29.12.2013 Views

Well-conditioned boundary integral formulations for the ... - Njit

Well-conditioned boundary integral formulations for the ... - Njit

Well-conditioned boundary integral formulations for the ... - Njit

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

and<br />

Λ (1)<br />

n (K) = [Kj n (K)] ′ [Kh (1)<br />

n (K)] ′ (64)<br />

Λ (2)<br />

n (K) = −K 2 j n (K)h (1)<br />

n (K). (65)<br />

In <strong>the</strong> <strong>for</strong>mulas above j n and h (1)<br />

n denote <strong>the</strong> spherical Bessel and Hankel functions of <strong>the</strong> first<br />

kind, respectively. From <strong>the</strong> spectral properties of <strong>the</strong> operators T K presented above, <strong>the</strong> spectral<br />

properties of <strong>the</strong> operator n×S K can be derived immediately. Indeed, it follows from <strong>the</strong> definition<br />

(7) (with k = K) that<br />

(n × S K )( −−→ curl S 2Yn m ) = Λ(2) n (K)<br />

iK ∇ S 2Y n m , (66)<br />

and, using <strong>the</strong> definition of <strong>the</strong> Laplace-Beltrami operator ∆ S 2 = div S 2∇ S 2 and <strong>the</strong> fact that <strong>the</strong><br />

spherical harmonic Yn m is an eigenfunction of both <strong>the</strong> operator ∆ S 2, with eigenvalue −n(n + 1),<br />

as well as <strong>the</strong> single layer acoustic operator corresponding to <strong>the</strong> wavenumber K [44]<br />

∫<br />

(S K Y n (m) )(x) = G K (x − y)Yn m (y)dσ(y) = iKj n (K)h (1)<br />

n (K)Yn m (x), |x| = 1 (67)<br />

S 2<br />

we obtain<br />

(n × S K )(∇ S 2Yn m ) = 1<br />

iK (Λ(1) n (K) + n(n + 1)j n (K)h (1)<br />

n (K)) −−→ curl S 2Yn m = S n<br />

(1) (K) −−→ curl S 2Yn m . (68)<br />

Consequently, <strong>the</strong> choice of <strong>the</strong> regularizing operators R = η κ n × S iκ , κ > 0 advocated in [15]<br />

leads to <strong>boundary</strong> <strong>integral</strong> operators with <strong>the</strong> following spectral properties<br />

( ( )<br />

I 1<br />

2 − K k + ηκT k ◦ (n × S iκ ))<br />

∇ S 2Yn m =<br />

2 + λ n(k) + ηκΛ (2)<br />

n (k)S n<br />

(1) (iκ) ∇ S 2Yn<br />

m<br />

( ) I −−→<br />

2 − K k + ηκT k ◦ (n × S iκ ) curlS 2Yn m =<br />

= A (1)<br />

n (k, κ, η)∇ S 2Yn<br />

m ( 1<br />

2 − λ n(k) − ηΛ (1)<br />

n (k)Λ (2)<br />

n (iκ)<br />

) −−→ curlS 2Yn<br />

m<br />

= A (2)<br />

n (k, κ, η) −−→ curl S 2Yn m . (69)<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> choice of <strong>the</strong> regularizing operators R = −ξT iκ , κ > 0, ξ > 0 introduced<br />

in [30] leads to <strong>boundary</strong> <strong>integral</strong> operators with <strong>the</strong> following spectral properties<br />

( )<br />

( )<br />

I 1<br />

2 − K k − ξT k ◦ T iκ ∇ S 2Yn m =<br />

2 + λ n(k) − ξΛ (2)<br />

n (k)Λ (1)<br />

n (iκ) ∇ S 2Yn<br />

m<br />

( I<br />

2 − K k − ξT k ◦ T iκ<br />

) −−→ curlS 2Y m n =<br />

= B n<br />

(1) (k, κ, ξ)∇ S 2Yn<br />

m ( 1<br />

2 − λ n(k) − ξΛ (1)<br />

n (k)Λ (2)<br />

n (iκ)<br />

) −−→ curlS 2Yn<br />

m<br />

= B n<br />

(2) (k, κ, ξ) −−→ curl S 2Yn<br />

m<br />

. (70)<br />

We note that <strong>the</strong> operators ( I<br />

2 − K k + ηκT k ◦ (n × S iκ ) ) and ( I<br />

2 − K )<br />

(<br />

k − ξT k ◦ T iκ are diagonal in<br />

∇<br />

<strong>the</strong> orthonormal basis S 2 Yn<br />

√ m −−→<br />

)<br />

curl<br />

, S 2 Yn<br />

√ m of <strong>the</strong> space L 2 (T M(S 2 )), having <strong>the</strong> same<br />

n(n+1) n(n+1)<br />

1≤n,−n≤m≤n<br />

eigenvalues (A (1)<br />

n (k, κ, η), A (2)<br />

n (k, κ, η) and (B n (1) (k, κ, ξ), B n<br />

(2) (k, κ, ξ)) in that basis. We investigate<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!