now,<br />

( ) = exp<br />

exp −E n k B T<br />

( )<br />

k B T<br />

(14)<br />

⎡ − E<br />

0<br />

n<br />

+ HEn<br />

(1) + H<br />

2 E<br />

(2)<br />

n<br />

+... ⎤<br />

⎢<br />

⎥ = exp ⎛<br />

⎜<br />

−E 0 n ⎞ ⎛<br />

⎝<br />

⎣<br />

⎦<br />

k B T ⎟ exp −HE (1) n<br />

⎞<br />

⎜<br />

⎟<br />

⎠ ⎝<br />

k B T<br />

... (15)<br />

⎠<br />

Ignoring H 2 and higher-order exponentials, and recalling that for small x,<br />

Then,<br />

⎛<br />

( ) = exp⎜<br />

−E n 0 k B T<br />

exp −E n k B T<br />

⎝<br />

exp(−x) ≅ 1− x<br />

⎞ ⎛<br />

⎟ exp −HE (1) n<br />

⎞ ⎛<br />

⎜<br />

⎟<br />

⎠ ⎝<br />

k B T<br />

...≅ 1 − HE (1)<br />

n<br />

⎞<br />

⎜<br />

⎠ ⎝<br />

k B T<br />

⎠<br />

⎟ exp ⎛<br />

⎜<br />

−E n 0 ⎞<br />

⎝ k B T ⎟ (16)<br />

⎠<br />

(This assumes that first-order Zeeman splitting is much smaller than exchange coupling.) and,<br />

µ n = − δE n<br />

δH = −E n (1) − 2HE n<br />

(2) +... (17)<br />

From the approximation and substitution we obtain,<br />

⎛<br />

(1)<br />

−E n −<br />

(2)<br />

∑( 2HEn ) 1 − HE (1)<br />

⎞<br />

n<br />

⎜<br />

n<br />

⎝<br />

k B T<br />

⎠<br />

⎟ exp ⎛<br />

⎜<br />

−E n 0 ⎞<br />

k B T ⎟<br />

⎝ ⎠<br />

M = N<br />

⎛<br />

1− HE n (1) ⎞<br />

⎜<br />

⎝<br />

k B T<br />

⎠<br />

⎟ exp ⎛<br />

⎜<br />

−E n 0 ⎞<br />

∑<br />

⎝ k B T ⎟<br />

n<br />

⎠<br />

(18)<br />

If we limit the derivation to paramagnetic substances, such that M=0 at H=0, then<br />

(1) ⎛ 0<br />

−E<br />

−E n exp ⎜ n ⎞<br />

∑ ⎟<br />

⎝ k B T<br />

= 0 (19)<br />

n<br />

⎠<br />

Retaining only terms linear in H, and ignoring second-order energy terms, we obtain,


Since χ=M/H, then<br />

Recall that,<br />

14<br />

(1)<br />

( E n ) 2<br />

⎛<br />

∑ exp⎜<br />

−E 0 n<br />

⎞<br />

n k B T<br />

k B T<br />

⎟<br />

⎝ ⎠<br />

M = NH<br />

⎛<br />

exp⎜<br />

−E n 0 ⎞<br />

∑<br />

⎟<br />

⎝ k B T<br />

n<br />

⎠<br />

(20)<br />

(1)<br />

( E n ) 2<br />

⎛<br />

∑ exp⎜<br />

−E n 0 ⎞<br />

n k B T k B T<br />

⎟<br />

⎝ ⎠<br />

χ = N<br />

⎛<br />

exp⎜<br />

−E n 0 ⎞<br />

∑<br />

⎟<br />

⎝ k B T<br />

n<br />

⎠<br />

(21)<br />

+S<br />

(1)<br />

E n = ms gµ B and ∑<br />

2<br />

m s<br />

−S<br />

= 1 3 S ( S +1 )( 2S +1) (22)<br />

and adding degeneracy terms gives,<br />

⎛<br />

χ = Ng 2 µ<br />

2 ∑S( S +1) ( 2S+1)<br />

exp −E ⎞<br />

⎜ S kB T<br />

⎟<br />

B S<br />

⎝ ⎠<br />

3k B T<br />

⎛<br />

( 2S +1)exp −E ⎞<br />

∑ ⎜ S<br />

⎝ k B T<br />

⎟<br />

S<br />

⎠<br />

(23)<br />

Plugging in the constants gives,<br />

χ = 0.125g2 emuK / mol<br />

T<br />

⎛<br />

∑S( S+ 1) ( 2S +1)<br />

exp −E ⎞<br />

⎜ S k<br />

S<br />

⎝ B T<br />

⎟<br />

⎠<br />

⎛<br />

( 2S +1)exp −E ⎞<br />

∑ ⎜ S<br />

⎝ k B T<br />

⎟<br />

S<br />

⎠<br />

(24)<br />

Where E S is the energy of the exchange-coupled spin states determined using the HDVV<br />

Hamiltonian. The energies of the states (in units of J) are relative to the lowest state, which is<br />

taken as zero. The denominator can be modified according to the Curie-Weiss law to give:<br />

= 0.125g2 emuK / mol<br />

T − ( )<br />

∑<br />

S<br />

S( S +1) ( 2S + 1)<br />

⎛<br />

exp −E ⎞<br />

S<br />

⎜<br />

⎝ kB T⎟<br />

⎠<br />

⎛<br />

( 2S +1)exp −E ⎞<br />

S<br />

⎜<br />

⎝ kB T ⎟<br />

S<br />

⎠<br />

∑<br />

(25)<br />

Below are plots of T vs T for = -0.01 K and -500 cm -1 ≤ J ≥ +500 cm -1 .


15<br />

1<br />

χ<br />

paraT<br />

(emu•K/mol)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-500<br />

-250<br />

-150<br />

-50<br />

-10<br />

-5<br />

+5<br />

+10<br />

+50<br />

+150<br />

+250<br />

+500<br />

0<br />

0 500 1000 1500 2000 2500<br />

Temperature (Kelvin)<br />

Below are plots of vs T for = -0.01 K and -500 cm -1 ≤ J ≥ +500 cm -1 . Note that for<br />

ferromagnetic coupling, increases asymtotically as the temperature is lowered, while for<br />

antiferromagnetic coupling, exhibits a maximum at T max<br />

.<br />

0.005<br />

0.004<br />

χ<br />

para (emu/mol)<br />

0.003<br />

0.002<br />

-500<br />

-250<br />

-150<br />

-50<br />

-10<br />

-5<br />

+5<br />

+10<br />

+50<br />

+150<br />

+250<br />

+500<br />

0.001<br />

0<br />

0 500 1000 1500 2000 2500<br />

Temperature (Kelvin)


The exchange coupling parameter is related to T max<br />

by:<br />

16<br />

|J| = 0.8 kT max<br />

(26)<br />

Thus, a maximum in the plot of<br />

vs. T is the signature of antiferromagnetic coupling.<br />

References<br />

1)Kahn, O. Molecular Magnetism; VCH: New York, 1993.<br />

2)Van Vleck, J. H. The Theory of Electric and Magnetic Susceptibilities; Oxford University<br />

Press: Oxford, 1932.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!