29.12.2013 Views

Measurements on electric Installations in theory and practice ...

Measurements on electric Installations in theory and practice ...

Measurements on electric Installations in theory and practice ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong><br />

Installati<strong>on</strong>s <strong>in</strong> <strong>theory</strong><br />

<strong>and</strong> <strong>practice</strong><br />

Instructi<strong>on</strong> manual<br />

Code: 20 750 664


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

1. Preface................................................................................................................4<br />

1.1. Purpose of the manual “measurements <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong><br />

<strong>practice</strong>”...............................................................................................................4<br />

1.2. Presentati<strong>on</strong> of Metrel d. d. <strong>and</strong> its programme.................................................5<br />

2. European st<strong>and</strong>ards <strong>on</strong> measurement <strong>in</strong>struments.......................................7<br />

3. European st<strong>and</strong>ards <strong>on</strong> <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s............................................11<br />

4. General comments <strong>on</strong> <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s...............................................12<br />

5. <str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> build<strong>in</strong>gs.................................16<br />

5.1. Insulati<strong>on</strong> resistance EN 61557- 2..............................................................17<br />

5.1.1. Measurement of Insulati<strong>on</strong> Resistance between c<strong>on</strong>ductors................19<br />

5.1.2. Resistance measurement of n<strong>on</strong>-c<strong>on</strong>ductive walls <strong>and</strong> floors..............20<br />

5.1.3. Resistance measurement of semi-c<strong>on</strong>ductive floors.............................21<br />

5.1.4. Insulati<strong>on</strong> Resistance measurement <strong>on</strong> ground cables - 30 GΩ...........22<br />

5.2. C<strong>on</strong>t<strong>in</strong>uity of protecti<strong>on</strong> c<strong>on</strong>ductors, c<strong>on</strong>ductors for ma<strong>in</strong> <strong>and</strong> additi<strong>on</strong>al<br />

equaliz<strong>in</strong>g <strong>and</strong> earth<strong>in</strong>g c<strong>on</strong>ductors EN 61557- 4...................................23<br />

5.3. Additi<strong>on</strong>al earth b<strong>on</strong>d<strong>in</strong>g EN 61557- 4.............................................................26<br />

5.4. Low resistances...............................................................................................29<br />

5.5. Earth<strong>in</strong>g resistance EN 61557-5..................................................................30<br />

5.5.1. Measurement of simple rod earth<strong>in</strong>g electrode.....................................35<br />

5.5.2. Measurement of simple b<strong>and</strong> earth<strong>in</strong>g electrode..................................36<br />

5.5.3. Measurement of complex earth<strong>in</strong>g systems with several parallel<br />

electrodes...........................................................................................................36<br />

5.6. Specific earth resistance (resistivity) EN 61557- 5..........................................45<br />

5.7. C<strong>on</strong>necti<strong>on</strong> of protecti<strong>on</strong> c<strong>on</strong>ductor ‘pe’ at ma<strong>in</strong>s plug....................................48<br />

5.8. Rcd protecti<strong>on</strong> devices EN 61557- 6..........................................................49<br />

5.8.1. C<strong>on</strong>tact voltage.....................................................................................52<br />

5.8.2. Trip out time..........................................................................................55<br />

5.8.3. Tripp<strong>in</strong>g current....................................................................................56<br />

5.8.4. Earth Resistance (external source of test voltage)...............................57<br />

5.9. Fault loop impedance <strong>and</strong> Ipsc EN 61557- 3...............................................60<br />

5.10. L<strong>in</strong>e impedance <strong>and</strong> Prospective Short-circuit current..................................64<br />

5.10.1. L<strong>in</strong>e Impedance between the phase <strong>and</strong> neutral term<strong>in</strong>als...............64<br />

5.10.2. L<strong>in</strong>e Impedance measurement between two phase c<strong>on</strong>ductors.......65<br />

5.11. N–PE Loop resistance...................................................................................67<br />

5.11.1. Measurement of N–PE loop resistance <strong>in</strong> TN- system......................68<br />

5.11.2. Measurement of N–PE loop resistance <strong>in</strong> TT- system......................68<br />

5.11.3. Measurement of N–PE loop resistance <strong>in</strong> IT- system.......................69<br />

5.12. Phase rotati<strong>on</strong> EN 61557- 7....................................................................70<br />

5.13. Measurement of voltage, frequency <strong>and</strong> current...........................................71<br />

5.13.1. Voltage <strong>and</strong> frequency measurement...............................................71<br />

5.13.2. Current measurement.......................................................................71<br />

5.14. Varistor overvoltage protecti<strong>on</strong> devices.........................................................73<br />

5.15. Trac<strong>in</strong>g of <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>......................................................................75<br />

5.16. Power............................................................................................................80<br />

5.16.1. Power measurement <strong>on</strong> s<strong>in</strong>gle-phase system..................................80<br />

5.16.2. Power measurement <strong>on</strong> three-phase system....................................81<br />

5.17. Energy...........................................................................................................91<br />

5.18. Harm<strong>on</strong>ic analysis.........................................................................................92<br />

2


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

6. Technology of carry<strong>in</strong>g out measurements, us<strong>in</strong>g test equipment<br />

produced by Metrel d.d...................................................................................99<br />

7. Presentati<strong>on</strong> of test <strong>in</strong>struments produced by Metrel d.d.........................109<br />

7.1. Technical specificati<strong>on</strong>s Eurotest 61557.......................................................110<br />

7.2. Technical specificati<strong>on</strong>s Instaltest 61557......................................................115<br />

7.3. Technical specificati<strong>on</strong>s Earth Insulati<strong>on</strong> Tester............................................118<br />

3


1. Preface<br />

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

1.1. Purpose of the manual “measurements <strong>on</strong> <strong>electric</strong><br />

<strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong>”<br />

This manual is designed for <strong>electric</strong>al eng<strong>in</strong>eers who deal with measurements <strong>on</strong><br />

new or modified low-voltage <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> build<strong>in</strong>gs or with the<br />

ma<strong>in</strong>tenance of these <strong>in</strong>stallati<strong>on</strong>s. In the manual the user can f<strong>in</strong>d an explanati<strong>on</strong><br />

for many practical problems whilst perform<strong>in</strong>g measurements <strong>and</strong> directi<strong>on</strong>s <strong>on</strong><br />

how to solve the problems by us<strong>in</strong>g the measurement <strong>in</strong>struments produced by<br />

METREL d.d.<br />

The ma<strong>in</strong> objectives of the manual are :<br />

1. To present the new European st<strong>and</strong>ard EN 61557 <strong>in</strong> a manner which expla<strong>in</strong>s<br />

the safety of measurement <strong>in</strong>struments for perform<strong>in</strong>g measurements <strong>on</strong> lowvoltage<br />

<strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s. This st<strong>and</strong>ard is compulsory for member<br />

countries of the EU s<strong>in</strong>ce 01.12.1997.<br />

2. To describe the performance of <strong>in</strong>dividual measurements <strong>on</strong> an <strong>electric</strong>al<br />

<strong>in</strong>stallati<strong>on</strong>. Compulsory <strong>and</strong> n<strong>on</strong>-compulsory measurements are <strong>in</strong>cluded<br />

which helps to elim<strong>in</strong>ate errors, ma<strong>in</strong>ta<strong>in</strong> the <strong>in</strong>stallati<strong>on</strong>, <strong>and</strong> c<strong>on</strong>nect loads etc.<br />

For each specific type of measurement the measurement pr<strong>in</strong>ciple <strong>and</strong><br />

practical performance of the measurement are dem<strong>on</strong>strated <strong>in</strong> various<br />

<strong>in</strong>stallati<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong>s. In additi<strong>on</strong>, other parameters of measurement,<br />

various warn<strong>in</strong>gs <strong>and</strong> limit values of the measured parameters are <strong>in</strong>cluded. All<br />

of the measurements are illustrated.<br />

3. To describe the technological approach to the performance of the<br />

measurements at the circuit or device under test. We believe that the<br />

<strong>in</strong>formati<strong>on</strong> offered will help the user(s) to shorten the time which is needed for<br />

the preparati<strong>on</strong> <strong>and</strong> performance of the measurements themselves <strong>and</strong><br />

record<strong>in</strong>g of the measurement results.<br />

4. To give advice to all potential buyers <strong>and</strong> users of measurement <strong>in</strong>struments <strong>in</strong><br />

order to direct them towards the right choice of measurement equipment.<br />

The full family of the latest measurement <strong>in</strong>struments produced by METREL d.d.<br />

for test<strong>in</strong>g the safety of <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s is presented at the end of this<br />

manual.<br />

4


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

1.2. Presentati<strong>on</strong> of Metrel d. d. <strong>and</strong> its programme<br />

5


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

The factory has 42 years experience <strong>in</strong> the development <strong>and</strong> producti<strong>on</strong> of<br />

measur<strong>in</strong>g <strong>and</strong> regulat<strong>in</strong>g equipment. The latest producti<strong>on</strong> program is for<br />

multitesters to test safety <strong>on</strong> low-voltage <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s, earth<strong>in</strong>g systems<br />

<strong>and</strong> <strong>electric</strong>al appliances.<br />

240 workers are employed, half of them <strong>on</strong> the measurement program. 17<br />

eng<strong>in</strong>eers are employed <strong>in</strong> the R & D department.<br />

One of the superior aspects of METREL is the speed at which it completes its<br />

development projects so that it takes at most 12 m<strong>on</strong>ths from the idea to the<br />

producti<strong>on</strong> of the first series.<br />

With regard to c<strong>on</strong>structi<strong>on</strong> of the test equipment, METREL has l<strong>in</strong>ked up with<br />

The University <strong>in</strong> Ljubljana <strong>and</strong> the M<strong>in</strong>istry of Science <strong>and</strong> Technology. The<br />

results of our R & D activities are shown <strong>in</strong> numerous patents registered, both at<br />

home <strong>and</strong> <strong>in</strong> the countries of EU.<br />

New products produced by METREL are launched <strong>in</strong> the market every year, <strong>in</strong><br />

1999 there will be 6 new measurement <strong>in</strong>struments from the producti<strong>on</strong> l<strong>in</strong>e. Our<br />

calibrati<strong>on</strong> laboratory checks each product after complet<strong>in</strong>g the producti<strong>on</strong><br />

process <strong>and</strong> the relevant calibrati<strong>on</strong> certificates are enclosed.<br />

METREL pays the greatest attenti<strong>on</strong> to the relati<strong>on</strong>ship with their partners <strong>and</strong> to<br />

the quality of its own products. Certificati<strong>on</strong> to ISO 9001 has also been achieved.<br />

The distributi<strong>on</strong> network has been developed <strong>in</strong> most countries worldwide.<br />

This manual was written to enable better underst<strong>and</strong><strong>in</strong>g of the problems<br />

associated with measurements <strong>on</strong> low-voltage <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s to the end<br />

users.<br />

METREL has manufactured a dem<strong>on</strong>strati<strong>on</strong> board that simulates a practical<br />

<strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>. It is ma<strong>in</strong>ly designed for distributors of measurement<br />

<strong>in</strong>struments to dem<strong>on</strong>strate the performance of measurements <strong>on</strong> the <strong>in</strong>stallati<strong>on</strong><br />

to their potential buyers. METREL has also been us<strong>in</strong>g this board at sem<strong>in</strong>ars that<br />

are organized to educate/tra<strong>in</strong> the users.<br />

6


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

2. European st<strong>and</strong>ards <strong>on</strong> measurement<br />

<strong>in</strong>struments<br />

To ensure the c<strong>on</strong>diti<strong>on</strong>s for safe usage of <strong>electric</strong>al energy, safety of <strong>electric</strong><br />

<strong>in</strong>stallati<strong>on</strong>s, safety test<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>tenance, great effort was taken <strong>in</strong> the<br />

preparati<strong>on</strong> of the appropriate st<strong>and</strong>ards.<br />

The changes to the exist<strong>in</strong>g st<strong>and</strong>ards, which were well known to the producers<br />

<strong>and</strong> users of measurement equipment, were quite frequent dur<strong>in</strong>g the preparati<strong>on</strong><br />

of the unified st<strong>and</strong>ard.<br />

Although the general safety st<strong>and</strong>ard IEC 1010-1 <strong>and</strong> later harm<strong>on</strong>ized European<br />

st<strong>and</strong>ard EN 61010 addressed the general safety of <strong>electric</strong>al measurement<br />

<strong>in</strong>struments, the safety viewpo<strong>in</strong>t for the use of these <strong>in</strong>struments at low-voltage<br />

<strong>in</strong>stallati<strong>on</strong>s was miss<strong>in</strong>g. To ensure that unified pr<strong>in</strong>ciples for the use of<br />

measurement <strong>in</strong>struments tak<strong>in</strong>g measurements <strong>in</strong> <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s up to 1000 V<br />

a.c. <strong>and</strong> 1500 V d.c., IEC <strong>and</strong> CENELEC have prepared <strong>and</strong> issued the family of<br />

st<strong>and</strong>ards EN 61557 which to a great part follow the German family of st<strong>and</strong>ards DIN<br />

VDE 0413. EN 61557 has brought an important soluti<strong>on</strong> to this field of operati<strong>on</strong>. For<br />

the nati<strong>on</strong>al committees of <strong>in</strong>dividual countries of the European Uni<strong>on</strong> the new<br />

st<strong>and</strong>ards are expressed as follows:<br />

• EN61557 will become the European st<strong>and</strong>ard <strong>and</strong> any nati<strong>on</strong>al st<strong>and</strong>ard that<br />

does not comply, or is c<strong>on</strong>tradictory to EN61557 will be obsolete.<br />

The <strong>in</strong>troducti<strong>on</strong> of the new st<strong>and</strong>ard signified various changes to the c<strong>on</strong>structi<strong>on</strong><br />

or the producti<strong>on</strong> of measurement <strong>in</strong>struments. In accordance with the agreement<br />

<strong>and</strong> because each change needs a def<strong>in</strong>ite time to come <strong>in</strong>to operati<strong>on</strong>, it was<br />

agreed to implement the changes from 1 st December 1997.<br />

METREL also took <strong>in</strong>to c<strong>on</strong>siderati<strong>on</strong> the dem<strong>and</strong>s of the new st<strong>and</strong>ard when<br />

develop<strong>in</strong>g the latest family of measurement <strong>in</strong>struments.<br />

EN 61557 st<strong>and</strong>ard is divided <strong>in</strong>to several parts; each part deals with the safety of<br />

the determ<strong>in</strong>ed measurement at the <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong> as follows:<br />

• EN 61557 Part 2<br />

• EN 61557 Part 3<br />

• EN 61557 Part 4<br />

• EN 61557 Part 5<br />

• EN 61557 Part 6<br />

• EN 61557 Part 7<br />

• EN 61557 Part 8<br />

Insulati<strong>on</strong> Resistance<br />

Fault Loop Impedance<br />

C<strong>on</strong>t<strong>in</strong>uity of Earth C<strong>on</strong>necti<strong>on</strong>s <strong>and</strong> Equipotential B<strong>on</strong>d<strong>in</strong>g<br />

Earth Resistance<br />

Residual Current Devices (RCD) <strong>in</strong> TT <strong>and</strong> TN earth<strong>in</strong>g<br />

systems<br />

Phase sequence<br />

Insulati<strong>on</strong> m<strong>on</strong>itor<strong>in</strong>g devices <strong>in</strong> IT earth<strong>in</strong>g systems<br />

Let’s see the ma<strong>in</strong> requirements of the separate parts of EN 61557 st<strong>and</strong>ard<br />

regard<strong>in</strong>g the performance of measurements <strong>and</strong> the c<strong>on</strong>structi<strong>on</strong> of<br />

measurement <strong>in</strong>strument.<br />

7


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

EN 61557 Part 2 Insulati<strong>on</strong> Resistance<br />

• The maximum error should not exceed +/- 30 %.<br />

• DC test voltage should be used.<br />

• In case of 5 µF capacitor c<strong>on</strong>nected <strong>in</strong> parallel with measured resistance (Ri =<br />

Un ⋅ 1000 Ω/V), the test result should not differ from the <strong>on</strong>e without a capacitor<br />

by more than 10 %.<br />

• The test voltage shall not exceed the value of 1,5 ⋅ Un.<br />

• The test current flow<strong>in</strong>g to tested resistance of Un ⋅ 1000 Ω/V should be at least<br />

1 mA.<br />

• The test current shall not exceed the value of 15 mA p while a.c. comp<strong>on</strong>ent<br />

shall not exceed 1,5 mA.<br />

• External a.c. or d.c. voltage of up to 1,2 ⋅ Un c<strong>on</strong>nected to test equipment for<br />

10s shall not damage the equipment.<br />

EN 61557 Part 3 Fault Loop Impedance<br />

• The maximum error should not exceed +/- 30 %.<br />

• Test <strong>in</strong>strument shall give an <strong>in</strong>dicati<strong>on</strong> if resistance of test leads is<br />

compensated.<br />

• C<strong>on</strong>tact voltage higher than 50 V should not appear dur<strong>in</strong>g the measurement or<br />

the voltage must be term<strong>in</strong>ated with<strong>in</strong> 30 ms.<br />

• An external voltage of up to 120 % of nom<strong>in</strong>al ma<strong>in</strong>s voltage, c<strong>on</strong>nected to the<br />

test equipment, should not damage the equipment or cause any danger for the<br />

operator, also the fuse <strong>in</strong> the test equipment should not blow.<br />

• An external voltage of up to 173 % of nom<strong>in</strong>al ma<strong>in</strong>s voltage, c<strong>on</strong>nected to the<br />

test equipment for 1 m<strong>in</strong>, should not damage the equipment or cause any<br />

danger for the operator, but the potential fuse <strong>in</strong> the test equipment may blow.<br />

EN 61557 Part 4 Earth C<strong>on</strong>necti<strong>on</strong> or Equipotential b<strong>on</strong>d<strong>in</strong>g Resistance<br />

• The maximum error should not exceed +/- 30 %.<br />

• AC or DC test voltage with<strong>in</strong> 4 up to 24 V may be used.<br />

• The test equipment should enable revers<strong>in</strong>g of test voltage polarity if a DC test<br />

voltage is used.<br />

• The test current should be higher than 200 mA with<strong>in</strong> the m<strong>in</strong>imum<br />

measurement range.<br />

• M<strong>in</strong>imum measurement range shall <strong>in</strong>clude the range 0,2 up to 2 Ω.<br />

• Resoluti<strong>on</strong> of 0,01 Ω shall be assured <strong>on</strong> digital <strong>in</strong>struments while clear<br />

<strong>in</strong>dicati<strong>on</strong> of which limit is exceeded shall be present <strong>on</strong> simple <strong>in</strong>struments.<br />

• Any compensati<strong>on</strong> of the test leads or additi<strong>on</strong>al external resistance must be<br />

<strong>in</strong>dicated.<br />

• External voltage of up to 120 % of the nom<strong>in</strong>al ma<strong>in</strong>s voltage, c<strong>on</strong>nected to the<br />

test equipment, should not damage the equipment or cause any danger the for<br />

the operator, but the potential fuse <strong>in</strong> the test equipment may blow.<br />

8


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

EN 61557 Part 5 Earth Resistance<br />

• The maximum error should not exceed +/- 30 % under the follow<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s:<br />

• Noise voltage of 3 V / 400 Hz, 60 Hz, 50 Hz, 16,66 Hz or d.c. is<br />

c<strong>on</strong>nected between E (ES) <strong>and</strong> S test term<strong>in</strong>als.<br />

• Resistance of auxiliary probes is 100 ⋅ RE or 50 kΩ (whichever<br />

value is lower).<br />

• AC test voltage should be used.<br />

• The test voltage should be lower than 50 V eff (70 V p ), or test current should be<br />

lower than 3,5 mA eff (5 mA p ), or test signal should be present for less than<br />

30ms.<br />

• Test <strong>in</strong>strument must <strong>in</strong>dicate exceeded resistance of auxiliary test probes.<br />

• External voltage of up to 120 % of the nom<strong>in</strong>al ma<strong>in</strong>s voltage, c<strong>on</strong>nected to the<br />

test equipment, should not damage the equipment or cause any danger for the<br />

operator, also the fuse <strong>in</strong> the test equipment should not blow.<br />

EN 61557 Part 6 RCD test<br />

• The test shall be carried out us<strong>in</strong>g AC s<strong>in</strong>e test current.<br />

• The test equipment should enable C<strong>on</strong>tact voltage to be measured <strong>and</strong><br />

displayed or at least give an <strong>in</strong>dicati<strong>on</strong> of the exceeded limit value. The<br />

measurement may be carried out with or without an auxiliary test probe. When<br />

measur<strong>in</strong>g the tripp<strong>in</strong>g current, the C<strong>on</strong>tact voltage shall be scaled to the<br />

Tripp<strong>in</strong>g current <strong>and</strong> compared with the limit value.<br />

• The error of C<strong>on</strong>tact voltage measurement should be with<strong>in</strong> 0 to +20 % of the<br />

limit value.<br />

• Test equipment should enable Trip out time measurement <strong>and</strong> / or at least<br />

<strong>in</strong>dicati<strong>on</strong> of the exceeded limit value.<br />

• When a test is carried out at 0,5 ⋅ I∆N, the test shall last at least 0,2 s, RCD<br />

should not trip dur<strong>in</strong>g the test.<br />

• Test <strong>in</strong>struments <strong>in</strong>tended to test RCDs with a nom<strong>in</strong>al differential current of<br />

30 mA or less should also allow the tests to be performed at 5 ⋅ I∆N where the<br />

durati<strong>on</strong> is limited to 40 ms. This limit is not relevant if the c<strong>on</strong>tact voltage is<br />

lower than the limit value (50 or 25V).<br />

• The error of Trip out time measurement should not exceed +/-10 % of the limit<br />

value.<br />

• Test equipment should enable Tripp<strong>in</strong>g current to be measured <strong>and</strong> displayed<br />

or at least <strong>in</strong>dicati<strong>on</strong> of the exceeded limit value.<br />

• The test current at Tripp<strong>in</strong>g current measurement should be with<strong>in</strong> I ∆N <strong>and</strong> 1,1⋅<br />

I∆N.<br />

• The test current when test<strong>in</strong>g RCD with half the nom<strong>in</strong>al differential current<br />

must be with<strong>in</strong> 0,4 ⋅ I∆N to 0,5 ⋅ I∆N.<br />

• The error of Tripp<strong>in</strong>g current measurement should not exceed +/-10% of the<br />

nom<strong>in</strong>al differential current.<br />

• Declarati<strong>on</strong> of errors is valid for normal c<strong>on</strong>diti<strong>on</strong>s as follows:<br />

• There is no voltage at PE c<strong>on</strong>ductor.<br />

• Ma<strong>in</strong>s voltage is stable dur<strong>in</strong>g the measurement.<br />

• There are no leakage currents <strong>on</strong> the <strong>in</strong>stallati<strong>on</strong> under test.<br />

• Value of ma<strong>in</strong>s voltage dur<strong>in</strong>g the measurement should be with<strong>in</strong><br />

9


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

85 % to 110 % of nom<strong>in</strong>al ma<strong>in</strong>s voltage.<br />

• Resistance of any auxiliary probe is with<strong>in</strong> the range declared by<br />

the producer of test equipment.<br />

• C<strong>on</strong>tact voltage should not exceed 50 V eff (70 V p ) dur<strong>in</strong>g any test, or test<br />

current should not exceed 3,5 mA eff (5 mA p ), or the voltage should last less<br />

than 30 ms.<br />

• External voltage of up to 120 % of nom<strong>in</strong>al ma<strong>in</strong>s voltage, c<strong>on</strong>nected to test<br />

equipment, should not damage the equipment or cause any danger for the<br />

operator, also the fuse <strong>in</strong> the test equipment should not blow.<br />

• External voltage of up to 173 % of nom<strong>in</strong>al ma<strong>in</strong>s voltage, c<strong>on</strong>nected to the test<br />

equipment for 1 m<strong>in</strong>, should not damage the equipment or cause any danger<br />

for the operator, but the potential fuse <strong>in</strong> the test equipment may blow.<br />

EN 61557 part 7, Phase sequence<br />

• The test <strong>in</strong>strument should assure clear <strong>in</strong>dicati<strong>on</strong> of phase sequence with<strong>in</strong><br />

the voltage range from 85 up to 110 % of the nom<strong>in</strong>al ma<strong>in</strong>s voltage <strong>and</strong> with<strong>in</strong><br />

the frequency range from 95 up to 105 % of nom<strong>in</strong>al frequency.<br />

• The test <strong>in</strong>strument should enable either clear acoustic <strong>in</strong>dicati<strong>on</strong> (even <strong>in</strong><br />

presence of sound levels <strong>in</strong> excess of 75 dB) or clear visual <strong>in</strong>dicati<strong>on</strong> (visible<br />

from the distance of 50 cm) even at external illum<strong>in</strong>ati<strong>on</strong> levels of 30 to 1000 lx.<br />

• Indicati<strong>on</strong> of phase sequence shall be c<strong>on</strong>t<strong>in</strong>uous.<br />

• The test <strong>in</strong>strument shall be portable even whilst the test is runn<strong>in</strong>g. It should<br />

be produced <strong>in</strong> isolati<strong>on</strong> materials of double <strong>in</strong>sulati<strong>on</strong> classificati<strong>on</strong>.<br />

• If <strong>on</strong>e or two of the test leads are c<strong>on</strong>nected to ground while the other test<br />

leads are c<strong>on</strong>nected to phase voltage the leakage current should be lower than<br />

3,5 mA (at 110 % of the nom<strong>in</strong>al ma<strong>in</strong>s voltage).<br />

• External diameter of test leads shall be at least 3,5 mm, c<strong>on</strong>ductor secti<strong>on</strong> at<br />

least 0,75 mm 2 with diameter of separate wires max. 0,07 mm. Double<br />

<strong>in</strong>sulati<strong>on</strong> should be used at test leads.<br />

As can be seen from the above the EN 61557 regulati<strong>on</strong> offers exact<br />

requirements for the c<strong>on</strong>structi<strong>on</strong> of measurement <strong>in</strong>struments. Some<br />

requirements are just adapted whilst others are completely new <strong>in</strong> comparis<strong>on</strong><br />

with previous regulati<strong>on</strong>s. That is why it is very important for all end users <strong>and</strong><br />

distributors to verify that their test equipment c<strong>on</strong>forms to the EN 61557<br />

regulati<strong>on</strong>.<br />

10


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

3. European st<strong>and</strong>ards <strong>on</strong> <strong>electric</strong>al<br />

<strong>in</strong>stallati<strong>on</strong>s<br />

This doma<strong>in</strong> is covered <strong>on</strong> an <strong>in</strong>ternati<strong>on</strong>al level by the IEC 60364-x regulati<strong>on</strong><br />

whilst <strong>on</strong> a European level the relevant regulati<strong>on</strong> is issued <strong>in</strong> harm<strong>on</strong>ized form as<br />

HD 384-x st<strong>and</strong>ard.<br />

Individual countries have their own nati<strong>on</strong>al regulati<strong>on</strong>s, some are listed below.<br />

• Germany ............... VDE 0100 - x (it is mostly identical with <strong>in</strong>dividual parts of<br />

European harm<strong>on</strong>ized regulati<strong>on</strong> HD 384 - x).<br />

• Engl<strong>and</strong>................. BS 7671: Requirements for Electric <strong>in</strong>stallati<strong>on</strong>s<br />

IEE Wir<strong>in</strong>g Regulati<strong>on</strong>s<br />

16th editi<strong>on</strong><br />

<strong>in</strong>terpretati<strong>on</strong> brochures:<br />

HB 10011<br />

HB 10116 ÷ HB 10121<br />

HB 10123<br />

• Austria................... ÖNORM B 5430 ÷ ÖNORM B 5435<br />

• France................... NF C15 - 100<br />

• Spa<strong>in</strong>..................... UNE 20 - 460 - x - x<br />

• Italy........................ CEI 64 - 8<br />

• Check Republic..... ČSN 33 2130<br />

ČSN 2000 - x - x<br />

• F<strong>in</strong>l<strong>and</strong>.................. SF S 5825<br />

• Norway.................. TH 30995<br />

11


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

4. General comments <strong>on</strong> <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s<br />

The figure below shows the <strong>in</strong>stallati<strong>on</strong> to be discussed <strong>in</strong> detail. It shows the limit<br />

l<strong>in</strong>e between the <strong>electric</strong>al supply network <strong>and</strong> the <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong> <strong>in</strong> the<br />

build<strong>in</strong>g.<br />

Fig. 1. Divisi<strong>on</strong> between the <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong> <strong>and</strong> supply network<br />

CC …………………. C<strong>on</strong>necti<strong>on</strong> cab<strong>in</strong>et<br />

DC …………………. Distributi<strong>on</strong> cab<strong>in</strong>et<br />

Some measurements, which are carried out at the <strong>in</strong>stallati<strong>on</strong> also, <strong>in</strong>clude a part<br />

of the supply network <strong>and</strong> source (e.g. L<strong>in</strong>e <strong>and</strong> Fault Loop Impedance<br />

measurement, Earth Resistance measurement at the TN systems etc.)<br />

The c<strong>on</strong>structi<strong>on</strong> of an <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong> is determ<strong>in</strong>ed by st<strong>and</strong>ards. Generally<br />

the <strong>in</strong>stallati<strong>on</strong>s are divided <strong>in</strong>to groups dependant up<strong>on</strong> the usage, the voltage<br />

shape, the type of earth<strong>in</strong>g system etc.<br />

With regard to the usage of <strong>in</strong>stallati<strong>on</strong>s, they are divided <strong>in</strong>to:<br />

• Low-voltage <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> build<strong>in</strong>gs for a.c. voltages up to 250 V with<br />

respect to earth (residential premises, bus<strong>in</strong>ess rooms, lodg<strong>in</strong>g houses,<br />

schools, public places, rural build<strong>in</strong>gs etc.)<br />

• Low-voltage <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>in</strong>dustry for a.c. voltages up to 600 V with<br />

respect to earth or d.c. voltages up to 900 V (electromotive drives,<br />

electromechanical process<strong>in</strong>g mach<strong>in</strong>es, heat<strong>in</strong>g systems etc.)<br />

• Installati<strong>on</strong>s for safe voltages, this is a voltage up to 50 V a.c. or up to<br />

120 V d.c.( teleph<strong>on</strong>y, public address systems, aerial network, <strong>in</strong>telligent<br />

<strong>in</strong>stallati<strong>on</strong>s, safety systems, speech devices, local network etc.)<br />

C<strong>on</strong>cern<strong>in</strong>g the voltage shape the <strong>in</strong>stallati<strong>on</strong>s can be as follows:<br />

• Installati<strong>on</strong>s for a.c. voltages<br />

• Installati<strong>on</strong>s for d.c. voltages<br />

12


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

C<strong>on</strong>cern<strong>in</strong>g the relevant Earth<strong>in</strong>g system (neutral po<strong>in</strong>t of the supply transformer<br />

<strong>and</strong> accessible c<strong>on</strong>ductive parts of loads <strong>and</strong> appliances), the <strong>in</strong>stallati<strong>on</strong>s can be<br />

divided as follows:<br />

a) TN-C - system<br />

Fig. 2. TN-C - system<br />

b) TN-S - system<br />

Fig. 3. TN-S - system<br />

c) TN-C-S - system<br />

Fig. 4. TN-C-S – system<br />

13


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

When <strong>in</strong>stall<strong>in</strong>g TN-C-S – system it is important to know that N <strong>and</strong> PE c<strong>on</strong>ductors<br />

should not be c<strong>on</strong>nected together aga<strong>in</strong> <strong>on</strong>ce the PEN c<strong>on</strong>ductor is separated<br />

from the N <strong>and</strong> PE.<br />

d) TT - system<br />

Fig. 5. TT - system<br />

e) IT - system<br />

Fig. 6. IT – system<br />

Basic expressi<strong>on</strong>s which will often be used <strong>in</strong> <strong>electric</strong>al test<strong>in</strong>g<br />

• Active accessible c<strong>on</strong>ductive part is the c<strong>on</strong>ductive part of an <strong>electric</strong>al<br />

<strong>in</strong>stallati<strong>on</strong> or appliance such as the hous<strong>in</strong>g, part of a hous<strong>in</strong>g etc. which can<br />

be touched by a human body. Such an accessible part is free of ma<strong>in</strong>s voltage<br />

except under fault c<strong>on</strong>diti<strong>on</strong>s.<br />

• Passive accessible c<strong>on</strong>ductive part is an accessible c<strong>on</strong>ductive part, which is<br />

not a part of an <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong> or appliance (heat<strong>in</strong>g system pipes, water<br />

pipes, metal parts of air c<strong>on</strong>diti<strong>on</strong> system, metal parts of build<strong>in</strong>g framework<br />

etc.).<br />

• Electric shock is the pathophysic effect of an <strong>electric</strong> current flow<strong>in</strong>g through a<br />

human or animal body.<br />

• Earth<strong>in</strong>g electrode is a c<strong>on</strong>ductive part, or a group of c<strong>on</strong>ductive parts, which<br />

are placed <strong>in</strong>to earth <strong>and</strong> thus assure a good <strong>and</strong> permanent c<strong>on</strong>tact with<br />

ground.<br />

• Nom<strong>in</strong>al voltage (Un) is the voltage which <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s or<br />

comp<strong>on</strong>ents of <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s, such as appliances, loads etc. are rated<br />

at. Some <strong>in</strong>stallati<strong>on</strong> characteristics also refer to nom<strong>in</strong>al voltage (e.g. power).<br />

14


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

• Fault voltage (Uf) is the voltage that appears between the active accessible<br />

c<strong>on</strong>ductive parts <strong>and</strong> the passive <strong>on</strong>es or ideal ground <strong>in</strong> the case of a fault <strong>on</strong><br />

appliances c<strong>on</strong>nected to the ma<strong>in</strong>s <strong>in</strong>stallati<strong>on</strong> (c<strong>on</strong>nected appliance). The<br />

figure below represents the Fault voltage (Uf) <strong>and</strong> divisi<strong>on</strong> of the voltage <strong>in</strong>to<br />

the C<strong>on</strong>tact voltage (Uc) <strong>and</strong> voltage drop <strong>on</strong> floor/shoes resistance (Us).<br />

Fig. 7. Presentati<strong>on</strong> of the voltages Uf, Uc <strong>and</strong> Us <strong>in</strong> case of a fault <strong>on</strong> an<br />

<strong>electric</strong> load<br />

ZB ......... Impedance of human body.<br />

Rs......... Floor <strong>and</strong> shoes resistance.<br />

RE......... Earth Resistance of active accessible c<strong>on</strong>ductive parts.<br />

If........... Fault current.<br />

Uc......... C<strong>on</strong>tact voltage.<br />

Us......... Voltage drop <strong>on</strong> floor/shoes resistance.<br />

Uf.......... Fault voltage.<br />

Uf = Uc + Us = If × RE (floor material is placed to ideal ground)<br />

• C<strong>on</strong>tact voltage (Uc) is the voltage to which a human body is exposed when<br />

touch<strong>in</strong>g an active accessible c<strong>on</strong>ductive part. The body is st<strong>and</strong><strong>in</strong>g <strong>on</strong> the<br />

floor or is <strong>in</strong> c<strong>on</strong>tact with passive accessible c<strong>on</strong>ductive part.<br />

• Limit C<strong>on</strong>tact voltage (UL) is the maximum C<strong>on</strong>tact voltage which may be<br />

c<strong>on</strong>t<strong>in</strong>uously present under certa<strong>in</strong> external c<strong>on</strong>diti<strong>on</strong>s e.g. presence of water.<br />

• Nom<strong>in</strong>al load current (In) is the current that flows through the load under<br />

normal operat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> at nom<strong>in</strong>al ma<strong>in</strong>s voltage.<br />

• Nom<strong>in</strong>al <strong>in</strong>stallati<strong>on</strong> current (In) is the current that the <strong>in</strong>stallati<strong>on</strong> draws<br />

under normal operat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s.<br />

• Fault current (If) is the current that flows to active accessible c<strong>on</strong>ductive parts<br />

<strong>and</strong> then to ground <strong>in</strong> case of a fault <strong>on</strong> a ma<strong>in</strong>s appliance.<br />

• Leakage current (IL) is the current that usually flows through isolati<strong>on</strong><br />

materials or capacitive elements to ground <strong>in</strong> normal c<strong>on</strong>diti<strong>on</strong>s.<br />

• Short-circuit current (Isc) is the current that flows <strong>in</strong> a short circuit between<br />

two po<strong>in</strong>ts of different potential.<br />

15


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5. <str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong><br />

build<strong>in</strong>gs<br />

In additi<strong>on</strong> to c<strong>on</strong>duct<strong>in</strong>g measurements it is also vital to ensure that various<br />

visual checks are undertaken (correct colour of <strong>in</strong>sulati<strong>on</strong>, c<strong>on</strong>ductor size, correct<br />

earth b<strong>on</strong>d<strong>in</strong>g <strong>and</strong> equaliz<strong>in</strong>g, quality of materials used etc.). Also, that functi<strong>on</strong>al<br />

tests such as directi<strong>on</strong> of motor rotati<strong>on</strong>, operati<strong>on</strong> of lamps, heat<strong>in</strong>g systems etc.,<br />

are carried out when tak<strong>in</strong>g over the resp<strong>on</strong>sibility of an <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>.<br />

Only the <strong>theory</strong> <strong>and</strong> <strong>practice</strong> of measurements will be c<strong>on</strong>sidered further <strong>in</strong> this<br />

manual.<br />

All measured results must be correct regardless of the measurement <strong>in</strong>strument<br />

used <strong>and</strong> regardless of the measurement parameter (Insulati<strong>on</strong> Resistance, Earth<br />

Resistance, Fault Loop Impedance etc.) before collat<strong>in</strong>g/compar<strong>in</strong>g them with the<br />

allowed values.<br />

Correcti<strong>on</strong> is needed because of measurement errors. The EN 61557 st<strong>and</strong>ard<br />

states the maximum allowed deviati<strong>on</strong>s for a separate parameter. The allowed<br />

deviati<strong>on</strong> <strong>and</strong> therefore the required correcti<strong>on</strong> of measurement results are shown<br />

<strong>in</strong> the table below.<br />

Parameter<br />

Allowed<br />

deviati<strong>on</strong><br />

Insulati<strong>on</strong> Resistance +/- 30 % R × 0,7<br />

Fault Loop Impedance +/- 30 % Z × 1,3<br />

Resistance of protecti<strong>on</strong><br />

c<strong>on</strong>ductors, c<strong>on</strong>ductors for ma<strong>in</strong><br />

<strong>and</strong> additi<strong>on</strong>al equaliz<strong>in</strong>g <strong>and</strong><br />

earth<strong>in</strong>g c<strong>on</strong>ductors<br />

+/- 30 % R × 1,3<br />

Required correcti<strong>on</strong> of<br />

measurement result<br />

Earth Resistance +/- 30 % R × 1,3<br />

C<strong>on</strong>tact voltage +20/-0 %<br />

of UL<br />

R + 5V (UL= 25V)<br />

R + 10V (UL= 50V)<br />

RCD Trip out time +/- 10 %<br />

of tL<br />

RCD Tripp<strong>in</strong>g current +/- 10 %<br />

of I∆N<br />

Table 1. Correcti<strong>on</strong> of measurement results<br />

R + 0,1tL (st<strong>and</strong>ard RCD)<br />

R + 0,1tL max. (Sel. RCD)<br />

R – 0,1tL m<strong>in</strong>. (Sel. RCD)<br />

R + 0,1I∆N (upper limit)<br />

R – 0,1I∆N (lower limit)<br />

where:<br />

R....................Measurement result obta<strong>in</strong>ed by measurement <strong>in</strong>strument<br />

UL ..................Limit c<strong>on</strong>tact voltage (25 or 50V)<br />

tL....................Limit value of RCD Trip out time<br />

tLmax ..............High limit value of RCD Trip out time<br />

tL m<strong>in</strong> ..............Low limit value of RCD Trip out time<br />

I∆N..................Nom<strong>in</strong>al differential current of RCD<br />

The limits <strong>and</strong> values referred to <strong>in</strong> this table are the extreme limits, a skilled<br />

eng<strong>in</strong>eer with a thorough knowledge of his test equipment <strong>and</strong> its accuracy should<br />

be able to make measurement <strong>and</strong> correcti<strong>on</strong>s much closer to the ideal levels.<br />

16


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.1. Insulati<strong>on</strong> resistance EN 61557- 2<br />

Appropriate Insulati<strong>on</strong> Resistance between live parts <strong>and</strong> active accessible<br />

c<strong>on</strong>ductive parts is a basic safety parameter that protects aga<strong>in</strong>st direct or <strong>in</strong>direct<br />

c<strong>on</strong>tact of the human body with ma<strong>in</strong>s voltage. Insulati<strong>on</strong> Resistance between live<br />

parts, which prevents short circuits or leakage currents, is also important.<br />

Fig. 8. An example of bad <strong>in</strong>sulati<strong>on</strong> <strong>in</strong> c<strong>on</strong>necti<strong>on</strong> box for permanent c<strong>on</strong>necti<strong>on</strong><br />

of a load <strong>and</strong> result<strong>in</strong>g fault voltage Uf<br />

If................ Fault current.<br />

Uc............. C<strong>on</strong>tact voltage.<br />

Us............. Voltage drop <strong>on</strong> floor <strong>and</strong> shoes resistance.<br />

ZB.............. Impedance of human body.<br />

Rs............. Floor <strong>and</strong> shoes resistance.<br />

RE ............. Earth resistance of active accessible c<strong>on</strong>ductive parts.<br />

Uf.............. Fault voltage.<br />

Uf = Uc + Us = If ⋅ RE<br />

The upper figure represents a c<strong>on</strong>necti<strong>on</strong> box with bad <strong>in</strong>sulati<strong>on</strong> material<br />

between phase c<strong>on</strong>ductor <strong>and</strong> the metal hous<strong>in</strong>g. Due to this situati<strong>on</strong>, there is a<br />

fault current If flow<strong>in</strong>g to the protecti<strong>on</strong> c<strong>on</strong>ductor via earth resistance to ground.<br />

Voltage drop <strong>on</strong> the earth resistance RE is called Fault voltage.<br />

Different <strong>in</strong>sulati<strong>on</strong> materials are used <strong>in</strong> different cases such as cables,<br />

c<strong>on</strong>necti<strong>on</strong> elements, <strong>in</strong>sulati<strong>on</strong> elements <strong>in</strong> distributi<strong>on</strong> cab<strong>in</strong>ets, switches,<br />

outlets, hous<strong>in</strong>gs etc. Regardless of the material used, the Insulati<strong>on</strong> Resistance<br />

should be at least as high as that required by the regulati<strong>on</strong>s, this is why it must be<br />

measured.<br />

General comments <strong>on</strong> Insulati<strong>on</strong> Resistance measurement<br />

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> of Insulati<strong>on</strong> Resistance are to be carried out before the first<br />

c<strong>on</strong>necti<strong>on</strong> of ma<strong>in</strong>s voltage to the <strong>in</strong>stallati<strong>on</strong>. All switches shall be closed <strong>and</strong> all<br />

17


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

loads disc<strong>on</strong>nected, enabl<strong>in</strong>g the whole <strong>in</strong>stallati<strong>on</strong> to be tested <strong>and</strong> ensur<strong>in</strong>g that<br />

the test results are not <strong>in</strong>fluenced by any load.<br />

Measurement pr<strong>in</strong>ciple is presented <strong>in</strong> the figure below:<br />

Fig. 9. Insulati<strong>on</strong> Resistance measurement pr<strong>in</strong>ciple<br />

U-I method is used.<br />

Result = Ut / I = Ri<br />

Ri<br />

where:<br />

Ut.............. DC test voltage measured by the V-meter.<br />

I................. Test current driven by a d.c. generator through <strong>in</strong>sulati<strong>on</strong> resistance<br />

(accord<strong>in</strong>g to EN 61557 st<strong>and</strong>ard, the generator should drive a test<br />

current of at least 1 mA at the nom<strong>in</strong>al test voltage). The current is<br />

measured by the A-meter.<br />

Ri............... Insulati<strong>on</strong> Resistance.<br />

The value of test voltage depends <strong>on</strong> the nom<strong>in</strong>al ma<strong>in</strong>s voltage of the <strong>in</strong>stallati<strong>on</strong><br />

under test. When us<strong>in</strong>g the Eurotest 61557, Instaltest 61557 or Earth – Insulati<strong>on</strong><br />

Tester test <strong>in</strong>strument, the test voltage can be as follows:<br />

• 50 Vd.c.<br />

• 100 Vd.c.<br />

• 250 Vd.c.<br />

• 500 Vd.c.<br />

• 1000 Vd.c.<br />

The Instaltest 61557 <strong>and</strong> Earth – Insulati<strong>on</strong> Tester can, <strong>in</strong> additi<strong>on</strong> to the voltages<br />

listed above, supply any test voltage with<strong>in</strong> the range from 50, up to 1000 V <strong>in</strong><br />

steps of 10 V.<br />

Prescribed nom<strong>in</strong>al test voltages, def<strong>in</strong>ed by nom<strong>in</strong>al ma<strong>in</strong>s voltage, are listed <strong>in</strong><br />

table 2.<br />

All measurements must be brought <strong>in</strong>to tolerance before a record is taken –<br />

see chapter 5.<br />

18


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.1.1. Measurement of Insulati<strong>on</strong> Resistance between c<strong>on</strong>ductors<br />

The measurements are to be performed between all the c<strong>on</strong>ductors as follows:<br />

• Separately, between each of the three phase c<strong>on</strong>ductors L1, L2 <strong>and</strong> L3 aga<strong>in</strong>st<br />

neutral c<strong>on</strong>ductor N.<br />

• Separately, between each of the three phase c<strong>on</strong>ductors L1, L2 <strong>and</strong> L3 aga<strong>in</strong>st<br />

protecti<strong>on</strong> c<strong>on</strong>ductor PE.<br />

• Phase c<strong>on</strong>ductor L1 separately aga<strong>in</strong>st L2 <strong>and</strong> L3.<br />

• Phase c<strong>on</strong>ductor L2 aga<strong>in</strong>st L3.<br />

• Neutral c<strong>on</strong>ductor aga<strong>in</strong>st protecti<strong>on</strong> c<strong>on</strong>ductor PE.<br />

Fig. 10. An example of Insulati<strong>on</strong> Resistance measurement between the PE <strong>and</strong><br />

other c<strong>on</strong>ductors us<strong>in</strong>g the Eurotest 61557, Instaltest 61557 or Earth – Insulati<strong>on</strong><br />

Tester<br />

Notes!<br />

• Switch off ma<strong>in</strong>s voltage before start<strong>in</strong>g the measurements!<br />

• All switches should be closed dur<strong>in</strong>g the test!<br />

• All loads should be disc<strong>on</strong>nected dur<strong>in</strong>g the test!<br />

The lowest values of <strong>in</strong>sulati<strong>on</strong> resistances are def<strong>in</strong>ed by regulati<strong>on</strong>s <strong>and</strong> are<br />

presented <strong>in</strong> the table below.<br />

Nom<strong>in</strong>al ma<strong>in</strong>s voltage<br />

Nom<strong>in</strong>al d.c. test<br />

voltage<br />

(V)<br />

Safe low voltage 250 0,25<br />

Voltage up to 500 V except<br />

safe low voltage 500 0,5<br />

Over 500 V 1000 1,0<br />

Lowest allowed<br />

Insulati<strong>on</strong> Resistance<br />

(MW)<br />

Table 2. The lowest allowed values of Insulati<strong>on</strong> Resistance measured between<br />

ma<strong>in</strong>s c<strong>on</strong>ductors<br />

19


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.1.2. Resistance measurement of n<strong>on</strong>-c<strong>on</strong>ductive walls <strong>and</strong> floors<br />

There are certa<strong>in</strong> situati<strong>on</strong>s where it is desirable for a room to be totally isolated<br />

from the Protective Earth c<strong>on</strong>ductor (e.g. for c<strong>on</strong>duct<strong>in</strong>g special tests <strong>in</strong> a<br />

laboratory etc.). These rooms are regarded as an <strong>electric</strong>ally safe area <strong>and</strong> the<br />

walls <strong>and</strong> floor should be made of n<strong>on</strong>-c<strong>on</strong>ductive materials. The arrangement of<br />

any <strong>electric</strong>al equipment <strong>in</strong> those rooms should be of such a manner that:<br />

• It is not possible for two live c<strong>on</strong>ductors, with different potentials, to be touched<br />

simultaneously <strong>in</strong> the case of a basic <strong>in</strong>sulati<strong>on</strong> fault.<br />

• It is not possible for any comb<strong>in</strong>ati<strong>on</strong> of active <strong>and</strong> passive accessible<br />

c<strong>on</strong>ductive parts to be touched simultaneously.<br />

A protecti<strong>on</strong> c<strong>on</strong>ductor PE that could drive a dangerous fault voltage down to the<br />

ground potential is not allowed <strong>in</strong> n<strong>on</strong>-c<strong>on</strong>ductive rooms. N<strong>on</strong>-c<strong>on</strong>ductive walls<br />

<strong>and</strong> floors protect the operator <strong>in</strong> case of a basic <strong>in</strong>sulati<strong>on</strong> fault.<br />

The resistance of n<strong>on</strong>-c<strong>on</strong>ductive walls <strong>and</strong> floors shall be measured with an<br />

Insulati<strong>on</strong> Resistance tester us<strong>in</strong>g the procedure described below. Special<br />

measurement electrodes described below are to be used.<br />

Fig. 11. Measurement electrode<br />

The measurement is to be carried out between the measurement electrode <strong>and</strong><br />

the protecti<strong>on</strong> c<strong>on</strong>ductor PE, which is <strong>on</strong>ly accessible outside of the tested n<strong>on</strong>c<strong>on</strong>ductive<br />

room.<br />

To create a better <strong>electric</strong>al c<strong>on</strong>tact, a wet patch (270 mm × 270 mm) shall be<br />

placed between the measurement electrode <strong>and</strong> the surface under test. A force of<br />

750N (floor measurement) or 250N (wall measurement) shall be applied to the<br />

electrode dur<strong>in</strong>g the measurement.<br />

The value of test voltage shall be:<br />

• 500 V............. where the nom<strong>in</strong>al ma<strong>in</strong>s voltage with respect to ground is lower<br />

than 500 V<br />

• 1000 V........... where the nom<strong>in</strong>al ma<strong>in</strong>s voltage with respect to ground is<br />

higher than 500 V<br />

The value of the measured <strong>and</strong> corrected test result (see chapter 5.) must be<br />

higher than:<br />

20


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

• 50 kΩ ............ where the nom<strong>in</strong>al ma<strong>in</strong>s voltage with respect to ground is lower<br />

than 500 V<br />

• 100 kΩ........... where the nom<strong>in</strong>al ma<strong>in</strong>s voltage with respect to ground is<br />

higher than 500 V<br />

Notes!<br />

• It is advisable that the measurement to be carried out us<strong>in</strong>g both polarities of<br />

test voltage (reversed test term<strong>in</strong>als) <strong>and</strong> the average of both results be taken.<br />

• Wait until the test result is stabilized before tak<strong>in</strong>g the read<strong>in</strong>g.<br />

Fig. 12. Resistance of walls <strong>and</strong> floor measurement us<strong>in</strong>g Eurotest, Instaltest or<br />

Earth-Insulati<strong>on</strong> tester.<br />

5.1.3. Resistance measurement of semi-c<strong>on</strong>ductive floors<br />

In some <strong>in</strong>stances such as explosive-safe areas, <strong>in</strong>flammable material<br />

storehouses, lacquer rooms, sensitive electr<strong>on</strong>ic equipment producti<strong>on</strong> factories,<br />

fire endangered areas etc., a floor surface with a specific c<strong>on</strong>ductivity is required.<br />

In these cases the floor successfully prevents the build-up of static <strong>electric</strong>ity <strong>and</strong><br />

drives any low-energy potentials to ground.<br />

In order to achieve the appropriate resistance of the floor, semi-c<strong>on</strong>ductive<br />

material should be used. The resistance should be tested us<strong>in</strong>g an Insulati<strong>on</strong><br />

Resistance tester with a test voltage with<strong>in</strong> 100 up to 500 V.<br />

A special test electrode def<strong>in</strong>ed by regulati<strong>on</strong> is to be used, see the figure below.<br />

Fig. 13. Test electrode<br />

21


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Measurement procedure is presented <strong>on</strong> the figure below. The measurement<br />

should be repeated several times at different locati<strong>on</strong>s <strong>and</strong> an average of all the<br />

results taken.<br />

Fig. 14. Measurement of semi-c<strong>on</strong>ductive floor resistance<br />

The measurement is to be carried out between the test electrode <strong>and</strong> metal<br />

network <strong>in</strong>stalled <strong>in</strong> the floor, which is usually c<strong>on</strong>nected to the protecti<strong>on</strong><br />

c<strong>on</strong>ductor PE. Dimensi<strong>on</strong> of the area, where measurements are to be applied,<br />

should be at least 2 × 2m.<br />

5.1.4. Insulati<strong>on</strong> Resistance measurement <strong>on</strong> ground cables - 30 GW<br />

The measurement is to be carried out the same way as between c<strong>on</strong>ductors <strong>on</strong><br />

the <strong>in</strong>stallati<strong>on</strong>, except that the test voltage shall be 1000 V because of the<br />

extreme c<strong>on</strong>diti<strong>on</strong>s that such a cable should withst<strong>and</strong>. The Insulati<strong>on</strong> Resistance<br />

test shall be performed between all c<strong>on</strong>ductors at disc<strong>on</strong>nected ma<strong>in</strong>s voltage.<br />

Because of high Insulati<strong>on</strong> Resistance values, the Earth – Insulati<strong>on</strong> Tester is<br />

recommended to be used. The <strong>in</strong>strument allows measurements up to 30 G Ω.<br />

Fig. 15. Insulati<strong>on</strong> Resistance <strong>on</strong> ground cable measurement us<strong>in</strong>g the<br />

Earth – Insulati<strong>on</strong> Tester<br />

22


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.2. C<strong>on</strong>t<strong>in</strong>uity of protecti<strong>on</strong> c<strong>on</strong>ductors, c<strong>on</strong>ductors for<br />

ma<strong>in</strong> <strong>and</strong> additi<strong>on</strong>al equaliz<strong>in</strong>g <strong>and</strong> earth<strong>in</strong>g c<strong>on</strong>ductors<br />

EN 61557- 4<br />

The above menti<strong>on</strong>ed c<strong>on</strong>ductors are an important part of the protecti<strong>on</strong> system<br />

that prevents build-up of dangerous fault voltages (dangerous from the aspect of<br />

durati<strong>on</strong> as well as absolute value). These c<strong>on</strong>ductors can <strong>on</strong>ly successfully serve<br />

their purpose if they are of the correct size <strong>and</strong> properly c<strong>on</strong>nected. This is why it<br />

is important to test the c<strong>on</strong>t<strong>in</strong>uity <strong>and</strong> b<strong>on</strong>d resistances.<br />

General comments about the measurement<br />

Accord<strong>in</strong>g to regulati<strong>on</strong>s, the measurement should be carried out us<strong>in</strong>g either an<br />

a.c. or d.c. test voltage with a value between 4 <strong>and</strong> 24 V. The test <strong>in</strong>struments<br />

produced by METREL use d.c. test voltage <strong>and</strong> U-I method. The pr<strong>in</strong>ciple of the<br />

measurement is presented <strong>on</strong> the figure below.<br />

Fig. 16. Measurement pr<strong>in</strong>ciple<br />

The battery voltage drives a test current <strong>in</strong>to the tested loop via the A-meter <strong>and</strong><br />

<strong>in</strong>ternal resistance R<strong>in</strong>t. The voltage drop is measured by the V-meter. Resistance<br />

Rx is calculated <strong>on</strong> the basis of the equati<strong>on</strong> below:<br />

Different juncti<strong>on</strong>s, usually rusty, may be <strong>in</strong>volved <strong>in</strong> the tested loop. The problem<br />

with such juncti<strong>on</strong>s is that they may behave as a galvanic element, where<br />

resistance depends <strong>on</strong> the test voltage polarity (diode). That is why the<br />

regulati<strong>on</strong>s require test <strong>in</strong>struments to support the reversal of the test voltage. Upto-date<br />

test <strong>in</strong>struments such as the Eurotest 61557, Instaltest 61557 or Earth –<br />

Insulati<strong>on</strong> Tester will perform the measurement automatically with both polarities.<br />

Because of the two test voltage polarities, two subresults are available as follows:<br />

Result (+) = U / I = Rx (+)..... switch is <strong>in</strong> full-l<strong>in</strong>e positi<strong>on</strong> (fig. 16)<br />

Result (-) = U / I = Rx (-)....... switch is <strong>in</strong> <strong>in</strong>terrupted-l<strong>in</strong>e positi<strong>on</strong> (fig. 16)<br />

where:<br />

U............... Voltage drop measured by the V-meter <strong>on</strong> the unknown resistance<br />

Rx.<br />

I................. Test current driven by the battery Ub <strong>and</strong> measured by the A-meter.<br />

F<strong>in</strong>al result (highest value) is displayed.<br />

23


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

If the test result is higher than the set limit value (the value is pre-settable), the<br />

<strong>in</strong>strument will give an acoustic warn<strong>in</strong>g signal. The purpose of the signal is so<br />

that measurer can be focused <strong>on</strong> his use of the test leads <strong>and</strong> not <strong>on</strong> the display.<br />

In <strong>practice</strong>, different levels of <strong>in</strong>ductance may be present <strong>on</strong> the protective<br />

c<strong>on</strong>ductors (motor w<strong>in</strong>d<strong>in</strong>gs, solenoids, transformers etc.) <strong>and</strong> may affect the<br />

tested loop. It is important that the test <strong>in</strong>strument is able to measure the<br />

resistance <strong>in</strong> these circumstances. The Eurotest 61557, Instaltest 61557 <strong>and</strong><br />

Earth – Insulati<strong>on</strong> Tester can all measure it.<br />

C<strong>on</strong>ductors that are too l<strong>on</strong>g, too small cross-secti<strong>on</strong>s, bad c<strong>on</strong>tacts, wr<strong>on</strong>g<br />

c<strong>on</strong>necti<strong>on</strong>s etc, may cause unacceptably high resistance of protecti<strong>on</strong><br />

c<strong>on</strong>ductors.<br />

Bad c<strong>on</strong>tacts are the most comm<strong>on</strong> reas<strong>on</strong> for high resistance, especially <strong>on</strong> old<br />

<strong>in</strong>stallati<strong>on</strong>s whilst the other reas<strong>on</strong>s listed may cause problems <strong>on</strong> new<br />

<strong>in</strong>stallati<strong>on</strong>s.<br />

As the measurements of protecti<strong>on</strong> c<strong>on</strong>ductors may be quite complex, three ma<strong>in</strong><br />

groups of measurements are made:<br />

• <str<strong>on</strong>g>Measurements</str<strong>on</strong>g> of protecti<strong>on</strong> c<strong>on</strong>ductors c<strong>on</strong>nected to Ma<strong>in</strong> Protective Earth<br />

C<strong>on</strong>nector (MPEC).<br />

• <str<strong>on</strong>g>Measurements</str<strong>on</strong>g> of protecti<strong>on</strong> c<strong>on</strong>ductors c<strong>on</strong>nected to Protecti<strong>on</strong> C<strong>on</strong>ductor<br />

C<strong>on</strong>nector (PCC) <strong>in</strong>side <strong>in</strong>dividual fuse cab<strong>in</strong>et.<br />

• <str<strong>on</strong>g>Measurements</str<strong>on</strong>g> of protecti<strong>on</strong> c<strong>on</strong>ductors for additi<strong>on</strong>al <strong>and</strong> local earth<strong>in</strong>g.<br />

Presentati<strong>on</strong> of practical measurement<br />

Fig. 17. C<strong>on</strong>t<strong>in</strong>uity measurement between MPEC <strong>and</strong> PCC<br />

24


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 18. C<strong>on</strong>t<strong>in</strong>uity measurement <strong>in</strong>side <strong>in</strong>dividual fuse cab<strong>in</strong>et (each current loop<br />

should be measured)<br />

Fig . 19. C<strong>on</strong>t<strong>in</strong>uity measurement between MPEC <strong>and</strong> lightn<strong>in</strong>g c<strong>on</strong>ductor<br />

Result of the measurement should corresp<strong>on</strong>d to the follow<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>:<br />

RPE ≤ UL / Ia<br />

where:<br />

RPE ................ Measured resistance of protecti<strong>on</strong> c<strong>on</strong>ductor.<br />

UL .................. Limit c<strong>on</strong>tact voltage (usually 50 V).<br />

Ia.................... Current which assures operati<strong>on</strong> of <strong>in</strong>stalled protecti<strong>on</strong> device.<br />

• Ia = I∆n Differential current protecti<strong>on</strong> - RCD<br />

• Ia = Ia (5s) Over-current protecti<strong>on</strong><br />

Because the c<strong>on</strong>ductors under test may be of c<strong>on</strong>siderable length, it may be<br />

necessary for the test leads also to be quite l<strong>on</strong>g <strong>and</strong> therefore have a high<br />

resistance, so it is important to ensure that the leads are compensated for prior to<br />

the measurement be<strong>in</strong>g carried out. If compensati<strong>on</strong> is not carried out, the<br />

resistance should be taken <strong>in</strong>to account <strong>in</strong> the f<strong>in</strong>al results.<br />

25


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.3. Additi<strong>on</strong>al earth b<strong>on</strong>d<strong>in</strong>g EN 61557- 4<br />

Where the ma<strong>in</strong> earth<strong>in</strong>g is <strong>in</strong>sufficient to prevent dangerous fault voltages from<br />

aris<strong>in</strong>g, additi<strong>on</strong>al earth b<strong>on</strong>d<strong>in</strong>g is to be applied. An example of ma<strong>in</strong> <strong>and</strong><br />

additi<strong>on</strong>al earth b<strong>on</strong>d<strong>in</strong>g is shown below.<br />

Fig. 20. Ma<strong>in</strong> <strong>and</strong> additi<strong>on</strong>al earth b<strong>on</strong>d<strong>in</strong>g<br />

Ma<strong>in</strong> earth<strong>in</strong>g c<strong>on</strong>sists of protecti<strong>on</strong> c<strong>on</strong>ductors c<strong>on</strong>nected directly to:<br />

• Ma<strong>in</strong> MPEC or<br />

• Protecti<strong>on</strong> C<strong>on</strong>ductor Collector PCC<br />

Protecti<strong>on</strong> c<strong>on</strong>ductors for additi<strong>on</strong>al equaliz<strong>in</strong>g c<strong>on</strong>nect the passive accessible<br />

c<strong>on</strong>ductive parts:<br />

• directly with the active accessible c<strong>on</strong>ductive parts or<br />

• with C<strong>on</strong>nectors for Additi<strong>on</strong>al Earth<strong>in</strong>g (CAE)<br />

If a fault (short circuit) is present <strong>on</strong> any load e.g. the three-phase motor<br />

presented <strong>on</strong> the figure above, the short-circuit current Isc could flow to the<br />

protecti<strong>on</strong> c<strong>on</strong>ductor for ma<strong>in</strong> earth<strong>in</strong>g. The current could cause a dangerous<br />

voltage drop Uc (aga<strong>in</strong>st ground potential) due to too the high resistance of the<br />

protecti<strong>on</strong> c<strong>on</strong>ductor RPE. As nearby passive accessible c<strong>on</strong>ductive parts (e.g.<br />

radiator) are still c<strong>on</strong>nected to ground potential, the voltage Uc will be present<br />

between the passive <strong>and</strong> active accessible c<strong>on</strong>ductive parts. If the distance<br />

between the parts is lower than 2,5 m, then there is a hazardous situti<strong>on</strong><br />

(simultaneous touch<strong>in</strong>g of both accessible parts).<br />

In order to avoid such a situati<strong>on</strong>, additi<strong>on</strong>al earth<strong>in</strong>g is required, which means<br />

that an additi<strong>on</strong>al c<strong>on</strong>necti<strong>on</strong> between the active <strong>and</strong> passive accessible<br />

c<strong>on</strong>ductive parts is required.<br />

26


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

How to ascerta<strong>in</strong> the need for additi<strong>on</strong>al earth<strong>in</strong>g<br />

In order to ascerta<strong>in</strong> the need for additi<strong>on</strong>al earth<strong>in</strong>g, the resistance of the<br />

protecti<strong>on</strong> c<strong>on</strong>ductor from active accessible c<strong>on</strong>ductive part to the MPEC (PCC)<br />

should be measured, see the figure below.<br />

Fig. 21. Protecti<strong>on</strong> c<strong>on</strong>ductor measurement <strong>in</strong> order to ascerta<strong>in</strong> the need for<br />

additi<strong>on</strong>al equaliz<strong>in</strong>g<br />

If the test result is not <strong>in</strong> accordance with that required by the equati<strong>on</strong> <strong>on</strong> page<br />

26, additi<strong>on</strong>al earth<strong>in</strong>g should be applied.<br />

Once additi<strong>on</strong>al earth<strong>in</strong>g is applied, the efficiency of that earth<strong>in</strong>g should be<br />

tested. The test will be d<strong>on</strong>e by measur<strong>in</strong>g the resistance between the active <strong>and</strong><br />

passive accessible c<strong>on</strong>ductive parts aga<strong>in</strong>, see the figure below. The result must<br />

corresp<strong>on</strong>d to the same c<strong>on</strong>diti<strong>on</strong> as <strong>in</strong> the basic measurement namely:<br />

R £ UL / Ia (see the descripti<strong>on</strong> <strong>on</strong> page 26)<br />

Fig. 22. Check<strong>in</strong>g of efficiency of additi<strong>on</strong>al earth<strong>in</strong>g<br />

27


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

In <strong>practice</strong> the resistance level of the ma<strong>in</strong> earth<strong>in</strong>g may easily be exceeded,<br />

especially <strong>in</strong> case of over-current protecti<strong>on</strong>. In that case <strong>on</strong>ly low resistances are<br />

allowed due to possible high fault (short-circuit) currents.<br />

Test <strong>in</strong>strument Eurotest 61557 can also perform direct measurement of C<strong>on</strong>tact<br />

voltage at Short-circuit current aga<strong>in</strong>st passive accessible c<strong>on</strong>ductive parts. The<br />

c<strong>on</strong>necti<strong>on</strong> of the test <strong>in</strong>strument <strong>and</strong> the measurement pr<strong>in</strong>ciple is detailed<br />

below.<br />

Measurement of the C<strong>on</strong>tact voltage at Short-circuit current aga<strong>in</strong>st passive<br />

accessible c<strong>on</strong>ductive parts<br />

Fig. 23. Measurement of C<strong>on</strong>tact voltage at Short-circuit current aga<strong>in</strong>st passive<br />

accessible c<strong>on</strong>ductive parts us<strong>in</strong>g the Eurotest 61557 test <strong>in</strong>strument<br />

The <strong>in</strong>strument will heavily load the ma<strong>in</strong>s voltage between the phase L <strong>and</strong><br />

protecti<strong>on</strong> PE test term<strong>in</strong>als for a short period (test current of up to 23 A may<br />

flow). The test current will cause a specific voltage drop <strong>on</strong> the protecti<strong>on</strong><br />

c<strong>on</strong>ductor c<strong>on</strong>nected between the tested load <strong>and</strong> the MPEC (PCC). The voltage<br />

drop is measured directly aga<strong>in</strong>st another active or passive accessible c<strong>on</strong>ductive<br />

part, between the PE <strong>and</strong> Probe test term<strong>in</strong>als. The measured result is scaled to<br />

short-circuit fault current calculated by the test <strong>in</strong>strument.<br />

On basis of the result the need for additi<strong>on</strong>al earth<strong>in</strong>g may be established.<br />

A good feature of the measurement is the high accuracy of test result due to the<br />

high test current, but the operator must be aware that the measurement can be<br />

d<strong>on</strong>e <strong>on</strong>ly if there is no RCD <strong>in</strong>volved <strong>in</strong> the tested loop which would certa<strong>in</strong>ly trip<br />

dur<strong>in</strong>g the measurement. RCD must be shorted <strong>in</strong> that case.<br />

28


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.4. Low resistances<br />

This functi<strong>on</strong> is useful when ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s <strong>and</strong> appliances,<br />

check<strong>in</strong>g fuse c<strong>on</strong>diti<strong>on</strong>, search<strong>in</strong>g for different c<strong>on</strong>necti<strong>on</strong>s etc. The advantage of<br />

the functi<strong>on</strong> aga<strong>in</strong>st the <strong>on</strong>e for test<strong>in</strong>g of protecti<strong>on</strong> c<strong>on</strong>ductors accord<strong>in</strong>g to EN<br />

61557 (described <strong>in</strong> the previous chapter) is that the functi<strong>on</strong> is c<strong>on</strong>t<strong>in</strong>uous (low<br />

test current <strong>and</strong> no revers<strong>in</strong>g of test voltage polarity) <strong>and</strong> is <strong>in</strong>tended for quick<br />

tests. Test <strong>in</strong>struments Eurotest 61557, Instaltest 61557 <strong>and</strong> Earth -– Insulati<strong>on</strong><br />

Tester all offer this functi<strong>on</strong>.<br />

The measurement pr<strong>in</strong>ciple is presented <strong>on</strong> the figure below.<br />

Fig. 24. Measurement pr<strong>in</strong>ciple<br />

The battery imposes a test current <strong>on</strong> the tested loop via <strong>in</strong>ternal resistance Ri<br />

<strong>and</strong><br />

A-meter. Voltage drop caused <strong>on</strong> tested resistance is measured by the V-meter.<br />

Instrument calculates tested resistance <strong>on</strong> basis of the follow<strong>in</strong>g equati<strong>on</strong>:<br />

Rx = U / I<br />

where:<br />

U............... Voltage measured by the V-meter.<br />

I................. Test current measured by the A-meter.<br />

The <strong>in</strong>strument’s <strong>in</strong>ternal resistance is higher <strong>in</strong> comparis<strong>on</strong> with that from the<br />

previous functi<strong>on</strong> (EN 61557) this is why the test current is much lower (lower<br />

than 7 mA).<br />

Measurement procedure <strong>and</strong> c<strong>on</strong>necti<strong>on</strong> of test leads is exactly the same as <strong>in</strong><br />

previous functi<strong>on</strong>.<br />

If the measured resistance is lower than 20 Ω, the <strong>in</strong>strument will give an acoustic<br />

signal enabl<strong>in</strong>g the measurer to focus <strong>on</strong> the measurement itself <strong>and</strong> not <strong>on</strong> the<br />

display.<br />

29


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.5. Earth<strong>in</strong>g resistance EN 61557-5<br />

Earth<strong>in</strong>g is <strong>on</strong>e of the most important c<strong>on</strong>siderati<strong>on</strong>s <strong>in</strong> the protecti<strong>on</strong> of humans,<br />

animals <strong>and</strong> <strong>in</strong> the <strong>in</strong>stallati<strong>on</strong> of c<strong>on</strong>nected loads aga<strong>in</strong>st the <strong>in</strong>fluences of <strong>electric</strong><br />

current. The reas<strong>on</strong> for earth<strong>in</strong>g of active <strong>and</strong> passive accessible c<strong>on</strong>ductive parts<br />

of <strong>electric</strong>al loads is to c<strong>on</strong>duct the possible <strong>electric</strong>al potential, which may appear<br />

dur<strong>in</strong>g any fault <strong>on</strong> the <strong>electric</strong>al loads, to the earth level.<br />

The earth<strong>in</strong>g can be executed <strong>in</strong> various ways. Normally it is d<strong>on</strong>e by metal rods,<br />

b<strong>and</strong>s, metal plates etc.<br />

The complexity of earth<strong>in</strong>g depends <strong>on</strong> the ground, the object which has to be<br />

earthed <strong>and</strong> by the maximum earth<strong>in</strong>g resistance which is allowed <strong>in</strong> any<br />

particular case.<br />

What is Earth Resistance?<br />

This is the <strong>electric</strong>al resistance of the earth<strong>in</strong>g electrode which the <strong>electric</strong> current<br />

feels whilst runn<strong>in</strong>g through the earth<strong>in</strong>g part to ground. It is <strong>in</strong>fluenced by the<br />

surface of the earth<strong>in</strong>g electrode (oxides <strong>on</strong> the metal surface) <strong>and</strong> by the<br />

resistance of the ground ma<strong>in</strong>ly near to the surface of the earth<strong>in</strong>g electrode.<br />

Fig. 25. Earth<strong>in</strong>g electrode<br />

If there is an exist<strong>in</strong>g fault <strong>on</strong> an <strong>in</strong>stallati<strong>on</strong> or c<strong>on</strong>nected load, the current, which<br />

runs through the earth electrode, causes a voltage drop at the earth<strong>in</strong>g resistance.<br />

A porti<strong>on</strong> of this voltage is called ‘the voltage funnel’ <strong>and</strong> proves that the majority<br />

of the earth resistance is c<strong>on</strong>centrated <strong>on</strong> the surface of the earth electrode (see<br />

figure below).<br />

Step <strong>and</strong> C<strong>on</strong>tact voltages aris<strong>in</strong>g as a result of current flow<strong>in</strong>g through the<br />

earth<strong>in</strong>g resistance are also shown.<br />

Step voltage<br />

Is measured throughout the critical area around the earth<strong>in</strong>g electrode. The<br />

measurement is d<strong>on</strong>e between two metal measurement electrodes of 25 kg each<br />

<strong>and</strong> an appropriate surface of 200 cm2 each. The two electrodes are placed 1 m<br />

away from each other.<br />

30


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

C<strong>on</strong>tact voltage<br />

Is measured between the earth<strong>in</strong>g electrode <strong>and</strong> two measurement electrodes<br />

(similar to the <strong>on</strong>es at Step voltage measurement) c<strong>on</strong>nected together <strong>and</strong> placed<br />

1m away from tested earth<strong>in</strong>g electrode.<br />

Fig.26. Voltage apporti<strong>on</strong> across the Earth Resistance - voltage funnel<br />

General c<strong>on</strong>siderati<strong>on</strong>s <strong>on</strong> Earth Resistance measurement<br />

There are various earth<strong>in</strong>g systems frequently met by the user, <strong>and</strong> different<br />

measurement pr<strong>in</strong>ciples with their own advantages <strong>and</strong> limits.<br />

The measurement <strong>in</strong>struments Eurotest 61557, Instaltest 61557 <strong>and</strong> Earth –<br />

Insulati<strong>on</strong> Tester produced by METREL use several pr<strong>in</strong>ciples (not all the<br />

pr<strong>in</strong>ciples are used by all test <strong>in</strong>struments) eg.:<br />

• Pr<strong>in</strong>ciple with <strong>in</strong>ternal generator (s<strong>in</strong>e wave) <strong>and</strong> two measurement<br />

probes.<br />

The use of a s<strong>in</strong>ewave measurement signal presents a dist<strong>in</strong>ct advantage<br />

compared with the use of a squarewave. This is of particular use when<br />

measur<strong>in</strong>g earth systems that have an <strong>in</strong>ductive comp<strong>on</strong>ent <strong>in</strong> additi<strong>on</strong> to the<br />

resistive. This is quite comm<strong>on</strong> where the earth c<strong>on</strong>necti<strong>on</strong> is made by the use<br />

of metal b<strong>and</strong>s that are wrapped around an object. This is the preferred<br />

pr<strong>in</strong>ciple provided that the physical c<strong>on</strong>diti<strong>on</strong>s allow it.<br />

31


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

This pr<strong>in</strong>ciple is used by Eurotest 61557 <strong>and</strong> Earth – Insulati<strong>on</strong> Tester.<br />

• Pr<strong>in</strong>ciple us<strong>in</strong>g an external measurement voltage without the auxiliary<br />

measurement probe.<br />

This pr<strong>in</strong>ciple is usually used when measur<strong>in</strong>g Earth Resistance <strong>in</strong> TT systems<br />

where the value of the Earth Resistance is much higher than the resistance of<br />

other parts <strong>in</strong> the fault loop when measured between the phase <strong>and</strong> protective<br />

term<strong>in</strong>als. The advantage of this pr<strong>in</strong>ciple is that it does not need the use of<br />

auxiliary measurement probes which is appreciated <strong>in</strong> an urban envir<strong>on</strong>ment<br />

where there is no ground area for test probes.<br />

Both the Eurotest 61557 <strong>and</strong> Instaltest 61557 use this pr<strong>in</strong>ciple.<br />

• Pr<strong>in</strong>ciple us<strong>in</strong>g an external measurement voltage <strong>and</strong> auxiliary<br />

measurement probe<br />

The advantage of this pr<strong>in</strong>ciple is that an exact result can be given <strong>on</strong> TN<br />

systems, where the fault loop resistances between the phase <strong>and</strong> protective<br />

c<strong>on</strong>ductors are fairly low.<br />

Eurotest 61557 uses this pr<strong>in</strong>ciple.<br />

• Pr<strong>in</strong>ciple us<strong>in</strong>g an <strong>in</strong>ternal generator, two measurement probes <strong>and</strong> <strong>on</strong>e<br />

measurement clamp<br />

With this pr<strong>in</strong>ciple there is no need to mechanically disc<strong>on</strong>nect any earth<br />

electrode which may be c<strong>on</strong>nected <strong>in</strong> parallel with the test electrode.<br />

Eurotest 61557 <strong>and</strong> Earth – Insulati<strong>on</strong> Tester, both use this pr<strong>in</strong>ciple.<br />

• Rodless pr<strong>in</strong>ciple us<strong>in</strong>g two measurement clamps<br />

In cases where a complex earth<strong>in</strong>g system is to be measured (with numerous<br />

parallel earth<strong>in</strong>g electrodes) or where a sec<strong>on</strong>dary earth<strong>in</strong>g system with a low<br />

earth<strong>in</strong>g resistance is present, this pr<strong>in</strong>ciple enables you to perform rodless<br />

measurements. The advantage of the pr<strong>in</strong>ciple is that there is no need to drive<br />

measurement probes <strong>and</strong> to separate the measured electrodes.<br />

Both the Eurotest 61557 <strong>and</strong> Earth – Insulati<strong>on</strong> Tester, use this pr<strong>in</strong>ciple.<br />

Attenti<strong>on</strong>!<br />

• It is necessary to be aware that high-level disturbance signals are often present<br />

<strong>on</strong> the earth<strong>in</strong>g systems to be measured. This is of particular c<strong>on</strong>cern <strong>on</strong><br />

earth<strong>in</strong>g systems <strong>in</strong> <strong>in</strong>dustry <strong>and</strong> power transformers etc. where large dra<strong>in</strong><strong>in</strong>g<br />

currents can run to ground. High creepage currents are often present <strong>in</strong> the<br />

area around the earth<strong>in</strong>g electrodes especially near high-voltage distributi<strong>on</strong><br />

l<strong>in</strong>es, railways etc. The quality of the measur<strong>in</strong>g <strong>in</strong>strument is proven by its<br />

performance <strong>in</strong> such dem<strong>and</strong><strong>in</strong>g envir<strong>on</strong>ments. The Eurotest 61557, Instaltest<br />

61557 <strong>and</strong> Earth – Insulati<strong>on</strong> Tester use patented measurement pr<strong>in</strong>ciples<br />

which assure that exact results are given even where competitive <strong>in</strong>struments<br />

fail to perform.<br />

• For successful measurement of the Earth Resistance us<strong>in</strong>g test probes it is<br />

important that the resistance of the measurement probes (current <strong>and</strong> voltage)<br />

is not too high. For that reas<strong>on</strong> the aforementi<strong>on</strong>ed <strong>in</strong>struments, produced by<br />

32


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

METREL, test both probes before perform<strong>in</strong>g the measurement. Therefore<br />

there is no need to reverse the current (C2) <strong>and</strong> voltage (P2) test leads by h<strong>and</strong><br />

<strong>and</strong> then repeat the measurement. Where the test <strong>in</strong>strument tests <strong>on</strong>ly <strong>on</strong>e<br />

probe resistance, each measurement is to be repeated at reversed auxiliary<br />

test probes P2 <strong>and</strong> C2.<br />

The maximum allowed value of the Earth Resistance RE differs from case to<br />

case. Fundamentally, the earth<strong>in</strong>g systems, <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with other safety<br />

elements (e.g. RCD protecti<strong>on</strong> devices, over-current protecti<strong>on</strong> devices etc.) must<br />

prevent dangerous c<strong>on</strong>tact voltages from aris<strong>in</strong>g.<br />

The basic measurement of Earth Resistance uses the pr<strong>in</strong>ciple of an <strong>in</strong>ternal<br />

generator <strong>and</strong> two measurement probes (voltage <strong>and</strong> current). The measurement<br />

is based <strong>on</strong> the so-called method of 62%.<br />

For this measurement it is important that the measured earth<strong>in</strong>g electrode is<br />

separated from other parallel earths such as metal c<strong>on</strong>structi<strong>on</strong>s etc. It must be<br />

c<strong>on</strong>sidered that if a fault or leakage current is runn<strong>in</strong>g to earth when the c<strong>on</strong>ductor<br />

is separated from the earth<strong>in</strong>g electrode a dangerous situati<strong>on</strong> could arise.<br />

Measurement pr<strong>in</strong>ciple us<strong>in</strong>g classic four-term<strong>in</strong>al, two-probe method<br />

Fig. 27. Measurement pr<strong>in</strong>ciple <strong>and</strong> apporti<strong>on</strong> of test voltage<br />

Calculati<strong>on</strong> of required distance between tested earth<strong>in</strong>g system (simple rod<br />

or simple b<strong>and</strong> electrode):<br />

33


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Basis for the calculati<strong>on</strong> is the depth of simple rod electrode or the diag<strong>on</strong>al<br />

dimensi<strong>on</strong> of b<strong>and</strong> earth<strong>in</strong>g system.<br />

• Distance from tested earth<strong>in</strong>g electrode to current measurement<br />

probe C2 = depth (rod electrode) or diag<strong>on</strong>al (b<strong>and</strong> electrode) × 5<br />

• Distance to voltage measurement probe P2 (62%) = Distance C2 × 0,62<br />

• Distance to voltage measurement probe P2 (52%) = Distance C2 × 0,52<br />

• Distance to voltage measurement probe P2 (72%) = Distance C2 × 0,72<br />

Example: B<strong>and</strong> type earth<strong>in</strong>g system, diag<strong>on</strong>al = 4 m.<br />

C2 = 4 m × 5 = 20 m<br />

P2 (62%) = 20 m × 0,62 = 12,4 m<br />

P2 (52%) = 20 m × 0,52 = 10,4 m<br />

P2 (72%) = 20 m × 0,72 = 14,4 m<br />

The calculati<strong>on</strong> is of course just theoretical. In order to make sure that the<br />

calculated distances corresp<strong>on</strong>d to the actual ground situati<strong>on</strong>, the follow<strong>in</strong>g<br />

measurement procedure shall be applied.<br />

The first measurement is to be d<strong>on</strong>e at the potential probe driven <strong>in</strong>to the ground<br />

at a distance of 0,62 × C2. The measurement shall be repeated at the distances<br />

of 0,52 × C2 <strong>and</strong> 0,72 × C2. If the results of the repeated measurements do not<br />

differ from the first <strong>on</strong>e more than 10% of the first measurement (0,62 × C2), then<br />

the first result may be c<strong>on</strong>sidered as correct. If a difference <strong>in</strong> excess of 10%<br />

occurs, both distances (C2 <strong>and</strong> P2) should be proporti<strong>on</strong>ally <strong>in</strong>creased <strong>and</strong> all<br />

measurements repeated.<br />

It is advisable for the measurement to be repeated at different arrangements of<br />

test rods namely, the test rods shall be driven <strong>in</strong> the opposite directi<strong>on</strong> from tested<br />

electrode (180° or at least 90°). The f<strong>in</strong>al result is an average of two or more<br />

partial results.<br />

Because of the fact that earth<strong>in</strong>g systems can be quite complex, that many<br />

systems can be c<strong>on</strong>nected together either under or above ground level, that the<br />

system can be physically extremely large, that the <strong>in</strong>tegrity of the system cannot<br />

usually be visually checked etc., measurement of the Earth Resistance may be<br />

<strong>on</strong>e of the most dem<strong>and</strong><strong>in</strong>g measurements. That is why the selecti<strong>on</strong> of an<br />

appropriate test <strong>in</strong>strument is very important.<br />

Identify the type of earth<strong>in</strong>g system before start<strong>in</strong>g the measurement itself. On the<br />

basis of the type, appropriate measurement method shall be selected.<br />

Regardless of the selected method, the test result should be corrected before<br />

compar<strong>in</strong>g it with the allowed value, see chapter 5.<br />

The follow<strong>in</strong>g are examples of practical measurements for various types of<br />

earth<strong>in</strong>g systems.<br />

34


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.5.1. Measurement of simple rod earth<strong>in</strong>g electrode<br />

Fig. 28. Earth Resistance measurement of simple rod earth<strong>in</strong>g electrode<br />

Result = U/I = RE<br />

where:<br />

U.................... Voltage measured by <strong>in</strong>ternal V-meter between P1 <strong>and</strong> P2 test<br />

term<strong>in</strong>als.<br />

I...................... Test current driven to tested loop between C1 <strong>and</strong> C2 test<br />

term<strong>in</strong>als.<br />

The measurement is fairly simple due to the fact that the earth<strong>in</strong>g electrode can<br />

be c<strong>on</strong>sidered as a s<strong>in</strong>gle po<strong>in</strong>t electrode <strong>and</strong> it is c<strong>on</strong>nected to no other<br />

electrode. The distances between the tested electrode <strong>and</strong> test probes (current<br />

<strong>and</strong> potential) depend <strong>on</strong> the depth of the tested electrode.<br />

Us<strong>in</strong>g the 4-lead c<strong>on</strong>necti<strong>on</strong>, as supported by METREL test <strong>in</strong>struments, is<br />

much better than 3-lead method as there are no problems c<strong>on</strong>cern<strong>in</strong>g<br />

c<strong>on</strong>tact resistance between the test clips <strong>and</strong> the usually rusty surface of<br />

the electrode under test.<br />

Measurement probes are usually driven to ground <strong>in</strong> l<strong>in</strong>e with the electrode under<br />

test or <strong>in</strong> an equilateral triangle.<br />

35


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.5.2. Measurement of simple b<strong>and</strong> earth<strong>in</strong>g electrode<br />

Fig. 29. Earth Resistance measurement of simple b<strong>and</strong> electrode<br />

Result = U / I = RE<br />

where:<br />

U.................... Voltage measured by <strong>in</strong>ternal V-meter between P1 <strong>and</strong> P2 test<br />

term<strong>in</strong>als.<br />

I...................... Test current between C1 <strong>and</strong> C2 test<br />

term<strong>in</strong>als.<br />

The measurement is quite similar to the previous <strong>on</strong>e, except that the electrode<br />

cannot be c<strong>on</strong>sidered as a s<strong>in</strong>gle po<strong>in</strong>t electrode, but the length of the b<strong>and</strong> used<br />

must be taken <strong>in</strong>to c<strong>on</strong>siderati<strong>on</strong>. On basis of the length, the appropriate distance<br />

from the electrode under test to both of the test probes must be calculated <strong>and</strong><br />

used, see the figure above.<br />

Measurement probes are usually driven to ground <strong>in</strong> l<strong>in</strong>e with the electrode under<br />

test or <strong>in</strong> an equilateral triangle.<br />

5.5.3. Measurement of complex earth<strong>in</strong>g systems with several<br />

parallel electrodes<br />

Two important aspects should be c<strong>on</strong>sidered <strong>in</strong> such systems:<br />

• The comm<strong>on</strong> resistance of an earth<strong>in</strong>g system REtot is equal to the parallel<br />

c<strong>on</strong>necti<strong>on</strong> of the <strong>in</strong>dividual earth<strong>in</strong>g electrodes. Sufficient comm<strong>on</strong> low Earth<br />

Resistance meets the requirements for successful protecti<strong>on</strong> aga<strong>in</strong>st <strong>electric</strong>al<br />

shock <strong>in</strong> for a load fault, but it may not offer successful protecti<strong>on</strong> for<br />

atmospheric discharg<strong>in</strong>g through the lightn<strong>in</strong>g c<strong>on</strong>ductor.<br />

• Resistance of the <strong>in</strong>dividual earth<strong>in</strong>g electrode RE1…REN.<br />

36


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Individual earth<strong>in</strong>g resistances must be of a sufficiently low value when the<br />

earth<strong>in</strong>g system is <strong>in</strong>tended for protecti<strong>on</strong> aga<strong>in</strong>st atmospheric discharg<strong>in</strong>g. The<br />

atmospheric discharges are very rapid which is why discharge currents c<strong>on</strong>ta<strong>in</strong><br />

high-frequency comp<strong>on</strong>ents. For these comp<strong>on</strong>ents any <strong>in</strong>ductance with<strong>in</strong> the<br />

earth<strong>in</strong>g system presents a high resistance <strong>and</strong> therefore disables a successful<br />

discharge. This may have catastrophic c<strong>on</strong>sequences.<br />

The opposite effect than that required might occur when the lightn<strong>in</strong>g c<strong>on</strong>ductor<br />

has several separate earth paths, especially where the Earth Resistance is too<br />

high. The lightn<strong>in</strong>g system attracts the lightn<strong>in</strong>g because of its geometric shape<br />

<strong>and</strong> appropriate physical locati<strong>on</strong> (sharp edges/po<strong>in</strong>ts <strong>and</strong> usually the highest<br />

places). Extremely high strength of <strong>electric</strong> field <strong>and</strong> subsequent air i<strong>on</strong>izati<strong>on</strong><br />

may appear near the lightn<strong>in</strong>g system.<br />

Measurement of total Earth Resistance<br />

a) Classic four-lead, two-probe method<br />

Fig. 30. Measurement of total Earth Resistance of a complex earth<strong>in</strong>g system<br />

us<strong>in</strong>g the classic four-lead, two-probe method<br />

The voltage <strong>and</strong> current measurement probes are driven <strong>in</strong>to the ground far<br />

enough away from the measured system so that it can be c<strong>on</strong>sidered as a po<strong>in</strong>t<br />

system. The required distance from the current probe must be at least 5-times<br />

l<strong>on</strong>ger than the l<strong>on</strong>gest distance between the <strong>in</strong>dividual earth<strong>in</strong>g electrodes. The<br />

distance to the voltage probe is <strong>in</strong> accordance with the chapter: Calculati<strong>on</strong> of<br />

required distance between tested earth<strong>in</strong>g system (simple rod or simple b<strong>and</strong><br />

electrode) <strong>on</strong> page 35.<br />

The advantage of this method is that it assures exact <strong>and</strong> reliable test results<br />

whilst the disadvantage is that it requires relatively large distances to set-up the<br />

measurement probes which may cause problems (especially <strong>in</strong> an urban<br />

envir<strong>on</strong>ment).<br />

Result = U/I = RE1//RE2//RE3//RE4 = REtot<br />

37


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

where:<br />

U....................Voltage measured by an <strong>in</strong>strument between the test probes P1<br />

<strong>and</strong> P2.<br />

I......................Current driven by an <strong>in</strong>strument <strong>in</strong>to the test loop between the test<br />

probes C1 <strong>and</strong> C2.<br />

RE1 to RE4....Earth Resistance of <strong>in</strong>dividual earth<strong>in</strong>g electrode.<br />

REtot..............Total Earth Resistance of tested earth<strong>in</strong>g system.<br />

b) Rodless method us<strong>in</strong>g two test clamps<br />

The Earth Resistance measurement can be simplified <strong>and</strong> performed without the<br />

use of earth spikes when an additi<strong>on</strong>al earth<strong>in</strong>g electrode or a system of earth<strong>in</strong>g<br />

electrodes with low total Earth Resistance is available. The measurement can be<br />

performed with the use of two test clamps if a measurement <strong>in</strong>strument such as<br />

the Eurotest 61557 or Earth – Insulati<strong>on</strong> Tester is available.<br />

Such <strong>in</strong>stances are usually met <strong>in</strong> built up areas where other earth<strong>in</strong>g systems<br />

with low Earth Resistances are also present (e.g. metal b<strong>and</strong> <strong>in</strong>stalled al<strong>on</strong>g<br />

ground ma<strong>in</strong>s cable).<br />

Below is a model of such an earth<strong>in</strong>g system <strong>and</strong> c<strong>on</strong>necti<strong>on</strong> of the test<br />

<strong>in</strong>strument.<br />

Fig. 31. Measurement of total Earth Resistance by us<strong>in</strong>g two test clamps<br />

RE1 to RE4......Individual Earth Resistances of earth<strong>in</strong>g system under test.<br />

RE5 to REN......Individual Earth Resistances of auxiliary earth<strong>in</strong>g system with low<br />

total Earth Resistance.<br />

r.......................Distance between the measurement clamps which has to be at<br />

least 30 cm, otherwise generator clamp may have an <strong>in</strong>fluence <strong>on</strong><br />

the measur<strong>in</strong>g clamp.<br />

The figure below gives a better underst<strong>and</strong><strong>in</strong>g of the previous example.<br />

38


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 32. Substitute <strong>electric</strong>al circuit diagram of the previous example<br />

Result = (total resistance of earth<strong>in</strong>g electrodes R E1 to RE4) +<br />

+ (total resistance of auxiliary earth<strong>in</strong>g electrodes R E5 to REN)<br />

If it can be assumed, that total resistance of the auxiliary electrodes R E5 to REN is<br />

much lower than the total resistance of the measured electrodes R E1 to RE4, then<br />

the follow<strong>in</strong>g can be written down:<br />

Result » (total resistance of measured earth<strong>in</strong>g electrodes R E1 to RE4)<br />

If the result is lower than allowed value, then the exact value is <strong>on</strong> the safe side<br />

namely, it is even lower than the displayed <strong>on</strong>e.<br />

Particular Earth Resistance measurement<br />

There are several methods to measure the Earth Resistance of a particular<br />

earth<strong>in</strong>g electrode. The method which best fits to the actual earth<strong>in</strong>g system, <strong>and</strong><br />

is of course supported by the available test <strong>in</strong>strument, should be used.<br />

a) Measurement with mechanical disc<strong>on</strong>necti<strong>on</strong> of the tested earth<strong>in</strong>g<br />

electrode us<strong>in</strong>g the classic 4-lead 2-probe test method<br />

Fig. 33. Earth Resistance measurement of a specific earth<strong>in</strong>g electrode<br />

Result = U / I = RE4<br />

39


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

where:<br />

U.................... Voltage measured by <strong>in</strong>ternal V-meter between P1 <strong>and</strong> P2 test<br />

term<strong>in</strong>als.<br />

I...................... Test current driven through tested loop between C1 <strong>and</strong> C2 test<br />

term<strong>in</strong>als.<br />

The required distance between the tested electrode <strong>and</strong> both of the test<br />

probes is the same as the <strong>on</strong>e for simple rod electrode or simple b<strong>and</strong><br />

electrode dependant <strong>on</strong> the type of electrode used.<br />

The disadvantage of this method is that mechanical disc<strong>on</strong>necti<strong>on</strong> must be d<strong>on</strong>e<br />

before the measurement is applied. The disc<strong>on</strong>necti<strong>on</strong> may be problematical due<br />

to possible rusty juncti<strong>on</strong>s. the advantage of the method is high accuracy <strong>and</strong><br />

reliability of the test result.<br />

b) Measurement with mechanical disc<strong>on</strong>necti<strong>on</strong> of the tested earth<strong>in</strong>g<br />

electrode us<strong>in</strong>g the classic 4-lead 2-po<strong>in</strong>t test method<br />

If the number of total earth<strong>in</strong>g electrodes is high enough, then a simplified,<br />

probeless method can be used, see the figure below.<br />

The electrode under test should be mechanically disc<strong>on</strong>nected <strong>and</strong> all the other<br />

electrodes will be used as auxiliary <strong>on</strong>es. The total Earth Resistance of the<br />

auxiliary electrodes is much lower than the <strong>on</strong>e under test.<br />

Fig. 34. Simlified probeless measurement<br />

Result = RE4 + (RE1 // RE2 // RE3)<br />

If (RE1 // RE2 // RE3) is much lower than tested RE4, the follow<strong>in</strong>g can be noted:<br />

Result » RE4<br />

40


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

c) Measurement us<strong>in</strong>g classic 4-term<strong>in</strong>al 2-probe test method <strong>in</strong> comb<strong>in</strong>at<strong>on</strong><br />

with test clamp<br />

Fig. 35. Earth Resistance measurement us<strong>in</strong>g <strong>on</strong>e test clamp<br />

Substituted <strong>electric</strong>al circuit diagram of the above example is presented <strong>on</strong> the<br />

figure below.<br />

Fig. 36. Substituted <strong>electric</strong>al circuit diagram of the previous practical example<br />

Ut.............. Test voltage.<br />

Rc............. Resistance of current test probe.<br />

Rp............. Resistance of potential test probe.<br />

Itot............. Total current generated by the test voltage Ut <strong>and</strong> measured by<br />

A-meter c<strong>on</strong>nected <strong>in</strong> series with generator.<br />

I1 to I4....... Separate test currents.<br />

I1 + I2 + I3 + I4 = Itot<br />

Result 1 = RE4 (the current measured by test clamp is c<strong>on</strong>sidered)<br />

Result 2 = Rtot (total current measured by A-meter is c<strong>on</strong>sidered)<br />

The advantage of this method is that there is no need to mechanically disc<strong>on</strong>nect<br />

the electrode under test.<br />

Mov<strong>in</strong>g the test clamp from electrode to electrode will measure <strong>on</strong>ly the current<br />

flow<strong>in</strong>g <strong>in</strong> the earth<strong>in</strong>g electrode under test. On the basis of this current the total<br />

current measured by the <strong>in</strong>ternal A-meter <strong>and</strong> the voltage measured by the<br />

<strong>in</strong>ternal V-meter, is used to calculate the specific Earth Resistance.<br />

41


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

To ensure an accurate voltage measurement the distance from the tested<br />

electrode to the current probe must be at least 5 times further than the furthest<br />

distance between particular electrodes <strong>in</strong> the tested system.<br />

Notes!<br />

• Because of the large distances between particular electrodes, it is often not<br />

possible to move the test clamp from electrode to electrode! The <strong>in</strong>strument<br />

with its test wir<strong>in</strong>g must be moved.<br />

• If there is a large number of electrodes <strong>in</strong> the earth<strong>in</strong>g system under test, it may<br />

be that the current measured by the test clamp <strong>in</strong> the electrode is too low. In<br />

this case the test <strong>in</strong>strument will advise of the unfavourable situati<strong>on</strong>.<br />

d) Probeless measurement us<strong>in</strong>g two test clamps<br />

Complex earth<strong>in</strong>g systems with numerous electrodes c<strong>on</strong>nected <strong>in</strong> parallel (see<br />

the figure below) or systems <strong>in</strong>terc<strong>on</strong>nected to other earth<strong>in</strong>g systems (see the<br />

figure 39) are often met whilst test<strong>in</strong>g. Also, <strong>in</strong> built up areas it may prove difficult<br />

or impossible to drive test probes to ground. In these cases the probeless method<br />

(if test <strong>in</strong>strument supports it) is recommended.<br />

Both the Eurotest 61557 <strong>and</strong> the Earth – Insulati<strong>on</strong> Tester can carry out the<br />

measurement even if high noise signals are present, because they both use a<br />

special patented technical soluti<strong>on</strong>.<br />

Fig. 37. Earth Resistance measurement us<strong>in</strong>g the probeless two-clamp method<br />

Note!<br />

• It is important to ensure that the m<strong>in</strong>imum distance between the two test<br />

clamps is at least 30cm otherwise the two clamps will <strong>in</strong>teract with each other<br />

<strong>and</strong> distort the read<strong>in</strong>gs.<br />

Below is a substitute <strong>electric</strong>al circuit diagram of the example above.<br />

42


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 38. Substitute <strong>electric</strong>al circuit diagram of the previous practical example<br />

Result = RE4 + (RE3 // RE2 // RE1)<br />

If the total Earth Resistance of the parallel c<strong>on</strong>nected electrodes RE3, RE2 <strong>and</strong><br />

RE1 is much lower than the resistance of tested electrode RE4, the follow<strong>in</strong>g<br />

decisi<strong>on</strong> can be made:<br />

Result » RE4<br />

If the result is lower than the allowed value, then the exact value is def<strong>in</strong>itely <strong>on</strong><br />

safe side ie. it is even lower than displayed <strong>on</strong>e.<br />

Other specific resistances can be measured by mov<strong>in</strong>g the test clamps to other<br />

electrodes.<br />

If there is a practical example as presented <strong>in</strong> figure 31., then the test clamps may<br />

be c<strong>on</strong>nected as shown <strong>on</strong> the figure below. Required c<strong>on</strong>diti<strong>on</strong>s for acceptable<br />

test results is that the total Earth Resistance of the earth<strong>in</strong>g electrodes RE5 to<br />

REN is negligible <strong>in</strong> comparis<strong>on</strong> with the total resistance of the tested object RE1<br />

to RE4.<br />

Fig. 39. Probeless Earth Resistance measurement us<strong>in</strong>g two test clamps<br />

43


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

C<strong>on</strong>necti<strong>on</strong> is similar to the <strong>on</strong>e <strong>in</strong> figure 31. Except that the current measurement<br />

test clamp is c<strong>on</strong>nected to a specific earth<strong>in</strong>g elecrtrode <strong>and</strong> therefore the Earth<br />

Resistance of the electrode is measured.<br />

Substitute <strong>electric</strong>al circuit diagram of the above example is presented <strong>on</strong> the<br />

figure below.<br />

Fig. 40. Substitute <strong>electric</strong>al circuit diagram of the previous practical example<br />

Where the total resistance of the auxiliary earths RE5 to REN is much lower than<br />

the total resistance of electrodes RE1 to RE4, the follow<strong>in</strong>g can be noted:<br />

Result ≈ RE3<br />

Measurement of other earth<strong>in</strong>g electrodes can be performed by mov<strong>in</strong>g the test<br />

clamp 1 (current measurement clamp) to the other electrodes.<br />

Notes!<br />

• This method can be used if <strong>in</strong>dividual earth<strong>in</strong>g electrodes are close enough to<br />

each other to be reached with the test clamp 1. The Generator clamp should<br />

stay at the same place regardless of the electrode measured.<br />

• If there is a large number of electrodes <strong>in</strong> the tested earth<strong>in</strong>g system, it may be<br />

that the current measured by the test clamp <strong>in</strong> the tested electrode is too low.<br />

In this case the test <strong>in</strong>strument will advise of the unfavourable situati<strong>on</strong>.<br />

Earth Resistance measurement methods us<strong>in</strong>g external test voltage are<br />

described <strong>in</strong> chapter 3.8.4., under ‘RCD protecti<strong>on</strong> devices’.<br />

44


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.6. Specific earth resistance (resistivity) EN 61557- 5<br />

What is Specific Earth Resistance?<br />

It is the resistance of ground material shaped as a cube 1 × 1 × 1 m, where the<br />

measurement electrodes are placed at the opposite sides of the cube, see the<br />

figure below.<br />

Fig. 41. Presentati<strong>on</strong> of Specific Earth Resistance<br />

Measurement of Specific Earth Resistance<br />

The measurement is carried out <strong>in</strong> order to assure more accurate calculati<strong>on</strong> of<br />

earth<strong>in</strong>g systems e.g. for high-voltage distributi<strong>on</strong> columns, large <strong>in</strong>dustrial plants,<br />

lightn<strong>in</strong>g systems etc.<br />

AC test voltage should be used because of possible electro-chemical processes<br />

<strong>in</strong> the measured ground material if a DC test voltage is used.<br />

Specific Earth Resistance value is expressed <strong>in</strong> Ωm, its absolute value depends<br />

<strong>on</strong> structure of the ground material<br />

Measurement pr<strong>in</strong>ciple is presented <strong>on</strong> the figure below.<br />

Fig. 42. Measurement pr<strong>in</strong>ciple<br />

Result = 2 p a U / I = r<br />

45


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

where:<br />

a ............... Distance between test probes.<br />

U............... Voltage between test probes P1 <strong>and</strong> P2, measured by the V-meter.<br />

I................. Test current, driven by an a.c. generator <strong>and</strong> measured by the A-<br />

meter.<br />

ρ................ Specific Earth Resistance.<br />

The above equati<strong>on</strong> is valid if the test probes are driven to ground at maximum<br />

a/20.<br />

In order to reach more objective results it is advisable that the measurement be<br />

repeated <strong>in</strong> different directi<strong>on</strong>s (e.g. 90° with regard to the first measurement) <strong>and</strong><br />

an average value taken.<br />

Us<strong>in</strong>g different distances between the test probes means that the material at<br />

different depths is measured. Because the bigger the distance is, then the deeper<br />

level of ground material is measured.<br />

Fig. 43. Influence of the distance a to measured depth<br />

d1.............. Depth <strong>in</strong>volved at larger distance a between test probes.<br />

d2.............. Depth <strong>in</strong>volved at smaller distance a between test probes.<br />

The earth<strong>in</strong>g electrode should be sited at a place <strong>and</strong> depth where the lowest<br />

Earth Resistance will be reached (or at least a reas<strong>on</strong>able compromise shall be<br />

achieved), this is why test results obta<strong>in</strong>ed at different depths are to be taken.<br />

Also a structure of the ground material can be roughly def<strong>in</strong>ed by measur<strong>in</strong>g the<br />

Specific Earth Resistance.<br />

The table below is representative of the orientati<strong>on</strong>al values of Specific Earth<br />

Resistances for a few typical ground materials.<br />

Type of ground material<br />

Specific Earth<br />

46


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Resistance <strong>in</strong> Ωm<br />

sea water 0,5<br />

lake or river water 10 – 100<br />

ploughed earth 90 – 150<br />

c<strong>on</strong>crete 150 – 500<br />

wet gravel 200 – 400<br />

f<strong>in</strong>e dry s<strong>and</strong> 500<br />

lime 500 – 1000<br />

dry gravel 1000 – 2000<br />

st<strong>on</strong>y ground 100 – 3000<br />

Table 3. Orientati<strong>on</strong>al values of Specific Earth Resistances for a few typical<br />

ground materials<br />

Practical measurement us<strong>in</strong>g test <strong>in</strong>strument Eurotest 61557 or Earth – Insulati<strong>on</strong><br />

Tester is shown <strong>on</strong> the figure below.<br />

Fig. 44. Practical measurement of Specific Earth Resistance<br />

47


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.7. C<strong>on</strong>necti<strong>on</strong> of protecti<strong>on</strong> c<strong>on</strong>ductor ‘pe’ at ma<strong>in</strong>s plug<br />

At new <strong>in</strong>stallati<strong>on</strong>s as well as at adapted <strong>on</strong>es it may occur that the PE c<strong>on</strong>ductor<br />

is crossed with the phase c<strong>on</strong>ductor, this is a very dangerous situati<strong>on</strong>! This is<br />

why it is important to test for the presence of phase voltage at the PE term<strong>in</strong>al.<br />

The test should be carried out before any other tests which requires the presence<br />

of ma<strong>in</strong>s voltage is c<strong>on</strong>ducted or before the <strong>in</strong>stallati<strong>on</strong> is used.<br />

The Eurotest 61557 will do this test whenever the operators f<strong>in</strong>ger touches PE<br />

test probes adjacent to the START key.<br />

Let’s see the test pr<strong>in</strong>ciple.<br />

Fig. 45. Test pr<strong>in</strong>ciple<br />

If phase voltage is present at the PE term<strong>in</strong>al, then a certa<strong>in</strong> current flows from<br />

the term<strong>in</strong>al via the <strong>in</strong>ternal resistance of the test <strong>in</strong>strument <strong>and</strong> the operator’s<br />

body to ground as so<strong>on</strong> as the operator’s f<strong>in</strong>ger touches the PE test probe. The<br />

current causes a specific voltage drop across the <strong>in</strong>ternal resistance of the test<br />

<strong>in</strong>strument, which is detected by the <strong>in</strong>strument’s electr<strong>on</strong>ic circuitry.<br />

Attenti<strong>on</strong>!<br />

• If presence of phase voltage is detected, stop all further activities immediately<br />

<strong>and</strong> ensure that the situati<strong>on</strong> is made safe before proceed<strong>in</strong>g further.<br />

• The user should st<strong>and</strong> <strong>on</strong> a c<strong>on</strong>ductive floor dur<strong>in</strong>g the test.<br />

48


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.8. Rcd protecti<strong>on</strong> devices EN 61557- 6<br />

A RCD device is a protecti<strong>on</strong> element <strong>in</strong>tended to protect humans <strong>and</strong> animals<br />

from <strong>electric</strong> shock. It works <strong>on</strong> the basis of a difference between the phase<br />

currents flow<strong>in</strong>g to different loads <strong>and</strong> the return<strong>in</strong>g current flow<strong>in</strong>g through the<br />

neutral c<strong>on</strong>ductor. If the difference is higher than the tripp<strong>in</strong>g current of the<br />

<strong>in</strong>stalled RCD protecti<strong>on</strong> device, the device will trip <strong>and</strong> thereby switch off the<br />

ma<strong>in</strong>s voltage. The aforementi<strong>on</strong>ed current difference must flow to ground as a<br />

leakage current (via <strong>in</strong>sulati<strong>on</strong> or capacitive coupl<strong>in</strong>g) or as a fault current (via<br />

faulty <strong>in</strong>sulati<strong>on</strong> or partial/total short circuit between live parts <strong>and</strong> accessible<br />

c<strong>on</strong>ductive parts).<br />

Such a protecti<strong>on</strong> is effective <strong>on</strong>ly if the RCD device is <strong>in</strong>stalled correctly, if the<br />

<strong>in</strong>stallati<strong>on</strong> is correctly specified <strong>and</strong> if the Earth Resistance value is under the<br />

allowed limit value for an <strong>in</strong>stalled RCD device.<br />

Fig. 46. Schematic representati<strong>on</strong> of the RCD protecti<strong>on</strong> device<br />

L1, L2, L3, N.............. Input term<strong>in</strong>als for c<strong>on</strong>necti<strong>on</strong> of <strong>electric</strong>al supply network.<br />

L1’, L2’, L3’, N’........... Output term<strong>in</strong>als for c<strong>on</strong>necti<strong>on</strong> to <strong>in</strong>stallati<strong>on</strong> <strong>in</strong> build<strong>in</strong>g.<br />

ID = IL1 + IL2 + IL3 – IN<br />

The formula above is valid regardless of the type of c<strong>on</strong>nected load (s<strong>in</strong>gle-phase,<br />

three-phase three-cable, three-phase four-cable, symmetrical, n<strong>on</strong>-symmetrical).<br />

C<strong>on</strong>diti<strong>on</strong> for RCD trip out is as follows:<br />

ID ‡ trip<br />

where:<br />

I∆.................... Differential current which is equal to the sum of fault <strong>and</strong> leakage<br />

current.<br />

I∆ trip.............. Tripp<strong>in</strong>g current of <strong>in</strong>stalled RCD device.<br />

49


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

To ensure correct operati<strong>on</strong> <strong>on</strong> any shape of current waveform there are three<br />

basic types of RCDs are available namely:<br />

• AC type, sensitive to alternat<strong>in</strong>g differential current. This is the most frequently<br />

used type due to the fact that most <strong>in</strong>stallati<strong>on</strong>s supply loads with alternat<strong>in</strong>g<br />

current.<br />

Fig. 47. Shape of differential current, AC type of RCD is sensitive to<br />

• A type, <strong>in</strong> additi<strong>on</strong> to alternat<strong>in</strong>g current they are also sensitive to half or fullwave<br />

rectified a.c. current. These units are rarely used <strong>in</strong> <strong>practice</strong> as there are<br />

not a many <strong>in</strong>stallati<strong>on</strong>s that supply their c<strong>on</strong>nected loads with such a current<br />

(e.g. d.c. motors, galvanizati<strong>on</strong> plants etc.)<br />

Fig. 48. Shape of differential current to which ‘A’ type of RCDs are also sensitive.<br />

• B type, <strong>in</strong> additi<strong>on</strong> to alternat<strong>in</strong>g <strong>and</strong> half or full-wave rectified a.c. current,<br />

these types are also sensitive to pure or nearly pure d.c. current. It is rarely<br />

used <strong>in</strong> <strong>practice</strong> as there are not many <strong>in</strong>stallati<strong>on</strong>s that supply their c<strong>on</strong>nected<br />

loads with a pure d.c. current (e.g. full-wave rectified three-phase voltage etc.)<br />

Fig. 49. Shape of differential current to which ‘B’ type of RCDs are also sensitive.<br />

50


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Regard<strong>in</strong>g required trip out time of RCD protecti<strong>on</strong> devices, two types are<br />

available namely:<br />

• St<strong>and</strong>ard type (<strong>in</strong>stantaneous trip out)<br />

• Selective type (delayed trip out)<br />

To assure successful protecti<strong>on</strong> us<strong>in</strong>g RCD protecti<strong>on</strong> devices, the follow<strong>in</strong>g<br />

parameters are to be tested:<br />

• C<strong>on</strong>tact voltage Uc<br />

• Trip out time t∆<br />

• Tripp<strong>in</strong>g current I∆<br />

• Earth Resistance RE<br />

All measurements of the above menti<strong>on</strong>ed parameters should ideally be carried<br />

out <strong>in</strong> dry, preferably summer c<strong>on</strong>diti<strong>on</strong>s when the Earth Resistance reaches its<br />

highest value. Otherwise the measurements should be carried out periodically e.g.<br />

<strong>on</strong>ce per m<strong>on</strong>th or:<br />

• after each trip out or<br />

• after each short circuit <strong>on</strong> <strong>in</strong>stallati<strong>on</strong> or<br />

• after c<strong>on</strong>siderable atmospheric discharges or<br />

• after perform<strong>in</strong>g modificati<strong>on</strong>s <strong>on</strong> the protecti<strong>on</strong> system or<br />

• after chang<strong>in</strong>g the earth<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s (digg<strong>in</strong>g around the earth<strong>in</strong>g system,<br />

dry<strong>in</strong>g-up the area around earth<strong>in</strong>g system etc.)<br />

51


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.8.1. C<strong>on</strong>tact voltage<br />

What is c<strong>on</strong>tact voltage?<br />

C<strong>on</strong>tact voltage is the voltage which can arise under fault c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> any<br />

c<strong>on</strong>ductive accessible parts which can come <strong>in</strong>to c<strong>on</strong>tact with the human body.<br />

Due to a faulty load, fault current If may flow to ground via the protecti<strong>on</strong><br />

c<strong>on</strong>ductor. The fault current causes a certa<strong>in</strong> voltage drop across the Earth<br />

Resistance RE<br />

(TT – system), called Fault voltage. A part of the Fault voltage may be accessible<br />

to the human body <strong>and</strong> is therefore called C<strong>on</strong>tact voltage. See schematic<br />

presentati<strong>on</strong> of C<strong>on</strong>tact voltage <strong>on</strong> figure 7.<br />

Value of maximum allowed C<strong>on</strong>tact voltage is called Limit voltage (marked as<br />

UL) <strong>and</strong> is usually 50 V, although <strong>in</strong> some cases (rural envir<strong>on</strong>ment, hospitals,<br />

computer rooms etc.) it is just 25 V.<br />

Measurement of C<strong>on</strong>tact voltage Uc<br />

For reas<strong>on</strong>s of safety the C<strong>on</strong>t<strong>in</strong>uity of protecti<strong>on</strong> c<strong>on</strong>ductors <strong>and</strong> the Insulati<strong>on</strong><br />

Resistance should be measured before any circuit is c<strong>on</strong>nected to RCD operati<strong>on</strong>.<br />

Measurement of C<strong>on</strong>tact voltage is usually carried out us<strong>in</strong>g a test current of I∆n/2<br />

or I∆n/3, which is why the RCD device will not trip dur<strong>in</strong>g the measurement (if<br />

RCD device, <strong>in</strong>stallati<strong>on</strong> <strong>and</strong> c<strong>on</strong>nected loads are <strong>in</strong> good work<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>).<br />

The Eurotest 61557 offers two methods of carry<strong>in</strong>g out the measurement namely:<br />

• Without us<strong>in</strong>g auxiliary test probe<br />

• Us<strong>in</strong>g auxiliary test probe<br />

a) Measurement of C<strong>on</strong>tact voltage without us<strong>in</strong>g auxiliary test probe<br />

52


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Pr<strong>in</strong>ciple of the measurement is presented <strong>on</strong> the two figures below.<br />

Fig. 50. Pr<strong>in</strong>ciple of C<strong>on</strong>tact voltage measurement <strong>in</strong> TT- system without us<strong>in</strong>g<br />

auxiliary test probe<br />

Fig. 51. Practical c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument Eurotest 61557 or Instaltest 61557<br />

The test <strong>in</strong>strument simulates a fault <strong>on</strong> the c<strong>on</strong>nected load, driv<strong>in</strong>g a fault current<br />

from the phase c<strong>on</strong>ductor to the protecti<strong>on</strong> c<strong>on</strong>ductor <strong>and</strong> then to ground. The test<br />

current flows through the follow<strong>in</strong>g loop: Protecti<strong>on</strong> c<strong>on</strong>ductor from test <strong>in</strong>strument<br />

to earth<strong>in</strong>g electrode, ground from earth<strong>in</strong>g electrode to power transformer,<br />

sec<strong>on</strong>dary of power transformer, phase c<strong>on</strong>ductor from power transformer to test<br />

<strong>in</strong>strument. It can be assumed that the earth resistance of the unit under test is<br />

much higher than the sum of all other resistances <strong>in</strong> the tested loop, so most of<br />

the fault voltage is c<strong>on</strong>centrated at the earth resistance. The voltage at the earth<br />

resistance is referred to as the C<strong>on</strong>tact voltage <strong>and</strong> is measured by the test<br />

<strong>in</strong>strument, us<strong>in</strong>g the phase term<strong>in</strong>al as a reference po<strong>in</strong>t.<br />

The described method (without us<strong>in</strong>g auxiliary test probe) gives quite exact results<br />

especially <strong>in</strong> TT – systems <strong>and</strong> is very c<strong>on</strong>venient as there is no need to drive<br />

auxiliary test probes. For absolutely exact results of C<strong>on</strong>tact voltage <strong>and</strong><br />

53


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

especially for exact calculati<strong>on</strong> of Earth Resistance RE, test method us<strong>in</strong>g<br />

auxiliary test probe is recommended.<br />

b) Measurement of C<strong>on</strong>tact voltage us<strong>in</strong>g auxiliary test probe<br />

Pr<strong>in</strong>ciple of the measurement is presented <strong>on</strong> the two figures below.<br />

Fig. 52. Pr<strong>in</strong>ciple of C<strong>on</strong>tact voltage measurement <strong>in</strong> TT- system us<strong>in</strong>g auxiliary<br />

test probe<br />

Fig. 53. Practical c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument Eurotest 61557<br />

Notes!<br />

• If the C<strong>on</strong>tact voltage is above the allowed level then the Earth Resistance<br />

should be checked.<br />

• If the RCD trips dur<strong>in</strong>g C<strong>on</strong>tact voltage measurement, there is a str<strong>on</strong>g<br />

possibility that a leakage or fault current is already flow<strong>in</strong>g to ground. The load,<br />

which causes such a current, should be disc<strong>on</strong>nected dur<strong>in</strong>g the measurement.<br />

54


5.8.2. Trip out time<br />

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

What is Trip out time?<br />

Trip out time t∆ is the time taken by the RCD to trip at the nom<strong>in</strong>al differential<br />

current I∆N.<br />

Maximum allowed values of Trip out time are def<strong>in</strong>ed by EN 61009 st<strong>and</strong>ard <strong>and</strong><br />

are listed <strong>in</strong> the table below:<br />

Type of RCD IDn 2IDn 5IDn* Remark<br />

St<strong>and</strong>ard 0,3 s 0,15 s 0,04 s max. allowed value<br />

Selective<br />

0,5 s 0,2 s 0,15 s max. allowed value<br />

0,13 s 0,06 s 0,05 s m<strong>in</strong>. allowed value<br />

* Test current of 0,25A shall be used <strong>in</strong>stead of 5I ∆n where the nom<strong>in</strong>al differential<br />

current I∆n ≤ 30 mA.<br />

Table 4. Max. allowed Trip out times accord<strong>in</strong>g to EN 61009 st<strong>and</strong>ard<br />

Measurement of Trip out time tD<br />

Measurement circuit diagram is the same as that for C<strong>on</strong>tact voltage<br />

measurement (see figures 50., 51., 52. <strong>and</strong> 53.) but the test current is either 0,5<br />

I∆n, I∆n, 2 I∆n or 5 I∆n. For safety reas<strong>on</strong>s the test <strong>in</strong>strument measures C<strong>on</strong>tact<br />

voltage every time before Trip out time.<br />

If the measured Trip out time is out of the allowed limits, then the RCD device<br />

should be changed as Trip out time value mostly depends <strong>on</strong> the <strong>in</strong>stalled RCD<br />

device.<br />

55


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.8.3. Tripp<strong>in</strong>g current<br />

What is Tripp<strong>in</strong>g current?<br />

This is the lowest differential current I∆ that can still cause tripp<strong>in</strong>g out of the RCD.<br />

The allowed range of Tripp<strong>in</strong>g current value is prescribed by IEC 61009<br />

st<strong>and</strong>ard <strong>and</strong> depends <strong>on</strong> the type of RCD (AC, A or B) as follows:<br />

I∆ = (0,5 up to 1) × I∆n ................ AC type<br />

I∆ = (0,35 up to 1,4) × I∆n ........... A type<br />

I∆ = (0,5 up to 2) × I∆n ................ B type<br />

Measurement of tripp<strong>in</strong>g out current<br />

Measurement circuit diagram is the same as that for C<strong>on</strong>tact voltage<br />

measurement (see the figures 50., 51., 52. <strong>and</strong> 53.). The test <strong>in</strong>strument starts to<br />

drive a test current of 0,5 I∆n or lower <strong>and</strong> then <strong>in</strong>creases it until the RCD trips or<br />

up to 1,1 I∆n.<br />

If the tripp<strong>in</strong>g current is out of the prescribed range, then the tested RCD as well<br />

as <strong>in</strong>stallati<strong>on</strong> circuits <strong>and</strong> the c<strong>on</strong>diti<strong>on</strong> of the c<strong>on</strong>nected loads should be<br />

checked. If the test result is too low then there is a high possibility that a leakage<br />

or fault current is already flow<strong>in</strong>g to ground.<br />

Fig. 54. Shape of test current applied when test<strong>in</strong>g the Tripp<strong>in</strong>g current of AC type<br />

The shape of the test current may differ slightly from producer to producer of test<br />

equipment, also the total number of steps may be different (even a smoothly ris<strong>in</strong>g<br />

shape can be found), but the basic pr<strong>in</strong>ciple is always the same.<br />

56


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.8.4. Earth Resistance (external source of test voltage)<br />

Appropriate Earth Resistance is of vital importance when RCD protecti<strong>on</strong> is used<br />

aga<strong>in</strong>st <strong>electric</strong> shock. If the Earth Resistance is too high then an unacceptably<br />

high C<strong>on</strong>tact voltage may appear <strong>on</strong> accessible c<strong>on</strong>ductive parts under faulty<br />

c<strong>on</strong>diti<strong>on</strong>s. The voltage represents a potential risk of <strong>electric</strong> shock.<br />

With regard to the aforementi<strong>on</strong>ed, Earth Resistance is to be tested <strong>in</strong> all cases<br />

where the C<strong>on</strong>tact voltage is too high.<br />

Up-to-date test <strong>in</strong>struments display both results (Earth Resistance <strong>and</strong> C<strong>on</strong>tact<br />

voltage) simultaneously as the measurement pr<strong>in</strong>ciple is absolutely the same.<br />

The test <strong>in</strong>struments Eurotest 61557 <strong>and</strong> Instaltest 61557 support the<br />

measurement of all four parameters (C<strong>on</strong>tact voltage, Earth Resistance, Trip out<br />

time <strong>and</strong> Tripp<strong>in</strong>g current) which is important for successful protecti<strong>on</strong> aga<strong>in</strong>st<br />

<strong>electric</strong> shock. The Eurotest 61557 can measure the Earth Resistance either with<br />

or without the auxiliary test probe whilst the Instaltest 61557 can <strong>on</strong>ly perform the<br />

test without the auxiliary test probe. It is important to know that real Earth<br />

Resistance is measured us<strong>in</strong>g auxiliary test probe <strong>on</strong>ly. If the measurement is<br />

performed without us<strong>in</strong>g the auxiliary test probe, the whole resistance <strong>in</strong> the<br />

tested loop (fault loop) is measured, which is quite similar to the Earth Resistance<br />

<strong>in</strong> TT – system.<br />

a) Fault loop Resistance measurement without us<strong>in</strong>g auxiliary test probe<br />

The method is used ma<strong>in</strong>ly <strong>in</strong> TT – systems. The measurement circuit diagram as<br />

well as the c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument is the same as for C<strong>on</strong>tact voltage<br />

measurement (see the figures 50. <strong>and</strong> 51.). The f<strong>in</strong>al result is expressed<br />

mathematically as follows:<br />

Result = DU / It = (UO – UL) / It = Rsec + RL + RPE + RE + RG + RO<br />

where:<br />

It..................... Test current (<strong>in</strong> most cases the value is half or third of nom<strong>in</strong>al<br />

current which still does not cause trip out of RCD device).<br />

UO.................. Ma<strong>in</strong>s voltage measured dur<strong>in</strong>g the first step of the measurement<br />

i.e. ma<strong>in</strong>s voltage unloaded.<br />

UL .................. Ma<strong>in</strong>s voltage measured dur<strong>in</strong>g the sec<strong>on</strong>d step of the<br />

measurement i.e. ma<strong>in</strong>s voltage loaded with test current.<br />

Rsec.............. Resistance of transformer’s sec<strong>on</strong>dary.<br />

RL ..................Phase c<strong>on</strong>ductor resistance from power transformer to tested<br />

outlet.<br />

RPE ................ Protecti<strong>on</strong> c<strong>on</strong>ductor resistance from tested outlet to protecti<strong>on</strong><br />

earth<strong>in</strong>g electrode.<br />

RE .................. Earth Resistance of protecti<strong>on</strong> earth<strong>in</strong>g electrode.<br />

RG.................. Ground resistance from protecti<strong>on</strong> earth<strong>in</strong>g electrode to power<br />

transformer.<br />

RO.................. Earth Resistance of power transformer’s earth<strong>in</strong>g electrode.<br />

57


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Maximum allowed Earth Resistance of earth<strong>in</strong>g electrode if a RCD protecti<strong>on</strong><br />

device is used, is clearly def<strong>in</strong>ed if the follow<strong>in</strong>g two parameters are known:<br />

• Nom<strong>in</strong>al differential current I∆n of <strong>in</strong>stalled RCD (it can be read at the device).<br />

St<strong>and</strong>ard values of I∆n are as follows: 0,01A, 0,03A, 0,1A, 0,3A, 0,5A <strong>and</strong><br />

1A.<br />

• Maximum allowed C<strong>on</strong>tact voltage UL.<br />

Usually the voltage is 50 V, <strong>in</strong> some cases it can be 25 V <strong>on</strong>ly.<br />

Max. allowed Earth Resistance can be calculated as follows:<br />

RE max. = UL / IDn<br />

where:<br />

UL.................. Limit C<strong>on</strong>tact voltage (25 or 50 V).<br />

I∆n.................. Nom<strong>in</strong>al differential current of <strong>in</strong>stalled RCD protecti<strong>on</strong> device.<br />

The follow<strong>in</strong>g table presents the calculated maximum allowed values of Earth<br />

Resistance.<br />

Nom<strong>in</strong>al differential current I∆n<br />

(A)<br />

Max. allowed Earth Resistance<br />

value at UL = 50 V<br />

(Ω)<br />

Max. allowed Earth Resistance<br />

value at UL = 25 V<br />

(Ω)<br />

0,01 0,03 0,1 0,3 0,5 1<br />

5000 1666 500 166 100 50<br />

2500 833 250 83 50 25<br />

Table 5. Max. allowed values of Earth Resistance.<br />

The described measurement of Earth Resistance value differs from the<br />

measurement described <strong>in</strong> the chapter entitled “Fault loop impedance <strong>and</strong><br />

Prospective Short-circuit current” <strong>in</strong> that it does not cause the trip out of the RCD<br />

due to the low test current<br />

(


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

b) Earth Resistance measurement us<strong>in</strong>g auxiliary test probe<br />

The method is appropriate for both TT <strong>and</strong> TN – systems.<br />

The measurement circuit diagram <strong>and</strong> the c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument is the<br />

same as that for C<strong>on</strong>tact voltage measurement (see figures 52. <strong>and</strong> 53.).<br />

F<strong>in</strong>al result is aga<strong>in</strong> result of mathematical equati<strong>on</strong> as follows:<br />

Result = Uc / I = RE<br />

where:<br />

Uc.................. C<strong>on</strong>tact voltage measured by the V-meter aga<strong>in</strong>st auxiliary test<br />

probe. It is equal to the voltage across the Earth Resistance of<br />

the protecti<strong>on</strong> earth<strong>in</strong>g electrode.<br />

I...................... Test current driven through the Earth Resistance, measured by the<br />

A-meter.<br />

RE ................. Earth Resistance of protecti<strong>on</strong> earth<strong>in</strong>g electrode.<br />

Max. allowed Earth Resistance RE is equal to the <strong>on</strong>e presented <strong>in</strong> table 4.<br />

59


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.9. Fault loop impedance <strong>and</strong> Ipsc EN 61557- 3<br />

If current loops (fuse loops) are protected by over-current protecti<strong>on</strong> devices<br />

(fuses), then Fault loop impedance Zs should be measured. The Fault loop<br />

impedance should be low enough for the potential fault current If to <strong>in</strong>terrupt the<br />

<strong>in</strong>stalled protecti<strong>on</strong> device with<strong>in</strong> the prescribed time <strong>in</strong>terval <strong>in</strong> case of a faulty<br />

load.<br />

Fault loop impedance <strong>in</strong> TN- system c<strong>on</strong>sists of the follow<strong>in</strong>g partial impedances:<br />

• Impedance of power transformer’s sec<strong>on</strong>dary<br />

• Phase c<strong>on</strong>ductor resistance from the power transformer to the fault locati<strong>on</strong><br />

• Protecti<strong>on</strong> c<strong>on</strong>ductor resistance from the fault locati<strong>on</strong> back to the power<br />

transformer<br />

Fig. 55. Presentati<strong>on</strong> of Fault loop <strong>in</strong> TN- system<br />

Fault loop impedance <strong>in</strong> TT- system c<strong>on</strong>sists of the follow<strong>in</strong>g partial impedances<br />

• Impedance of power transformer’s sec<strong>on</strong>dary<br />

• Phase c<strong>on</strong>ductor resistance from power transformer to fault locati<strong>on</strong><br />

• Protecti<strong>on</strong> c<strong>on</strong>ductor resistance from fault locati<strong>on</strong> to earth<strong>in</strong>g electrode<br />

• Earth Resistance RE<br />

• Ground resistance from earth<strong>in</strong>g electrode R E to power transformer<br />

• Resistance of power transformer’s earth<strong>in</strong>g system Ro<br />

Fig. 56. Presentati<strong>on</strong> of Fault loop <strong>in</strong> TT- system<br />

Max. allowed Fault loop impedances where melt<strong>in</strong>g fuses type gG are used <strong>in</strong><br />

<strong>in</strong>stallati<strong>on</strong>s with nom<strong>in</strong>al ma<strong>in</strong>s voltage UL-N = 220 V are presented <strong>in</strong> the next<br />

table.<br />

60


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Nom<strong>in</strong>al current<br />

of over-current<br />

protecti<strong>on</strong><br />

device (A)<br />

gG 0,4 s<br />

Ia (A) Zs (W)<br />

gG 5s<br />

Ia (A) Zs (W)<br />

2 16 13,7 9,2 23,9<br />

4 32 6,8 18,5 11,8<br />

6 47 4,6 28,0 7,8<br />

10 82 2,6 46,5 4,7<br />

16 110 2,0 65 3,3<br />

20 147 1,4 85 2,5<br />

25 183 1,2 110 2,0<br />

32 275 0,8 150 1,2<br />

40 320 0,6 190 1,1<br />

50 470 0,4 250 0,8<br />

63 550 0,4 320 0,6<br />

80 840 0,2 425 0,5<br />

100 1020 0,2 580 0,3<br />

125 1450 0,1 715 0,3<br />

Table 6. Max. allowed Fault loop impedances for circuits us<strong>in</strong>g gG melt<strong>in</strong>g fuses<br />

Ia............... Fault loop current which already assure tripp<strong>in</strong>g of protecti<strong>on</strong> device.<br />

In some countries, gL type of over-current protecti<strong>on</strong> devices is used <strong>in</strong>stead of<br />

the gG (<strong>on</strong>e). Below is the corresp<strong>on</strong>d<strong>in</strong>g table for the gL protecti<strong>on</strong> devices<br />

c<strong>on</strong>structed accord<strong>in</strong>g to VDE 0636 <strong>and</strong> used <strong>in</strong> <strong>in</strong>stallati<strong>on</strong>s with U L-N = 220 V.<br />

Nom<strong>in</strong>al current<br />

of over-current<br />

protecti<strong>on</strong><br />

device (A)<br />

gL 0,2 s<br />

Ia (A) Zs (W)<br />

gL 5s<br />

Ia (A) Zs (W)<br />

2 20 11,0 9,21 23,9<br />

4 40 5,5 19,2 11,5<br />

6 60 3,7 28,0 7,9<br />

10 100 2,2 47 4,7<br />

16 148 1,5 72 3,1<br />

20 191 1,2 88 2,5<br />

25 270 0,8 120 1,8<br />

32 332 0,7 156 1,4<br />

35 367 0,6 173 1,3<br />

40 410 0,5 200 1,1<br />

50 578 0,4 260 0,8<br />

63 750 0,3 351 0,6<br />

80 ⎯ ⎯ 452 0,5<br />

100 ⎯ ⎯ 573 0,4<br />

125 ⎯ ⎯ 751 0,3<br />

160 ⎯ ⎯ 995 0,2<br />

Table 7. Max. allowed Fault loop impedances for circuits us<strong>in</strong>g gL melt<strong>in</strong>g fuses<br />

Max. allowed Fault loop impedances for circuits us<strong>in</strong>g automatic fuses type B, C<br />

<strong>and</strong> K <strong>in</strong> <strong>in</strong>stallati<strong>on</strong>s with nom<strong>in</strong>al ma<strong>in</strong>s voltage ULN = 220 V are presented <strong>in</strong> the<br />

table below.<br />

61


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Nom<strong>in</strong>al Type<br />

of Type<br />

of Type<br />

of<br />

current of automatic fuse automatic fuse automatic fuse<br />

over-current B<br />

C<br />

K<br />

protecti<strong>on</strong><br />

device (A)<br />

Ia=5·In<br />

(A)<br />

Zs (W)<br />

(0,2s)<br />

Ia=10·In<br />

(A)<br />

Zs (W)<br />

(0,2s)<br />

Ia=15·In<br />

(A)<br />

Zs (W)<br />

(0,2s)<br />

2 10 22 20 11 30 7,3<br />

4 20 11 40 5,5 60 3,7<br />

6 30 7,3 60 3,65 90 2,4<br />

10 50 4,4 100 2,2 150 1,5<br />

16 80 2,8 160 1,4 240 0,9<br />

20 100 2,2 200 1,1 300 0,7<br />

25 125 1,8 250 0,9 375 0,6<br />

32 160 1,4 320 0,7 480 0,5<br />

35 175 1,3 350 0,65 525 0,4<br />

40 200 1,1 400 0,55 600 0,37<br />

50 250 0,9 500 0,45 750 0,29<br />

63 315 0,7 630 0,35 945 0,23<br />

Table 8. Max. allowed Fault loop impedances for circuits us<strong>in</strong>g automatic fuses<br />

type B, C <strong>and</strong> K<br />

Fault loop impedance measurement<br />

The two figures below illustrate the measurement pr<strong>in</strong>cipal <strong>and</strong> the practical<br />

c<strong>on</strong>necti<strong>on</strong> of the test <strong>in</strong>strument.<br />

Fig. 57. Measurement pr<strong>in</strong>ciple<br />

62


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 58. Practical c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument Eurotest 61557 or Instaltest 61557<br />

Result = Zsec + RL1 + RPE = Zs<br />

where:<br />

Zsec............... Impedance of transformer’s sec<strong>on</strong>dary.<br />

RL1................. Phase c<strong>on</strong>ductor resistance from power transformer to tested<br />

outlet.<br />

RPE ............... Protecti<strong>on</strong> c<strong>on</strong>ductor resistance from test outlet to power<br />

transformer.<br />

The test <strong>in</strong>strument is c<strong>on</strong>nected across the ma<strong>in</strong>s voltage (between phase <strong>and</strong><br />

protecti<strong>on</strong> c<strong>on</strong>ductors) <strong>and</strong> provides an appropriate load resistance thereby<br />

str<strong>on</strong>gly load<strong>in</strong>g the ma<strong>in</strong>s voltage over a short period of time. Test current flows<br />

<strong>in</strong> the loop marked with <strong>in</strong>terrupted l<strong>in</strong>e (see the figures 57. <strong>and</strong> 58.). The voltage<br />

drop caused by the test current is measured by V-meter. The phase delay<br />

between the test current <strong>and</strong> ma<strong>in</strong>s voltage is also measured. On the basis of the<br />

measured parameters the test <strong>in</strong>strument will calculate the Fault loop impedance<br />

ZLOOP.<br />

Up-to-date test <strong>in</strong>struments display Fault loop impedance simultaneously with the<br />

Prospective Short-circuit current Ipsc calculated as follows:<br />

Ipsc = Un 1,06 / ZLOOP<br />

where:<br />

Ipsc................ Fault loop Prospective Short-circuit current.<br />

Un.................. Nom<strong>in</strong>al ma<strong>in</strong>s voltage between the phase <strong>and</strong> protecti<strong>on</strong><br />

c<strong>on</strong>ductors (220 V or 230 V).<br />

ZLOOP............. Fault loop impedance.<br />

63


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.10. L<strong>in</strong>e impedance <strong>and</strong> Prospective Short-circuit current<br />

L<strong>in</strong>e Impedance is the impedance measured between phase L <strong>and</strong> neutral N<br />

term<strong>in</strong>als <strong>on</strong> a s<strong>in</strong>gle-phase system or between two phase term<strong>in</strong>als <strong>on</strong> a threephase<br />

system. The L<strong>in</strong>e Impedance should be measured when check<strong>in</strong>g the<br />

ability of an <strong>in</strong>stallati<strong>on</strong> to supply for example high power loads when verify<strong>in</strong>g<br />

<strong>in</strong>stalled over-current breakers etc. The Impedance c<strong>on</strong>sists of the follow<strong>in</strong>g<br />

partial impedances:<br />

• Impedance of power transformer sec<strong>on</strong>dary<br />

• Resistance of the phase c<strong>on</strong>ductor from the power transformer to the test po<strong>in</strong>t<br />

• Resistance of the neutral c<strong>on</strong>ductor from the power transformer to the test<br />

po<strong>in</strong>t<br />

General comments about L<strong>in</strong>e Impedance measurement.<br />

The measurement pr<strong>in</strong>ciple is exactly the same as at Fault Loop Impedance<br />

measurement (see the descripti<strong>on</strong> <strong>in</strong> chapter 5.9.) but the measurement is carried<br />

out between L <strong>and</strong> N term<strong>in</strong>als.<br />

5.10.1. L<strong>in</strong>e Impedance between the phase <strong>and</strong> neutral term<strong>in</strong>als<br />

Fig. 59. Measurement pr<strong>in</strong>ciple of L<strong>in</strong>e Impedance measurement between the<br />

phase L1 <strong>and</strong> neutral N term<strong>in</strong>als<br />

Fig. 60. Practical c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument<br />

64


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Result = Zsec + RL1 + RN = ZLINE<br />

where<br />

Zsec...... Impedance of power transformer sec<strong>on</strong>dary.<br />

RL1........ Resistance of phase c<strong>on</strong>ductor from power transformer to tested po<strong>in</strong>t.<br />

RN ........ Resistance of neutral c<strong>on</strong>ductor from power transformer to tested po<strong>in</strong>t.<br />

ZLINE..... L<strong>in</strong>e Impedance.<br />

See descripti<strong>on</strong> of the measurement <strong>in</strong> the next chapter!<br />

5.10.2. L<strong>in</strong>e Impedance measurement between two phase<br />

c<strong>on</strong>ductors<br />

Fig. 61. Measurement pr<strong>in</strong>ciple of L<strong>in</strong>e Impedance measurement between two<br />

phase term<strong>in</strong>als (L1 <strong>and</strong> L3)<br />

Fig. 62. Practical c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument<br />

Result = Zsec + RL1 + RL3 = ZLINE<br />

65


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

The measurement is carried out <strong>in</strong> two steps. The voltage of the unloaded system<br />

is measured <strong>in</strong> the first step then a high power load is switched <strong>on</strong> to the tested<br />

term<strong>in</strong>als for a short period. The test current flows <strong>in</strong> the loop marked with<br />

<strong>in</strong>terrupted l<strong>in</strong>e (see figures 59, 60, 61, <strong>and</strong> 62). On basis of voltage difference<br />

(loaded <strong>and</strong> unloaded system) <strong>and</strong> phase shift between voltage <strong>and</strong> current, the<br />

test <strong>in</strong>strument calculates the L<strong>in</strong>e Impedance Z LINE.<br />

Prospective short-circuit current Ipsc is calculated accord<strong>in</strong>g to the follow<strong>in</strong>g<br />

formula:<br />

Ipsc = Un 1,06 / ZLINE<br />

where:<br />

Ipsc........... Prospective Short-circuit current.<br />

Un............. Nom<strong>in</strong>al ma<strong>in</strong>s voltage between the phase <strong>and</strong> neutral c<strong>on</strong>ductors, or<br />

between two phase c<strong>on</strong>ductors (115 / 230 / 400 V).<br />

ZLINE......... L<strong>in</strong>e Impedance.<br />

The break<strong>in</strong>g current capacity of any <strong>in</strong>stalled over-current protecti<strong>on</strong> device<br />

should be higher than the calculated Prospective Short-circuit current, otherwise it<br />

is necessary to change the type of over-current protecti<strong>on</strong> device used.<br />

66


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.11. N–PE Loop resistance<br />

Up-to-date test <strong>in</strong>struments, with built <strong>in</strong> modern electr<strong>on</strong>ics, can measure<br />

resistance even between the neutral N <strong>and</strong> protecti<strong>on</strong> PE c<strong>on</strong>ductors <strong>in</strong> spite of<br />

possible high currents <strong>in</strong> the neutral c<strong>on</strong>ductor. The current, which is driven by<br />

phase voltages through different l<strong>in</strong>ear <strong>and</strong> n<strong>on</strong> l<strong>in</strong>ear loads, causes voltage drops<br />

of extremely irregular (n<strong>on</strong> s<strong>in</strong>e wave) shape. The voltage drops <strong>in</strong>terfere with the<br />

test voltage <strong>and</strong> thereby disturb the measurement. Internal test voltage (approx.<br />

40V, a.c.,


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

where:<br />

Ut................... Test voltage measured by the V-meter.<br />

It..................... Test current measured by the A-meter.<br />

RN-PE.............. Resistance of N-PE loop.<br />

5.11.1. Measurement of N–PE loop resistance <strong>in</strong> TN- system<br />

Fig. 64. Resistance measurement between neutral <strong>and</strong> protecti<strong>on</strong> c<strong>on</strong>ductor <strong>in</strong><br />

TN- system<br />

The test <strong>in</strong>strument measures the resistance of the neutral <strong>and</strong> the protecti<strong>on</strong><br />

c<strong>on</strong>ductors from the power transformer to the measurement site (the loop is<br />

marked with a bold l<strong>in</strong>e <strong>on</strong> upper figure). The test result <strong>in</strong> this case is quite low<br />

(maximum a couple of ohms), show<strong>in</strong>g that a TN- system is <strong>in</strong>volved.<br />

Result 1 = RN + RPE<br />

Result 2 = Ipsc = 230V 1,06 / (RN + RPE)<br />

where<br />

RN .................. Resistance of neutral c<strong>on</strong>ductor (marked with bold l<strong>in</strong>e).<br />

RPE ................ Resistance of protecti<strong>on</strong> c<strong>on</strong>ductor (marked with bold dotted l<strong>in</strong>e).<br />

Ipsc................ Prospective short-circuit current of fault loop.<br />

5.11.2. Measurement of N–PE loop resistance <strong>in</strong> TT- system<br />

Fig. 65. Resistance measurement between the neutral <strong>and</strong> the protecti<strong>on</strong><br />

c<strong>on</strong>ductor <strong>in</strong> a TT- system<br />

The test <strong>in</strong>strument measures the resistance <strong>in</strong> the follow<strong>in</strong>g loop: Neutral<br />

c<strong>on</strong>ductor from power transformer to measurement site (ma<strong>in</strong>s outlet), protecti<strong>on</strong><br />

c<strong>on</strong>ductor from the ma<strong>in</strong>s outlet to earth electrode <strong>and</strong> then back to the power<br />

68


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

transformer via soil <strong>and</strong> the transformer's earth<strong>in</strong>g system (the loop is marked with<br />

a bold l<strong>in</strong>e <strong>on</strong> the figure above). The test result <strong>in</strong> this case is quite high (<strong>in</strong> excess<br />

of ten ohms), show<strong>in</strong>g that a TT- system is <strong>in</strong>volved.<br />

Result 1 = RN + RPE + RE +RO<br />

Result 2 = Ipsc = 230V 1,06 / (RN + RPE + RE +RO)<br />

As it could be presumed, that resistance RE is much higher than the sum of all<br />

other resistances, the follow<strong>in</strong>g can be noted:<br />

Result 1 » RE<br />

Result 2 = Ipsc » 230V 1,06 / RE<br />

where<br />

RN .................. Resistance of neutral c<strong>on</strong>ductor from power transformer to<br />

measurement site (ma<strong>in</strong>s outlet).<br />

RPE ................Resistance of protecti<strong>on</strong> c<strong>on</strong>ductor from the ma<strong>in</strong>s outlet to<br />

earth<strong>in</strong>g<br />

electrode.<br />

RE .................. Earth resistance of protecti<strong>on</strong> earth electrode.<br />

RO.................. Earth resistance of transformer's earth<strong>in</strong>g system.<br />

Ipsc................ Prospective short-circuit fault loop current.<br />

5.11.3. Measurement of N–PE loop resistance <strong>in</strong> IT- system<br />

Fig. 66. Resistance measurement between neutral <strong>and</strong> protecti<strong>on</strong> c<strong>on</strong>ductor <strong>in</strong><br />

IT- system<br />

As can be seen from the figure above, there is no hard wired c<strong>on</strong>necti<strong>on</strong> between<br />

the neutral <strong>and</strong> protecti<strong>on</strong> c<strong>on</strong>ductor <strong>in</strong> an IT- system. The test result is therefore<br />

very high (it can even be out of display range), Show<strong>in</strong>g that an IT- system is<br />

<strong>in</strong>volved.<br />

Attenti<strong>on</strong>!<br />

A high test result <strong>in</strong> itself is not sufficient evidence that an IT- system is <strong>in</strong>volved (it<br />

could be just an <strong>in</strong>terrupted protecti<strong>on</strong> c<strong>on</strong>ductor <strong>in</strong> a TN or TT- system).<br />

69


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.12. Phase rotati<strong>on</strong> EN 61557- 7<br />

In <strong>practice</strong>, we are often faced with the c<strong>on</strong>necti<strong>on</strong> of three-phase loads (motors<br />

<strong>and</strong> other electro-mechanical mach<strong>in</strong>es) to a three-phase ma<strong>in</strong>s <strong>in</strong>stallati<strong>on</strong>.<br />

Some loads (ventilators, c<strong>on</strong>veyors, motors, electro-mechanical mach<strong>in</strong>es etc.)<br />

require a specific phase rotati<strong>on</strong> <strong>and</strong> some may even be damaged if the rotati<strong>on</strong><br />

was reversed. This is why it is advisable to test phase rotati<strong>on</strong> before c<strong>on</strong>necti<strong>on</strong><br />

is made.<br />

The test can be d<strong>on</strong>e comparatively with respect to a reference ma<strong>in</strong>s outlet.<br />

How to measure the phase rotati<strong>on</strong><br />

Fig. 67. Measurement pr<strong>in</strong>ciple<br />

The test <strong>in</strong>strument compares all three phase to phase voltages c<strong>on</strong>cern<strong>in</strong>g phase<br />

delay <strong>and</strong> <strong>on</strong> that basis determ<strong>in</strong>es the phase rotati<strong>on</strong>.<br />

Fig. 68. Measurement of phase rotati<strong>on</strong><br />

Procedure:<br />

• First, we need to measure phase rotati<strong>on</strong> <strong>on</strong> the reference ma<strong>in</strong>s outlet, where<br />

behavior of a specific mach<strong>in</strong>e (e.g. directi<strong>on</strong> of phase rotati<strong>on</strong>) is known. The<br />

directi<strong>on</strong> should be noted.<br />

• Measurement should to be repeated <strong>on</strong> an unknown ma<strong>in</strong>s outlet <strong>and</strong> both<br />

results compared.<br />

• If necessary, two phase c<strong>on</strong>ductors must be exchanged between each other <strong>in</strong><br />

order to reverse the phase rotati<strong>on</strong>.<br />

70


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.13. Measurement of voltage, frequency <strong>and</strong> current<br />

5.13.1. Voltage <strong>and</strong> frequency measurement<br />

Voltage measurement should be carried out often while deal<strong>in</strong>g with <strong>electric</strong><br />

<strong>in</strong>stallati<strong>on</strong>s (carry<strong>in</strong>g out different measurements <strong>and</strong> tests, look<strong>in</strong>g for fault<br />

locati<strong>on</strong>s etc.). Frequency is to be measured for example when establish<strong>in</strong>g the<br />

source of ma<strong>in</strong>s voltage (power transformer or <strong>in</strong>dividual generator).<br />

Fig. 69. Voltage/frequency measurement <strong>on</strong> ma<strong>in</strong>s outlet via 13amp Plug <strong>and</strong> <strong>on</strong><br />

motor’s c<strong>on</strong>necti<strong>on</strong> term<strong>in</strong>als via Universal test cable<br />

5.13.2. Current measurement<br />

The Eurotest 61557 <strong>and</strong> Earth – Insulati<strong>on</strong> Tester measure current via current test<br />

clamp, which is a welcome feature as there is no need to <strong>in</strong>terrupt the measured<br />

current loop. Thanks to a wide measurement range, the two test <strong>in</strong>struments can<br />

measure currents from 0,5 mA up to 200 A.<br />

The figure below presents low current measurement us<strong>in</strong>g current clamp while<br />

figure 72. Represents the simultaneous measurement of load current <strong>in</strong> phase L2<br />

<strong>and</strong> phase to phase voltage UL2-L1.<br />

71


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 70. Low current measurement<br />

Fig. 71. Load current <strong>and</strong> phase to phase voltage measurement<br />

The shape of the measured current is usually a n<strong>on</strong>-s<strong>in</strong>usoidal wave. The<br />

shape is distorted by various n<strong>on</strong>-l<strong>in</strong>ear loads c<strong>on</strong>nected to ma<strong>in</strong>s<br />

<strong>in</strong>stallati<strong>on</strong>. That is why it is important, that the test <strong>in</strong>strument (such as<br />

Eurotest 61557 or Earth -Insulati<strong>on</strong> Tester) measures the true RMS value of<br />

the current, otherwise the result can be mislead<strong>in</strong>g.<br />

72


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.14. Varistor overvoltage protecti<strong>on</strong> devices<br />

Varistor over-voltage protecti<strong>on</strong> devices are usually used to protect highly<br />

sensitive electr<strong>on</strong>ic equipment aga<strong>in</strong>st lightn<strong>in</strong>g effects. The protecti<strong>on</strong> is most<br />

needed <strong>in</strong> areas where atmospheric discharges are often present. Examples of<br />

actual loads to be protected are PC computers, pr<strong>in</strong>ters, teleph<strong>on</strong>e exchanges<br />

etc. The protecti<strong>on</strong> devices are either permanently <strong>in</strong>stalled <strong>in</strong> an <strong>electric</strong>al<br />

<strong>in</strong>stallati<strong>on</strong> or <strong>in</strong>serted <strong>in</strong>to a ma<strong>in</strong>s <strong>in</strong>stallati<strong>on</strong> adjacent to the protected<br />

equipment (a part of the ma<strong>in</strong>s plug, extensi<strong>on</strong> etc.).<br />

To ensure the most effective protecti<strong>on</strong> the devices are usually <strong>in</strong>stalled <strong>in</strong> several<br />

stages namely:<br />

• In c<strong>on</strong>necti<strong>on</strong> cab<strong>in</strong>ets at the <strong>in</strong>put of the ma<strong>in</strong>s voltage (the devices prevents<br />

the spread of supply overvoltages)<br />

• In distributi<strong>on</strong> cab<strong>in</strong>ets of <strong>in</strong>dividual <strong>in</strong>stallati<strong>on</strong> units.<br />

• Adjacent to c<strong>on</strong>nected <strong>electric</strong>al loads (equipment).<br />

Fig. 72. C<strong>on</strong>necti<strong>on</strong> of multi-stage protecti<strong>on</strong><br />

The c<strong>on</strong>structi<strong>on</strong> of protecti<strong>on</strong> devices is very diverse. They may c<strong>on</strong>sist of<br />

varistors <strong>on</strong>ly, gas arresters, fast diodes, solenoids, capacitors or a comb<strong>in</strong>ati<strong>on</strong> of<br />

these <strong>and</strong> other different protecti<strong>on</strong> elements etc.<br />

The devices may, due to the absorpti<strong>on</strong> of high-voltage pulses, change their<br />

characteristics <strong>in</strong> two ways:<br />

• Breakdown voltage may drop. Because of that reas<strong>on</strong> they may be destroyed<br />

by the ma<strong>in</strong>s voltage itself.<br />

• They may break totally. Therefore the protecti<strong>on</strong> functi<strong>on</strong> is lost completely.<br />

73


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Test <strong>in</strong>struments such as Eurotest 61557, Eurotest 61557 or Earth – Insulati<strong>on</strong><br />

Tester can do n<strong>on</strong>destructive tests of varistor overvoltage protecti<strong>on</strong> devices<br />

us<strong>in</strong>g test voltage of 50 up to 1000 V.<br />

Measurement pr<strong>in</strong>ciple is represented <strong>in</strong> the figure below.<br />

Fig. 73. Measurement pr<strong>in</strong>ciple<br />

A DC generator <strong>in</strong>creases the test voltage with the slope of 500 V/s while A-meter<br />

measures forward current. As so<strong>on</strong> as the current reaches the value of 1 mA (the<br />

threshold current), the generator stops to generate the test voltage <strong>and</strong> the last<br />

voltage is displayed (breakdown voltage).<br />

The user should compare the displayed test voltage with the nom<strong>in</strong>al <strong>on</strong>e noted at<br />

the device’s enclosure <strong>and</strong> change the device if needed.<br />

The protecti<strong>on</strong> device is c<strong>on</strong>sidered to be defective <strong>in</strong> the follow<strong>in</strong>g<br />

circumstances:<br />

• If it is open circuit (displayed result >1000 V). There is no protecti<strong>on</strong> functi<strong>on</strong><br />

left.<br />

• If the displayed breakdown voltage is too high (displayed value is, for example,<br />

double the nom<strong>in</strong>al value). The protecti<strong>on</strong> is partially corrupted <strong>and</strong> it may allow<br />

too high overvoltages.<br />

• If the displayed breakdown voltage is too low (displayed value is close to the<br />

nom<strong>in</strong>al ma<strong>in</strong>s voltage). Total destructi<strong>on</strong> of the device may be caused by the<br />

ma<strong>in</strong>s voltage <strong>in</strong> the near future.<br />

Attenti<strong>on</strong>!<br />

• The test is to be d<strong>on</strong>e at voltage-free protecti<strong>on</strong> device.<br />

• Tested device should be removed from the <strong>in</strong>stallati<strong>on</strong> before test<strong>in</strong>g it <strong>in</strong> order<br />

that other loads c<strong>on</strong>nected to the <strong>in</strong>stallati<strong>on</strong> do not <strong>in</strong>fluence the test.<br />

74


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.15. Trac<strong>in</strong>g of <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong><br />

When deal<strong>in</strong>g with <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s such as <strong>in</strong>stall<strong>in</strong>g new <strong>in</strong>stallati<strong>on</strong>s,<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g exist<strong>in</strong>g <strong>on</strong>es, elim<strong>in</strong>at<strong>in</strong>g <strong>in</strong>stallati<strong>on</strong> faults, draw<strong>in</strong>g <strong>in</strong>stallati<strong>on</strong> plans<br />

<strong>on</strong> the basis of exist<strong>in</strong>g <strong>in</strong>stallati<strong>on</strong>s, carry<strong>in</strong>g out measurements etc., the eng<strong>in</strong>eer<br />

is often faced with the problem of how to trace certa<strong>in</strong> parts of the <strong>electric</strong>al<br />

<strong>in</strong>stallati<strong>on</strong>. Typical practical problems faced are as follows:<br />

• Recogniti<strong>on</strong> of protective element (fuse) resp<strong>on</strong>sible for a certa<strong>in</strong> current loop.<br />

• Locati<strong>on</strong> of short circuit.<br />

• Locati<strong>on</strong> of c<strong>on</strong>ductor <strong>in</strong>terrupti<strong>on</strong>.<br />

• Trac<strong>in</strong>g of a specific c<strong>on</strong>ductor under live c<strong>on</strong>diti<strong>on</strong>s.<br />

• Trac<strong>in</strong>g of a specific voltage-free c<strong>on</strong>ductor (not c<strong>on</strong>nected to ma<strong>in</strong>s voltage).<br />

Measurement <strong>in</strong>strument Eurotest 61557 or Eurotest 61557 <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with<br />

h<strong>and</strong>-held detector, can solve all the problems listed above.<br />

The operator can select either capacitive or <strong>in</strong>ductive mode of receiv<strong>in</strong>g test signal<br />

<strong>on</strong> hend-held <strong>in</strong>dicator. The mode shall be selected <strong>in</strong> accordance with<br />

<strong>in</strong>strument's mode namely:<br />

• Inductive mode Instrument operates <strong>on</strong> <strong>in</strong>stallati<strong>on</strong> under live c<strong>on</strong>diti<strong>on</strong>s<br />

(it loads ma<strong>in</strong>s voltage)<br />

• Capacitive mode Instrument operates <strong>on</strong> voltage-free <strong>in</strong>stallati<strong>on</strong> (it<br />

imposes<br />

its own signal)<br />

The test <strong>in</strong>strument selects the appropriate mode automatically dependant <strong>on</strong><br />

whether or not the ma<strong>in</strong>s voltage is present.<br />

Below is the pr<strong>in</strong>ciple of trac<strong>in</strong>g <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s <strong>and</strong> the operati<strong>on</strong> of test<br />

<strong>in</strong>strument.<br />

a) Recogniti<strong>on</strong> of protective element <strong>in</strong> <strong>in</strong>stallati<strong>on</strong> with ma<strong>in</strong>s voltage<br />

present.<br />

Set detector to <strong>in</strong>ductive mode of receiv<strong>in</strong>g.<br />

Fig. 74. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument to phase <strong>and</strong> neutral c<strong>on</strong>ductors of <strong>electric</strong><br />

appliance<br />

75


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

The test <strong>in</strong>strument imposes a load <strong>on</strong> the ma<strong>in</strong>s supply i.e. it generates current<br />

test pulses of a specific frequency from phase term<strong>in</strong>al to neutral term<strong>in</strong>al. The<br />

current creates an electro-magnetic field around the c<strong>on</strong>nected c<strong>on</strong>ductors which<br />

can be detected by the h<strong>and</strong>-held detector. In this way the detector identifies the<br />

fuse associated with that circuit.<br />

If the fuse feed<strong>in</strong>g a specific ma<strong>in</strong>s socket is to be identified then the test<br />

<strong>in</strong>strument should be c<strong>on</strong>nected directly to the socket accord<strong>in</strong>g to the figure<br />

below.<br />

Fig. 75. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument directly to ma<strong>in</strong>s socket<br />

The work<strong>in</strong>g pr<strong>in</strong>ciple of the test <strong>in</strong>stument is <strong>in</strong> both cases (test <strong>in</strong>strument<br />

c<strong>on</strong>nected directly to ma<strong>in</strong>s socket – fig. 76. or to <strong>electric</strong> appliance – fig. 75.)<br />

exactly the same i.e. the test <strong>in</strong>strument loads the ma<strong>in</strong>s voltage, generat<strong>in</strong>g<br />

current test pulses from phase to neutral term<strong>in</strong>al.<br />

b) Recogniti<strong>on</strong> of protective element <strong>in</strong> voltage-free <strong>in</strong>stallati<strong>on</strong><br />

Set detector to capacitive mode of receiv<strong>in</strong>g.<br />

Fig. 76. Recogniti<strong>on</strong> of protecti<strong>on</strong> element at voltage-free (auxiliary earth probe or<br />

PE term<strong>in</strong>al is used as referential term<strong>in</strong>al)<br />

The test <strong>in</strong>strument imposes a test signal of audible frequency between the<br />

reference po<strong>in</strong>t <strong>and</strong> the tested c<strong>on</strong>ductor. The c<strong>on</strong>ductor radiates the imposed<br />

signal (<strong>in</strong>tensity of the signal decreases with <strong>in</strong>creased distance from the<br />

76


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

c<strong>on</strong>ductor) which can be detected by the h<strong>and</strong>-held <strong>in</strong>dicator. In this way the<br />

detector identifies the protecti<strong>on</strong> element (fuse) <strong>in</strong>volved.<br />

Before start<strong>in</strong>g the measurement, it is necessary to disc<strong>on</strong>nect the phase<br />

c<strong>on</strong>ductor from the appliance. If this was not d<strong>on</strong>e then the imposed signal would<br />

be transferred via the <strong>in</strong>ternal resistance of the c<strong>on</strong>nected appliance to the neutral<br />

c<strong>on</strong>ductor which is generally at ground potential. This would mean that the<br />

imposed signal would be shorted <strong>and</strong> therefore the measurement unsuccessful.<br />

The same measurement can be d<strong>on</strong>e if the test <strong>in</strong>strument is c<strong>on</strong>nected directly to<br />

a ma<strong>in</strong>s socket <strong>in</strong> accordance with the figure below.<br />

Fig. 77. Recogniti<strong>on</strong> of protecti<strong>on</strong> element at voltage-free <strong>in</strong>stallati<strong>on</strong> (neutral<br />

term<strong>in</strong>al of ma<strong>in</strong>s socket serves as reference po<strong>in</strong>t)<br />

Both of the above examples (fig. 77. <strong>and</strong> fig. 78.) are the same except that the<br />

reference po<strong>in</strong>t is different (PE term<strong>in</strong>al/auxiliary probe - fig. 77. <strong>and</strong> neutral<br />

c<strong>on</strong>ductor – fig. 78.)<br />

c) Locati<strong>on</strong> of short circuit between phase <strong>and</strong> neutral c<strong>on</strong>ductor<br />

Set detector to <strong>in</strong>ductive mode of receiv<strong>in</strong>g.<br />

Fig. 78. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument <strong>in</strong> order to locate short circuit between the<br />

phase <strong>and</strong> neutral c<strong>on</strong>ductor<br />

Before start<strong>in</strong>g the measurement, it is necessary to short <strong>on</strong>e pole of the two-pole<br />

switch (neutral or phase c<strong>on</strong>ductor), thereby enabl<strong>in</strong>g the test <strong>in</strong>strument to load<br />

the ma<strong>in</strong>s voltage.<br />

77


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

The follow<strong>in</strong>g current loop is established: Transformer, phase c<strong>on</strong>ductor from<br />

transformer via <strong>in</strong>serted bridge to short circuit, neutral c<strong>on</strong>ductor from short circuit<br />

to test <strong>in</strong>strument <strong>and</strong> neutral c<strong>on</strong>ductor from test <strong>in</strong>strument to power<br />

transformer. The generated current causes an appropriate electromagnetic field<br />

which can be detected by the h<strong>and</strong>-held <strong>in</strong>dicator.<br />

d) Locati<strong>on</strong> of short circuit between phase <strong>and</strong> protecti<strong>on</strong> c<strong>on</strong>ductor<br />

Set detector to <strong>in</strong>ductive mode of receiv<strong>in</strong>g.<br />

Fig. 79. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument to locate short circuits between phase<br />

<strong>and</strong> protecti<strong>on</strong> c<strong>on</strong>ductor<br />

The test <strong>in</strong>strument loads the ma<strong>in</strong>s voltage. The follow<strong>in</strong>g current loop is<br />

established: Transformer, phase c<strong>on</strong>ductor from transformer via test <strong>in</strong>strument to<br />

short circuit, protecti<strong>on</strong> c<strong>on</strong>ductor from short circuit to earth<strong>in</strong>g system, <strong>and</strong> via<br />

soil back to transformer. The generated current causes an appropriate<br />

electromagnetic field which can be detected by the h<strong>and</strong>-held detector.<br />

If there is a RCD protecti<strong>on</strong> device built <strong>in</strong> to the tested loop, it may cause the<br />

device to trip out. In order to avoid this situati<strong>on</strong>, it is necessary to short the RCD<br />

device, otherwise it is not possible to carry out this test.<br />

e) Locati<strong>on</strong> of current loop (c<strong>on</strong>ductor) <strong>in</strong>terrupti<strong>on</strong><br />

Set detector to capacitive mode of receiv<strong>in</strong>g signal.<br />

Fig. 80. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument <strong>in</strong> order to locate <strong>in</strong>terrupti<strong>on</strong> of current<br />

loop<br />

78


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

The measurement should be carried out <strong>on</strong> a voltage-free <strong>in</strong>stallati<strong>on</strong>. The test<br />

<strong>in</strong>strument imposes a test signal of audible frequency between the reference po<strong>in</strong>t<br />

(protecti<strong>on</strong> earth c<strong>on</strong>ductor) <strong>and</strong> the c<strong>on</strong>ductor under test. The c<strong>on</strong>ductor radiates<br />

the imposed signal which can be detected by the h<strong>and</strong>-held <strong>in</strong>dicator. If there is<br />

no PE c<strong>on</strong>ductor available, it may be replaced with an auxiliary earth probe driven<br />

to ground.<br />

Note!<br />

• When deal<strong>in</strong>g with complex <strong>in</strong>stallati<strong>on</strong>s (l<strong>on</strong>g c<strong>on</strong>ductors with several current<br />

loops c<strong>on</strong>nected <strong>in</strong> parallel), it is advisable to disc<strong>on</strong>nect the circuit under test<br />

from any elements which are not actual parts of the <strong>in</strong>stallati<strong>on</strong>. If this is not d<strong>on</strong>e<br />

then the test signal be spread all over the <strong>in</strong>stallati<strong>on</strong> <strong>and</strong> therefore the selective<br />

test will be unsuccessful.<br />

79


5.16. Power<br />

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Electrical loads, c<strong>on</strong>nected to a ma<strong>in</strong>s <strong>in</strong>stallati<strong>on</strong>, differ from each other with<br />

respect to their rated power, the character of the <strong>in</strong>ternal impedance, the number<br />

of phases etc.<br />

As the <strong>in</strong>stallati<strong>on</strong>s are designed <strong>on</strong>ly to supply limited power, it is necessary to<br />

m<strong>on</strong>itor the power c<strong>on</strong>sumed. If not then it may cause the <strong>in</strong>stallati<strong>on</strong> to be<br />

overloaded or even damaged, it can also automatically trip out, some loads can<br />

suffer from low ma<strong>in</strong>s voltage due to overloaded system etc. It is also important to<br />

measure the character of the c<strong>on</strong>sumed power i.e. cos ϕ <strong>and</strong> compensate it if<br />

necessary.<br />

The follow<strong>in</strong>g figure presents power diagram <strong>in</strong> complex area.<br />

Fig. 81. Power diagram <strong>in</strong> complex area (cos ϕ = 1 <strong>on</strong> left diagram <strong>and</strong> cos ϕ ≠ 1<br />

<strong>on</strong> right <strong>on</strong>e)<br />

where:<br />

Im................... Imag<strong>in</strong>ary axes.<br />

Re.................. Real axes.<br />

P.................... Active power.<br />

Q.................... Reactive power.<br />

PA .................. Apparent power.<br />

5.16.1. Power measurement <strong>on</strong> s<strong>in</strong>gle-phase system<br />

Fig. 82. Pr<strong>in</strong>ciple of power measurement <strong>on</strong> s<strong>in</strong>gle-phase system<br />

Measurement of all three powers (active, reactive <strong>and</strong> apparent) can be carried<br />

out <strong>in</strong>directly measur<strong>in</strong>g phase voltage UL-N, phase current IL <strong>and</strong> phase delay ϕ<br />

between the voltage <strong>and</strong> current. Angle ϕ is the result of an <strong>in</strong>ductive or capacitive<br />

load, c<strong>on</strong>nected to the ma<strong>in</strong>s <strong>in</strong>stallati<strong>on</strong>.<br />

80


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Us<strong>in</strong>g the test <strong>in</strong>strument Eurotest 61557 or a Power Meter, it is possible to<br />

measure all three types of power <strong>on</strong> a s<strong>in</strong>gle-phase load (Eurotest 61557) – see<br />

c<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument <strong>on</strong> the figure below or <strong>on</strong> three-phase load (Power<br />

Meter). Power levels are calculated by the test <strong>in</strong>strument <strong>in</strong> accordance with the<br />

equati<strong>on</strong>s below <strong>and</strong> can be read-out directly <strong>on</strong> the display.<br />

Fig. 83. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument for power measurement <strong>on</strong> s<strong>in</strong>gle-phase<br />

system<br />

P = U . I . cos ϕ............... (active power <strong>in</strong> W)<br />

Q = U . I . s<strong>in</strong> ϕ .............. (reactive power <strong>in</strong> VAr)<br />

PA = U . I......................... (apparent power <strong>in</strong> VA)<br />

where<br />

U.................... effective value of phase voltage<br />

I...................... effective value of phase current<br />

ϕ .................... angle between the phase voltage U <strong>and</strong> phase current I<br />

5.16.2. Power measurement <strong>on</strong> three-phase system<br />

Power measurement <strong>on</strong> a three-phase system is <strong>on</strong>e of the follow<strong>in</strong>g:<br />

• measurement <strong>on</strong> four-wire system<br />

• measurement <strong>on</strong> three-wire system<br />

The three-wire system is mostly used when transport<strong>in</strong>g energy at high voltages.<br />

It is also used at low voltages when there are powerful, symmetrical loads without<br />

a neutral c<strong>on</strong>ductor (motors, heat<strong>in</strong>g systems etc.) to be c<strong>on</strong>nected to the ma<strong>in</strong>s<br />

<strong>in</strong>stallati<strong>on</strong>.<br />

A four-wire system is suitable to supply unbalanced, three-phase loads or s<strong>in</strong>glephase<br />

loads distributed <strong>on</strong> all three phases of a low voltage <strong>in</strong>stallati<strong>on</strong>.<br />

81


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

When measur<strong>in</strong>g power <strong>on</strong> a three-phase system, it is necessary to take <strong>in</strong>to<br />

c<strong>on</strong>siderati<strong>on</strong> the fact that the three-phase power supply system might not be<br />

balanced (po<strong>in</strong>ters of phase to phase voltages UL1/L2, UL2/L3 <strong>and</strong> UL3/L1 taken <strong>in</strong><br />

sequence do not form an equilateral triangle), due to powerful unbalanced threephase<br />

loads c<strong>on</strong>nected to the ma<strong>in</strong>s <strong>in</strong>stallati<strong>on</strong>.<br />

Power measurement <strong>on</strong> four-wire system<br />

a) Three-phase W-meter method<br />

Fig. 84. Pr<strong>in</strong>ciple of power measurement <strong>on</strong> three-phase four-wire system us<strong>in</strong>g<br />

three-phase W-meter<br />

Three-phase W-meter measures all three-phase voltages, phase currents <strong>and</strong><br />

delays between the voltages <strong>and</strong> currents. On this basis it can calculate the three<br />

power levels separately for each phase, as well as the level of the total threephase<br />

system.<br />

Fig. 85. Power measurement <strong>on</strong> three-phase four-wire system, us<strong>in</strong>g<br />

the Power Meter<br />

All three power levels can be read out directly <strong>on</strong> the display. This method<br />

enables power measurement <strong>on</strong> all three phases simultaneously <strong>and</strong> is<br />

particularly suitable for unbalanced power. In the case of balanced power, <strong>on</strong>e W-<br />

82


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

meter can be used <strong>and</strong> moved to all three phases <strong>in</strong> three steps. See presentati<strong>on</strong><br />

of the method <strong>in</strong> the follow<strong>in</strong>g chapter.<br />

b) S<strong>in</strong>gle-phase W-meter method<br />

Where there are n<strong>on</strong>symmetrical three-phase loads or s<strong>in</strong>gle-phase loads usually<br />

c<strong>on</strong>nected to four-wire system, it is necessary to measure power <strong>on</strong> all three<br />

phases (it is not possible to measure <strong>on</strong>e phase <strong>on</strong>ly <strong>and</strong> calculate the power of<br />

total three-phase system). Measurement, us<strong>in</strong>g the Eurotest 61557 runs <strong>in</strong> three<br />

steps, where each step is equal to the measurement <strong>on</strong> a s<strong>in</strong>gle-phase system.<br />

First step:<br />

Fig. 86. Power measurement <strong>on</strong> three-phase system (first step)<br />

Result 1 = P1 = U1 . I1 . cos ϕ1............... (active power)<br />

Result 2 = Q1 = U1 . I1 . s<strong>in</strong> ϕ1............... (reactive power)<br />

Result 3 = PA1 = U1 . I1.......................... (apparent power)<br />

Sec<strong>on</strong>d step:<br />

Fig. 87. Power measurement <strong>on</strong> three-phase system (sec<strong>on</strong>d step)<br />

Result 1 = P2 = U2 . I2 . cos ϕ2......... (active power)<br />

83


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Result 2 = Q2 = U2 . I2 . s<strong>in</strong> ϕ2......... (reactive power)<br />

Result 3 = PA2 = U2 . I2.................... (apparent power)<br />

Third step:<br />

Fig. 88. Power measurement <strong>on</strong> three-phase system (third step)<br />

Result 1 = P3 = U3 . I3 . cos ϕ3......... (active power)<br />

Result 2 = Q3 = U3 I3 . s<strong>in</strong> ϕ3.......... (reactive power)<br />

Result 3 = PA3 = U3 . I3.................... (apparent power)<br />

In each step the <strong>in</strong>strument measures phase voltage, phase current <strong>and</strong> delay<br />

between the voltage <strong>and</strong> current. On the basis the of measured results for each<br />

phase, we can calculate all three total powers of three-phase system accord<strong>in</strong>g to<br />

the follow<strong>in</strong>g equati<strong>on</strong>s:<br />

Ptot = P1 + P2 + P3 .......................... (total active power of three-phase system)<br />

Qtot = Q1 + Q2 + Q3......................... (total reactive power of three-phase system)<br />

2<br />

2<br />

P Atot = Ptot + Qtot ……..……(total apparent power of three-phase system)<br />

PFtot = Ptot / PA tot.......................... (power factor)<br />

84


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Power measurement <strong>on</strong> three-cable system<br />

a) Method of two s<strong>in</strong>gle-phase W-meters (Ar<strong>on</strong>’s c<strong>on</strong>necti<strong>on</strong>)<br />

If we are <strong>on</strong>ly <strong>in</strong>terested <strong>in</strong> the total power of the three-phase system <strong>and</strong> not <strong>in</strong><br />

the separate power of each phase, then the method of two W-meters <strong>in</strong> Ar<strong>on</strong>’s<br />

c<strong>on</strong>necti<strong>on</strong> can be used. C<strong>on</strong>necti<strong>on</strong> of two W-meters is presented <strong>on</strong> the figure<br />

below. The method allows for the correct calculati<strong>on</strong> of the total active power even<br />

with n<strong>on</strong> symmetrical three-phase loads (the load’s impedances per phase are not<br />

equal to each other), or with unbalanced voltages (po<strong>in</strong>ters of phase to phase<br />

voltages UL1/L2, UL2/L3 <strong>and</strong> UL3/L1 taken <strong>in</strong> sequence do not form an equilateral<br />

triangle).<br />

Calculati<strong>on</strong> of the total apparent power is correct <strong>on</strong>ly if the c<strong>on</strong>nected load is<br />

symmetrical <strong>and</strong> the phase to phase voltages are balanced i.e. if the power supply<br />

system is balanced.<br />

Fig. 89. Pr<strong>in</strong>ciple of power measurement <strong>on</strong> three-phase, three-wire system,<br />

us<strong>in</strong>g the two W-meter method<br />

This method can also be used when measur<strong>in</strong>g with the Eurotest 61557, but <strong>in</strong><br />

this case it is necessary to carry out the measurement <strong>in</strong> two steps <strong>and</strong> afterwards<br />

calculate the total power. This procedure is expla<strong>in</strong>ed below.<br />

First step:<br />

Fig. 90. Power measurement us<strong>in</strong>g the Eurotest 61557 (first step)<br />

85


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Result 1 = UL2/L1 . IL2 . cos δ = PL2/L1<br />

Result 2 = UL1/L2 . IL2 = PA L1/L2<br />

where<br />

δ................ delay between phase to phase voltage U L2/L1 <strong>and</strong> current IL2<br />

Sec<strong>on</strong>d step:<br />

Current clamp <strong>and</strong> voltage test probe should be moved from L2 c<strong>on</strong>ductor to L3<br />

<strong>and</strong> the measurement repeated.<br />

Fig. 91. Power measurement us<strong>in</strong>g the Eurotest 61557 (sec<strong>on</strong>d step)<br />

Result 1 = UL3/L1 . IL3 . cos δ = PL3/L1<br />

where<br />

δ................ delay between phase to phase voltage U L3/L1 <strong>and</strong> current IL3<br />

Total active power <strong>and</strong> apparent power can be calculated <strong>in</strong> accordance with the<br />

follow<strong>in</strong>g equati<strong>on</strong>s:<br />

Ptot = P L2/L1 + P L3/L1................................ (total active power)<br />

PA tot = PA L2/L1 . 1,732 ...................... (total apparent power)<br />

PFtot = Ptot / PA tot ........................... (power factor)<br />

Attenti<strong>on</strong>!<br />

• It is necessary to ensure the correct polarity of the voltage test probes as well<br />

as the current clamp (see mark<strong>in</strong>gs <strong>on</strong> test leads <strong>and</strong> current clamp),<br />

otherwise calculated result may be <strong>in</strong>correct.<br />

• If the power measured is a negative value (possibly caused by a high delay or<br />

lag between phase voltage <strong>and</strong> phase current) then the m<strong>in</strong>us sign should be<br />

used <strong>in</strong> the f<strong>in</strong>al calculati<strong>on</strong>!<br />

• It is necessary to be aware, that the measured results have no real mean<strong>in</strong>g,<br />

but can <strong>on</strong>ly be used <strong>in</strong> f<strong>in</strong>al calculati<strong>on</strong> of total power!<br />

86


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

• The calculated total active power is correct irrelevant of the potential<br />

unbalanced power supply system (n<strong>on</strong>symmetrical loads or unbalanced phase<br />

to phase voltages.)<br />

The calculated total apparent power is correct <strong>on</strong>ly if the three-phase power<br />

supply system is balanced. The same is true for the calculati<strong>on</strong> of power factor!<br />

The measured apparent powers <strong>in</strong> both steps are equal to each other if there is a<br />

balanced power supply system.<br />

b) Method for balanced three-phase power systems<br />

In cases of balanced three-phase power systems, <strong>and</strong> Y type of load c<strong>on</strong>necti<strong>on</strong><br />

with an accessible neutral po<strong>in</strong>t, the <strong>on</strong>e W-meter method can be used. It is<br />

enough to measure power at <strong>on</strong>e phase <strong>on</strong>ly <strong>and</strong> then calculate the total power.<br />

The method is usually used when measur<strong>in</strong>g power <strong>on</strong> three-phase motors or<br />

similar symmetrical loads.<br />

Below is the procedure, us<strong>in</strong>g the Eurotest 61557 or Power Meter.<br />

Fig. 92. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument<br />

Result 1 = UL3 . IL3 . cos ϕ1= P1........ (active power)<br />

Result 2 = UL3 . IL3 . s<strong>in</strong> ϕ1 = Q1........ (reactive power)<br />

Result 3 = UL3 . IL3 = PA1................... (apparent power)<br />

Result 4 = P1/ PA1 = PF1.................. (power factor)<br />

Calculati<strong>on</strong> of total power of three-phase system:<br />

Ptot = 3 . P1 ...................................... (total active power of three-phase system)<br />

Qtot = 3 . Q1 ..................................... (total reactive power of three-phase system)<br />

PA tot = 3 . PA1................................. (total apparent power of three-phase<br />

system)<br />

PFtot = Ptot / PA tot = PF1............... (total power factor)<br />

87


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Attenti<strong>on</strong>!<br />

• It is necessary to verify that the c<strong>on</strong>nected load is <strong>in</strong>deed symmetrical. This can<br />

be d<strong>on</strong>e by measur<strong>in</strong>g all three-phase currents, which must be exactly equal to<br />

each other at the balanced phase to phase voltages!<br />

• If the neutral po<strong>in</strong>t at the c<strong>on</strong>nected load is not accessible (because of<br />

mechanical protecti<strong>on</strong>, ∆ c<strong>on</strong>necti<strong>on</strong> etc.) it is possible to use the neutral po<strong>in</strong>t<br />

of the power supply generator (transformer), assum<strong>in</strong>g of course that it is<br />

accessible. If the phase to phase voltages are balanced, it is also possible to<br />

simulate a neutral po<strong>in</strong>t us<strong>in</strong>g three resistors (see the figure below). When<br />

us<strong>in</strong>g a simulated neutral po<strong>in</strong>t, it is necessary to be aware that the <strong>in</strong>ternal<br />

resistance of the resistor voltage divider should be much lower than the <strong>in</strong>ternal<br />

impedance of test <strong>in</strong>strument at ma<strong>in</strong>s frequency.<br />

Fig. 93. C<strong>on</strong>necti<strong>on</strong> of test <strong>in</strong>strument to simulated neutral po<strong>in</strong>t<br />

c) Method with <strong>on</strong>e W-meter for n<strong>on</strong>symmetrical loads<br />

The measurement must be carried out <strong>in</strong> three steps (separately at each phase).<br />

Us<strong>in</strong>g the Eurotest 61557, the measurement can be d<strong>on</strong>e <strong>in</strong> exactly the same way<br />

as <strong>on</strong> a s<strong>in</strong>gle-phase system except that the measurement neutral po<strong>in</strong>t must be<br />

referenced to the power supply or it must be simulated (absolutely not the neutral<br />

po<strong>in</strong>t of the n<strong>on</strong>symmetrical load). Of course this is valid for balanced phase to<br />

phase voltages. The measurement must be d<strong>on</strong>e separately at each phase.<br />

First step:<br />

Fig. 94. Power measurement <strong>on</strong> a three-wire system with n<strong>on</strong>symmetrical loads<br />

us<strong>in</strong>g the Eurotest 61557 (first step)<br />

88


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Result 1 = UL1 . IL1 . cos ϕ1= P1.............. (active power)<br />

Result 2 = UL1 . IL1 . s<strong>in</strong> ϕ1= Q1............... (reactive power)<br />

Result 3 = UL1 . IL1 = PA1......................... (apparent power)<br />

PF1 = P1/ PA1......................................... (power factor)<br />

Sec<strong>on</strong>d step:<br />

Fig. 95. Power measurement <strong>on</strong> a three-wire system with n<strong>on</strong>symmetrical loads<br />

us<strong>in</strong>g the Eurotest 61557 (sec<strong>on</strong>d step)<br />

Result 1 = UL2 . IL2 . cos ϕ2= P2.............. (active power)<br />

Result 2 = UL2 . IL2 . s<strong>in</strong> ϕ2= Q2............... (reactive power)<br />

Result 3 = UL2 . IL2 = PA2......................... (apparent power)<br />

PF2 = P2/ PA2......................................... (power factor)<br />

Third step:<br />

Fig. 96. Power measurement <strong>on</strong> a three-wire system us<strong>in</strong>g the Eurotest 61557<br />

(third step)<br />

Result 1 = UL3 . IL3 . cos ϕ3= P3.............. (active power)<br />

Result 2 = UL3 . IL3 . s<strong>in</strong> ϕ3= Q3............... (reactive power)<br />

Result 3 = UL3 . I L3 = PA3........................ (apparent power)<br />

PF3 = P3/ PA3......................................... (power factor)<br />

89


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

On the basis of the above measurement results it is possible to calculate all three<br />

power levels of the three-phase system accord<strong>in</strong>g to the follow<strong>in</strong>g equati<strong>on</strong>s:<br />

Ptot = P1 + P2 + P3 .......................... (total active power of three-phase system)<br />

Qtot = Q1 + Q2 + Q3......................... (total reactive power of three-phase system)<br />

2<br />

2<br />

P Atot = Ptot + Qtot ……..… (total apparent power of three-phase system)<br />

PFtot = Ptot / PA tot.......................... (power factor)<br />

90


5.17. Energy<br />

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Where there is a c<strong>on</strong>stant power c<strong>on</strong>sumpti<strong>on</strong> at a specific load then the<br />

c<strong>on</strong>sumed energy can be calculated <strong>on</strong> the basis of the load’s power <strong>and</strong> the time<br />

over which it was c<strong>on</strong>sumed. When power is variable (regulated heaters,<br />

<strong>in</strong>termittently runn<strong>in</strong>g motors etc.), the energy can not be calculated, but must be<br />

measured. It is also necessary to measure the energy (it cannot be calculated) if a<br />

load’s power is not known. For this reas<strong>on</strong>, the Eurotest 61557 test <strong>in</strong>strument<br />

can measure the c<strong>on</strong>sumed energy <strong>on</strong> s<strong>in</strong>gle-phase ma<strong>in</strong>s loads. The follow<strong>in</strong>g<br />

illustrates the c<strong>on</strong>necti<strong>on</strong> of the test <strong>in</strong>strument.<br />

Fig. 97. Energy measurement <strong>on</strong> a s<strong>in</strong>gle-phase system<br />

The test <strong>in</strong>strument measures the phase voltage U, the phase current I (by means<br />

of a current clamp) <strong>and</strong> the delay ϕ between the voltage <strong>and</strong> current. On the basis<br />

of this data it calculates the c<strong>on</strong>sumed energy accord<strong>in</strong>g to the follow<strong>in</strong>g<br />

equati<strong>on</strong>s:<br />

W = U ⋅ I ⋅ cos ϕ ⋅ t = P ⋅ t<br />

where<br />

W.............. Energy.<br />

U............... Phase voltage.<br />

I................. Phase current.<br />

ϕ ............... Delay between the voltage U <strong>and</strong> current I.<br />

t................. Time of c<strong>on</strong>sumpti<strong>on</strong>.<br />

P............... Active power.<br />

Energy measurement us<strong>in</strong>g the Eurotest 61557 test <strong>in</strong>strument is limited to 25<br />

hours.<br />

91


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

5.18. Harm<strong>on</strong>ic analysis<br />

Deal<strong>in</strong>g with harm<strong>on</strong>ic comp<strong>on</strong>ents just a few years ago, was c<strong>on</strong>sidered as<br />

highly academic <strong>and</strong> absolutely not practical, almost mystic. The problems caused<br />

by harm<strong>on</strong>ics is now much much more relevant <strong>and</strong> can cause high priced<br />

damage to distributi<strong>on</strong> systems <strong>and</strong> <strong>electric</strong> loads. This is why any <strong>electric</strong>ian may<br />

meet a need to c<strong>on</strong>trol harm<strong>on</strong>ics <strong>in</strong> their every-day job. Thanks to highly-efficient,<br />

simple to use, h<strong>and</strong>-held <strong>in</strong>struments, the measurement is now quite simple.<br />

Distorti<strong>on</strong> of the ma<strong>in</strong>s voltage <strong>and</strong> current, <strong>and</strong> therefore the appearance of<br />

harm<strong>on</strong>ic comp<strong>on</strong>ents is to be expected <strong>in</strong> an era of modern electr<strong>on</strong>ics with a<br />

wide range of different electr<strong>on</strong>ic equipment c<strong>on</strong>nected to the distributi<strong>on</strong> system.<br />

In general the harm<strong>on</strong>ics are a negative <strong>in</strong>fluence <strong>on</strong> <strong>electric</strong>al loads as well as to<br />

the power source <strong>and</strong> the <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>. The quality of the <strong>electric</strong>al energy<br />

is thus decreased.<br />

How can the presence of harm<strong>on</strong>ic comp<strong>on</strong>ents be detected?<br />

• C<strong>on</strong>nected loads (motors, transformers etc.) will start to overheat.<br />

• Losses <strong>in</strong> the power distributi<strong>on</strong> system will <strong>in</strong>crease, requir<strong>in</strong>g load shedd<strong>in</strong>g.<br />

• Regulated motors will start to become unstable, due to <strong>in</strong>correct trigger<strong>in</strong>g of<br />

electr<strong>on</strong>ic circuitry at voltage zero-cross<strong>in</strong>g.<br />

• High energy power supply transformers will start to overheat, requir<strong>in</strong>g load<br />

shedd<strong>in</strong>g.<br />

• Electr<strong>on</strong>ic fuses which detect peak value of the load current, will start to trip<br />

out.<br />

• Stability of test results at some measurements <strong>on</strong> the <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong><br />

(l<strong>in</strong>e/loop impedance, power, voltage, current etc.) will be decreased, also due<br />

to <strong>in</strong>correct trigger<strong>in</strong>g of electr<strong>on</strong>ic circuitry at voltage zero-cross<strong>in</strong>g.<br />

Why do harm<strong>on</strong>ic comp<strong>on</strong>ents arise?<br />

Various n<strong>on</strong>-l<strong>in</strong>ear loads (particularly high-powered <strong>on</strong>es) such as a.c. to d.c.<br />

c<strong>on</strong>verters, motor regulators, pers<strong>on</strong>al computers, CNC mach<strong>in</strong>es <strong>in</strong> <strong>in</strong>dustry etc.,<br />

may draw current <strong>in</strong> short pulses rather than <strong>in</strong> a smooth manner, as would be<br />

desired. Because of such current pulses, a voltage drop of the same shape is<br />

caused <strong>on</strong> the neutral <strong>and</strong> phase c<strong>on</strong>ductors, as well as <strong>on</strong> the power sources<br />

(transformers). The result of these voltage drops is a distorti<strong>on</strong> of the ma<strong>in</strong>s<br />

voltage which may supply other, n<strong>on</strong>critical loads.<br />

A sec<strong>on</strong>d reas<strong>on</strong> suspected for the appearance of harm<strong>on</strong>ic comp<strong>on</strong>ents, is the<br />

unfavourable dispositi<strong>on</strong> of <strong>in</strong>ductive <strong>and</strong>/or capacitive loads, which may cause<br />

oscillati<strong>on</strong>s <strong>on</strong> the <strong>electric</strong>al network <strong>and</strong> so the appearance of harm<strong>on</strong>ics.<br />

Below is an example of harm<strong>on</strong>ic comp<strong>on</strong>ents caused by a simple a.c. to d.c.<br />

c<strong>on</strong>verter such as a powerful car-battery charger.<br />

92


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 98. Shape of pure (not distorted) s<strong>in</strong>e wave voltage which supplys a.c. to d.c.<br />

c<strong>on</strong>verter<br />

Fig. 99. Shape of distorted current, drawn by a.c. to d.c. c<strong>on</strong>verter<br />

Fig. 100. Shape of the ma<strong>in</strong>s voltage, distorted due to voltage drops <strong>on</strong><br />

c<strong>on</strong>ductors <strong>and</strong> the <strong>in</strong>ternal impedance of the power supply<br />

93


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 101. Presentati<strong>on</strong> of distorted voltage (see fig. 101), analized accord<strong>in</strong>g to<br />

Fourier transformati<strong>on</strong> method <strong>in</strong>to the fundamental frequency <strong>and</strong><br />

harm<strong>on</strong>ics. The presentati<strong>on</strong> is <strong>in</strong> time doma<strong>in</strong>.<br />

Fig. 102. Presentati<strong>on</strong> of distorted voltage (see fig. 101), analized accord<strong>in</strong>g to the<br />

Fourier transformati<strong>on</strong> method <strong>in</strong>to the fundamental frequency <strong>and</strong><br />

harm<strong>on</strong>ics. The presentati<strong>on</strong> is <strong>in</strong> frequency doma<strong>in</strong>.<br />

Intensity of harm<strong>on</strong>ic comp<strong>on</strong>ents can be presented directly <strong>in</strong> volts or <strong>in</strong><br />

percentage with respect to the fundamental comp<strong>on</strong>ent.<br />

Voltage harm<strong>on</strong>ic measurement is usually carried out when check<strong>in</strong>g the quality<br />

of the ma<strong>in</strong>s voltage <strong>in</strong> general. If we are look<strong>in</strong>g for distorti<strong>on</strong> makers (harm<strong>on</strong>ic<br />

comp<strong>on</strong>ent generators), then it is advisable to measure current harm<strong>on</strong>ics.<br />

The Eurotest 61557 test <strong>in</strong>strument can carry out <strong>in</strong>dicative measurements of odd<br />

voltage <strong>and</strong> current harm<strong>on</strong>ics up to the 21st comp<strong>on</strong>ent. The purpose of the<br />

measurement is to estimate the <strong>in</strong>tensity of the harm<strong>on</strong>ics present. In a critical<br />

situati<strong>on</strong>, it is necessary to use a professi<strong>on</strong>al test <strong>in</strong>strument such as the Power<br />

Meter, produced by METREL.<br />

The analyser is a professi<strong>on</strong>al test <strong>in</strong>strument which enables analysis up to 50-th<br />

comp<strong>on</strong>ent. Otherwise it can carry out analysis of voltage <strong>and</strong> current harm<strong>on</strong>ics<br />

<strong>in</strong> real time <strong>on</strong> three-phase system <strong>in</strong>clud<strong>in</strong>g record<strong>in</strong>g test results. It can also<br />

perform<br />

94


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

power measurements of all three types (active, reactive <strong>and</strong> apparent),<br />

simultaneously <strong>on</strong> all three phases.<br />

Fig. 103. Measurement of voltage <strong>and</strong> current harm<strong>on</strong>ics <strong>on</strong> a s<strong>in</strong>gle- phase<br />

system, us<strong>in</strong>g the Eurotest 61557 test <strong>in</strong>strument or Power Meter<br />

Fig. 104. Measurement of voltage <strong>and</strong> current harm<strong>on</strong>ics <strong>on</strong> a three-phase system,<br />

us<strong>in</strong>g the professi<strong>on</strong>al test <strong>in</strong>strument Power Meter<br />

Useful equati<strong>on</strong>s:<br />

If harm<strong>on</strong>ic comp<strong>on</strong>ents are present <strong>on</strong> a distributi<strong>on</strong> system then all simple<br />

power calculati<strong>on</strong>s fail. Below are some useful basic equati<strong>on</strong>s which are valid for<br />

distorted voltages <strong>and</strong> currents.<br />

95


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Effective value of voltage<br />

1<br />

2<br />

Ui = ∑U<br />

n,i<br />

2 n<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

n..................... harm<strong>on</strong>ic comp<strong>on</strong>ent <strong>in</strong>dex<br />

Ui................... effective value of voltage at phase i<br />

Un,i................ amplitude of n-th voltage harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

Effective value of current<br />

Ii<br />

=<br />

1<br />

2<br />

∑<br />

n<br />

I<br />

2<br />

n,i<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

n..................... harm<strong>on</strong>ic comp<strong>on</strong>ent <strong>in</strong>dex<br />

Ii..................... effective value of current at phase i<br />

In,i.................. amplitude of n-th current harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

Phase active power<br />

Pi<br />

=<br />

1<br />

2<br />

∑<br />

n<br />

U<br />

n ,i<br />

• I<br />

n ,i<br />

• cos ϕ<br />

n ,i<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

n..................... harm<strong>on</strong>ic comp<strong>on</strong>ent <strong>in</strong>dex<br />

Pi................... active power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at phase i<br />

Un,i................ amplitude of n-th voltage harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

In,i.................. amplitude of n-th current harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

ϕn,i................. delay between n-th voltage harm<strong>on</strong>ic comp<strong>on</strong>ent <strong>and</strong> n-th current<br />

harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

Total active power<br />

Ptot =<br />

∑<br />

i<br />

Pi<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

Ptot................ total active powert of all harm<strong>on</strong>ic comp<strong>on</strong>ents at all phases<br />

Pi................... active power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at phase i<br />

96


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Phase apparent power<br />

P<br />

A<br />

i<br />

= Ui • Ii =<br />

1<br />

2<br />

∑<br />

n<br />

U<br />

2<br />

n,i<br />

• ∑ I<br />

n<br />

2<br />

n,i<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

n..................... harm<strong>on</strong>ic comp<strong>on</strong>ent <strong>in</strong>dex<br />

PAi................. apparent power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at phase i<br />

Ui................... effective value of voltage at phase i<br />

Ii..................... effective value of current at phase i<br />

Un,i................ amplitude of n-th voltage harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

In,i.................. amplitude of n-th current harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

Total apparent power<br />

P<br />

A<br />

tot<br />

=<br />

∑<br />

i<br />

P<br />

A<br />

i<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

PA tot............. total apparent power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at all phases<br />

PAi................. apparent power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at phase i<br />

Power factor PF<br />

PFi<br />

=<br />

Pi<br />

PAi<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

PFi................. power factor at phase i<br />

Pi................... active power of all harm<strong>on</strong>mic comp<strong>on</strong>ents at phase i<br />

PAi................. apparent power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at phase i<br />

Average power factor PFavr<br />

PFavr =<br />

∑<br />

∑<br />

i<br />

i<br />

P i<br />

PAi<br />

where<br />

i...................... phase <strong>in</strong>dex<br />

PFavr............. average power factor of all phases<br />

Pi................... active power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at phase i<br />

PAi................. apparent power of all harm<strong>on</strong>ic comp<strong>on</strong>ents at phase i<br />

97


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

As well as the <strong>in</strong>tensity of the separate harm<strong>on</strong>ic comp<strong>on</strong>ents, it is also important<br />

to f<strong>in</strong>d out what the total voltage or current harm<strong>on</strong>ic distorti<strong>on</strong> (THD) is at a<br />

specific phase. It can be calculated accord<strong>in</strong>g to the follow<strong>in</strong>g equati<strong>on</strong>:<br />

For voltage<br />

THDi<br />

=<br />

∑<br />

n,n≠1<br />

U<br />

U<br />

1,I<br />

2<br />

n,i<br />

where<br />

THDi.............. total harm<strong>on</strong>ic distorti<strong>on</strong> of voltage at phase i<br />

Un,i................ amplitude of n-th voltage harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

U1,i................ amplitude of fundamental voltage comp<strong>on</strong>ent at phase i<br />

For current<br />

THDi =<br />

∑<br />

n,n≠1<br />

I<br />

I<br />

1,i<br />

2<br />

n,i<br />

where<br />

THDi.............. total harm<strong>on</strong>ic distorti<strong>on</strong> of current at phase i<br />

In,i.................. amplitude of n-th current harm<strong>on</strong>ic comp<strong>on</strong>ent at phase i<br />

I1,i.................. amplitude of fundamental current comp<strong>on</strong>ent at phase i<br />

98


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

6. Technology of carry<strong>in</strong>g out measurements,<br />

us<strong>in</strong>g test equipment produced by Metrel d.d.<br />

In analyz<strong>in</strong>g the wide range of <strong>electric</strong>al test equipment currently available <strong>on</strong> the<br />

market a number of shortfalls become apparent. These shortfalls are of such a<br />

nature as to <strong>in</strong>volve the operator <strong>in</strong> <strong>in</strong>creased activities (such as produc<strong>in</strong>g work<br />

schedules, complet<strong>in</strong>g <strong>in</strong>specti<strong>on</strong> reports <strong>and</strong> fill<strong>in</strong>g <strong>in</strong> <strong>and</strong> copy<strong>in</strong>g test results),<br />

this takes up valuable time which could be spent <strong>in</strong> more profitable areas.<br />

This is what prompted METREL to focus its energy <strong>on</strong> overcom<strong>in</strong>g these shortfalls<br />

<strong>in</strong> develop<strong>in</strong>g its latest family of multi-functi<strong>on</strong> testers. Its basic target was to<br />

c<strong>on</strong>struct easy to use <strong>in</strong>struments which can support the user through his wide<br />

range of test<strong>in</strong>g activities.<br />

Wide range of activities means the whole procedure, start<strong>in</strong>g at the operator's<br />

<strong>in</strong>itial preparati<strong>on</strong>, c<strong>on</strong>t<strong>in</strong>u<strong>in</strong>g with the visual <strong>in</strong>specti<strong>on</strong> of the <strong>in</strong>stallati<strong>on</strong>,<br />

measurements, functi<strong>on</strong>al test<strong>in</strong>g of the <strong>electric</strong> equipment <strong>and</strong> f<strong>in</strong>ish<strong>in</strong>g at the<br />

f<strong>in</strong>al protocol pr<strong>in</strong>tout. Let's exam<strong>in</strong>e the process <strong>in</strong> the follow<strong>in</strong>g pages <strong>and</strong> try to<br />

underst<strong>and</strong> the roots of the procedure.<br />

In order to achieve the aforementi<strong>on</strong>ed target, the whole procedure must be<br />

c<strong>on</strong>sidered <strong>and</strong> <strong>in</strong>corporated <strong>in</strong>to the test equipment (test <strong>in</strong>strument plus PC<br />

software). We refer to this procedure as the technology of carry<strong>in</strong>g out<br />

measurements. It's purpose is to help the operators to make their job as simple as<br />

possible <strong>and</strong> <strong>in</strong>crease speed, thereby reduc<strong>in</strong>g costs <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g productivity.<br />

To improve underst<strong>and</strong><strong>in</strong>g the whole procedure can be split <strong>in</strong>to three ma<strong>in</strong> parts:<br />

99


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

-<br />

Visual <strong>in</strong>specti<strong>on</strong> of equipment under test<br />

If the measurements have already been taken <strong>in</strong> accordance with this technology<br />

at a particular site (regular <strong>in</strong>specti<strong>on</strong>), then the purpose of the <strong>in</strong>specti<strong>on</strong> is <strong>on</strong>ly<br />

to verify any potential deviati<strong>on</strong>s of the <strong>in</strong>stallati<strong>on</strong> when compared to the last<br />

<strong>in</strong>specti<strong>on</strong>.<br />

If the measurements are to be carried out <strong>in</strong> accordance with this technology for<br />

the first time, then the <strong>in</strong>stallati<strong>on</strong> is not really known to the operator, so the<br />

<strong>in</strong>specti<strong>on</strong> must be undertaken <strong>in</strong> order for the operator to discover <strong>and</strong> record<br />

some of the basic characteristics of the <strong>in</strong>stallati<strong>on</strong> such as:<br />

• Address of tested site, type of distributi<strong>on</strong> transformer, distributor of <strong>electric</strong><br />

energy etc.<br />

• Type of <strong>in</strong>stallati<strong>on</strong> with respect to its earth<strong>in</strong>g system (TN-C, TN-S, TN-C-S,<br />

TT<br />

or IT) – see this booklet <strong>on</strong> page 14 <strong>and</strong> 15.<br />

• Number of distributi<strong>on</strong> boards (fuse cab<strong>in</strong>ets) <strong>in</strong>volved <strong>and</strong> their mark<strong>in</strong>gs.<br />

• Number <strong>and</strong> type of current loops (fuse loops) at each distributi<strong>on</strong> board.<br />

• Type of protecti<strong>on</strong> system used aga<strong>in</strong>st <strong>electric</strong> shock for <strong>in</strong>direct c<strong>on</strong>tact (RCD<br />

protecti<strong>on</strong> device, automatic over-current fuses – type?, melt<strong>in</strong>g over-current<br />

100


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

fuses – type?, n<strong>on</strong>-c<strong>on</strong>ductive rooms, isolated power supply, safety voltage<br />

etc.)<br />

• Type of earth<strong>in</strong>g system (rod type, b<strong>and</strong> type, panel type, chemically-active<br />

type, etc.).<br />

• Design of earth<strong>in</strong>g system (<strong>on</strong>e earth<strong>in</strong>g electrode, many earth<strong>in</strong>g electrodes,<br />

overhead c<strong>on</strong>necti<strong>on</strong> between the columns, underground c<strong>on</strong>necti<strong>on</strong> between<br />

the columns, c<strong>on</strong>necti<strong>on</strong> of lightn<strong>in</strong>g c<strong>on</strong>ductor to tested earth<strong>in</strong>g system,<br />

c<strong>on</strong>necti<strong>on</strong> of distributi<strong>on</strong> earth<strong>in</strong>g to tested earth<strong>in</strong>g system etc.).<br />

• Presence of over-voltage protecti<strong>on</strong> devices.<br />

• Secti<strong>on</strong>s of protecti<strong>on</strong> c<strong>on</strong>ductors.<br />

• Inspecti<strong>on</strong> of protecti<strong>on</strong> c<strong>on</strong>ductors c<strong>on</strong>necti<strong>on</strong> to ma<strong>in</strong> potential equaliz<strong>in</strong>g<br />

collector (MPEC).<br />

• Inspecti<strong>on</strong> of protecti<strong>on</strong> c<strong>on</strong>ductors c<strong>on</strong>necti<strong>on</strong> to protecti<strong>on</strong> c<strong>on</strong>ductor collector<br />

(PCC) <strong>in</strong> each distributi<strong>on</strong> cab<strong>in</strong>et.<br />

• Inspecti<strong>on</strong> of ma<strong>in</strong> equaliz<strong>in</strong>g.<br />

• Inspecti<strong>on</strong> of additi<strong>on</strong>al equaliz<strong>in</strong>g.<br />

• Mark<strong>in</strong>g of <strong>in</strong>dividual <strong>in</strong>stallati<strong>on</strong> parts (distributi<strong>on</strong> boards, fuses, switches etc.)<br />

<strong>and</strong> corresp<strong>on</strong>dance to regulati<strong>on</strong>s.<br />

• C<strong>on</strong>ductor colours.<br />

• C<strong>on</strong>necti<strong>on</strong> of tested <strong>in</strong>stallati<strong>on</strong> to distributi<strong>on</strong> system (underground,<br />

overhead).<br />

• etc.<br />

When carry<strong>in</strong>g out the above listed activities, an operator can use the test<br />

<strong>in</strong>strument Eurotest 61557 which <strong>in</strong> additi<strong>on</strong> to the measurements required by<br />

regulati<strong>on</strong>s, also offers a wide range of auxiliary tests <strong>and</strong> measurements such as:<br />

Trac<strong>in</strong>g <strong>in</strong>stallati<strong>on</strong> c<strong>on</strong>ductors, trac<strong>in</strong>g over-current protecti<strong>on</strong> devices, fault<br />

locat<strong>in</strong>g, power measurement, energy measurement, current measurement, PE<br />

term<strong>in</strong>al test (presence of phase voltage), over-voltage devices tests etc.<br />

Above menti<strong>on</strong>ed characteristics, are to be manually added to the blank form of<br />

f<strong>in</strong>al protocol <strong>and</strong> later transferred to PC. They will automatically be <strong>in</strong>cluded <strong>in</strong><br />

f<strong>in</strong>al protocol when pr<strong>in</strong>t<strong>in</strong>g it out.<br />

Preparati<strong>on</strong> of <strong>in</strong>stallati<strong>on</strong> plans<br />

To ensure that the operator is aware of his acti<strong>on</strong>s <strong>and</strong> to follow the<br />

measurements <strong>in</strong> a sensible way, it is necessary to prepare an updated plan <strong>in</strong><br />

accordance with the actual <strong>in</strong>stallati<strong>on</strong>. If the plan already exists, then the operator<br />

<strong>on</strong>ly needs to check (or <strong>in</strong>sert) the appropriate mark<strong>in</strong>gs of <strong>in</strong>stallati<strong>on</strong> parts, such<br />

as distributi<strong>on</strong> boards, current loops, lightn<strong>in</strong>g systems, <strong>in</strong>dividual earth columns<br />

of lightn<strong>in</strong>g system, c<strong>on</strong>necti<strong>on</strong>s between earth columns, ma<strong>in</strong> potential equaliz<strong>in</strong>g<br />

collectors (MPEC), c<strong>on</strong>necti<strong>on</strong>s to MPEC, earth<strong>in</strong>g systems c<strong>on</strong>nected to MPEC<br />

etc. If the plan does not exist (old or adapted <strong>in</strong>stallati<strong>on</strong>), then it is advisable to<br />

draw <strong>on</strong>e up, to ensure that any further activities are carried out <strong>in</strong> a fast <strong>and</strong><br />

efficient manner. It is also advisable to <strong>in</strong>sert all of the above menti<strong>on</strong>ed mark<strong>in</strong>gs<br />

of the <strong>in</strong>stallati<strong>on</strong> parts.<br />

101


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Inserti<strong>on</strong> of <strong>in</strong>tallati<strong>on</strong> structure <strong>on</strong> PC <strong>and</strong> then to Eurotest 61557<br />

The structure of <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong> is a plan of the <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>,<br />

transferred <strong>in</strong> a form acceptable for <strong>in</strong>stall<strong>in</strong>g <strong>on</strong> to a PC <strong>and</strong> then to the test<br />

<strong>in</strong>strument Eurotest 61557. The structure also <strong>in</strong>cludes all of the attendant<br />

mark<strong>in</strong>gs of <strong>in</strong>stallati<strong>on</strong> parts. The structure, when <strong>in</strong>stalled <strong>on</strong> to the test<br />

<strong>in</strong>strument offers simple <strong>and</strong> transparent memoriz<strong>in</strong>g of test results to prepared<br />

<strong>and</strong> marked memory locati<strong>on</strong>s. It is also possible to attribute certa<strong>in</strong><br />

measurements (parameters to be measured) to a certa<strong>in</strong> measurement locati<strong>on</strong><br />

(current loop, MPEC etc.) <strong>in</strong> advance, by means of PC. In this way the operator<br />

can verify at any time which measurements are still to be d<strong>on</strong>e <strong>and</strong> where. While<br />

carry<strong>in</strong>g out the measurements <strong>and</strong> memoriz<strong>in</strong>g the test results, the operator is<br />

led by the Eurotest 61557 which displays the actual names of the measured<br />

locati<strong>on</strong>.<br />

To ensure that the procedure of sett<strong>in</strong>g up the structure is both simple <strong>and</strong><br />

repeatable, regardless of the equipment under test, the appropriate software has<br />

a pre-prepared model of the structure.<br />

The PC software is designed to <strong>in</strong>teractively lead the operator through <strong>in</strong>stall<strong>in</strong>g<br />

the procedure, as well as other activities which the operator is deal<strong>in</strong>g with <strong>on</strong> the<br />

PC. The model of the structure offers general names of <strong>in</strong>stallati<strong>on</strong> parts such as:<br />

measurement object 1<br />

block 1<br />

block 2<br />

block 3<br />

fuse 1<br />

fuse 2<br />

fuse 3<br />

The general names listed above may be exchanged with real <strong>on</strong>es when <strong>in</strong>sert<strong>in</strong>g<br />

the structure to PC. See some examples of real names below:<br />

measurement object = Alphatek factory<br />

block = Ma<strong>in</strong> offices<br />

block = Development department<br />

block = Industrial plant<br />

fuse = Light<strong>in</strong>g system<br />

fuse = S<strong>in</strong>gle-phase outlets<br />

fuse = CNC mach<strong>in</strong>e<br />

The follow<strong>in</strong>g is a typical plan of an <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong> comm<strong>on</strong>ly found when<br />

test<strong>in</strong>g <strong>in</strong> build<strong>in</strong>gs. The plan will serve afterwards, to form the general model of<br />

the structure.<br />

102


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 105. Diagram of general <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong><br />

103


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

A general model of the <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong> structure (see the figure below) can<br />

be created <strong>on</strong> the basis of the general <strong>in</strong>stallati<strong>on</strong> presented above. The model<br />

can be used when <strong>in</strong>sert<strong>in</strong>g the structure of the <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong> to the PC<br />

<strong>and</strong> to the Eurotest 61557, regardless of any potential deviati<strong>on</strong>s at the actual real<br />

<strong>in</strong>stallati<strong>on</strong>. The deviati<strong>on</strong>s are to be <strong>in</strong>corporated <strong>in</strong> this model.<br />

Fig. 106. General model of <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong> structure, suitable for <strong>in</strong>sert<strong>in</strong>g the<br />

structure to PC <strong>and</strong> to Eurotest 61557<br />

104


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Descripti<strong>on</strong> of above presented model:<br />

• First level.<br />

Object is the ma<strong>in</strong> locati<strong>on</strong> where all the measurements will be carried out.<br />

Example: Alphatek factory<br />

• Sec<strong>on</strong>d level.<br />

The whole object is devided to Blocks, Lightn<strong>in</strong>g systems <strong>and</strong> Ma<strong>in</strong><br />

Potential Equaliz<strong>in</strong>g Collectors(MPE).<br />

Example: »Block« Ma<strong>in</strong> offices,<br />

»Block« Industrial plant,<br />

»Block« Development department,<br />

»Lightn<strong>in</strong>g system« Ma<strong>in</strong> build<strong>in</strong>g,<br />

»MPE« Ma<strong>in</strong> build<strong>in</strong>g etc.<br />

• Third level.<br />

Block is devided to various Fuses <strong>and</strong> RCDs.<br />

Example: »Fuse« Light<strong>in</strong>g net,<br />

»Fuse« CNC mach<strong>in</strong>e,<br />

»Fuse« S<strong>in</strong>gle-phase outlets etc.<br />

»RCD« Switch board 1<br />

Lightn<strong>in</strong>g system is devided to <strong>in</strong>dividual Electrodes <strong>and</strong> C<strong>on</strong>necti<strong>on</strong>s to the<br />

lightn<strong>in</strong>g system.<br />

Example: »Electrode« Electrode 1,<br />

»Electrode«Electrode 2,<br />

»C<strong>on</strong>necti<strong>on</strong>« Gas <strong>in</strong>stallati<strong>on</strong>,<br />

»C<strong>on</strong>necti<strong>on</strong>« MPE etc.<br />

Ma<strong>in</strong> potential equaliz<strong>in</strong>g collector (MPE) is devided to C<strong>on</strong>necti<strong>on</strong>s with the<br />

MPE <strong>and</strong> earth<strong>in</strong>gs c<strong>on</strong>nected to the MPE.<br />

Example: »C<strong>on</strong>necti<strong>on</strong>« Water <strong>in</strong>stallati<strong>on</strong>,<br />

»C<strong>on</strong>necti<strong>on</strong>« Central heat<strong>in</strong>g <strong>in</strong>stallati<strong>on</strong>,<br />

»C<strong>on</strong>necti<strong>on</strong>« Gas <strong>in</strong>stallati<strong>on</strong>,<br />

»C<strong>on</strong>necti<strong>on</strong>« Protecti<strong>on</strong> c<strong>on</strong>ductor collector (PCC) Industrial plant,<br />

»C<strong>on</strong>necti<strong>on</strong>« Protecti<strong>on</strong> c<strong>on</strong>ductor collector (PCC) Dpt. department,<br />

»Earth<strong>in</strong>g« Earth<strong>in</strong>g Groundwork,<br />

»Earth<strong>in</strong>g« Protecti<strong>on</strong> system etc.<br />

After <strong>in</strong>sert<strong>in</strong>g the structure <strong>on</strong>to the PC, it is to be transfered to Eurotest 61557.<br />

105


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Fig. 107. Transfer of structure from PC to Eurotest 61557<br />

Measur<strong>in</strong>g <strong>and</strong> stor<strong>in</strong>g of test results to prepared structure<br />

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> are to be carried out <strong>in</strong> turn from ma<strong>in</strong> distributi<strong>on</strong> cab<strong>in</strong>et (<strong>in</strong>put of<br />

ma<strong>in</strong>s system) <strong>in</strong> directi<strong>on</strong> to c<strong>on</strong>nected <strong>electric</strong> loads, namely:<br />

• Earth<strong>in</strong>g systems (earth resistance of <strong>in</strong>dividual earth column, c<strong>on</strong>necti<strong>on</strong>s<br />

between columns, c<strong>on</strong>necti<strong>on</strong>s of passive accessible c<strong>on</strong>ductive parts with the<br />

earth<strong>in</strong>g system).<br />

• Ma<strong>in</strong> potential equaliz<strong>in</strong>g collectors (MPEC) (c<strong>on</strong>necti<strong>on</strong>s to MPEC, earth<br />

resistance of earth<strong>in</strong>g system c<strong>on</strong>nected to MPEC).<br />

• Distributi<strong>on</strong> cab<strong>in</strong>ets (c<strong>on</strong>t<strong>in</strong>uity of ma<strong>in</strong> potential equaliz<strong>in</strong>g protecti<strong>on</strong><br />

c<strong>on</strong>ductors at all current loops, efficiency of additi<strong>on</strong>al equaliz<strong>in</strong>g protecti<strong>on</strong><br />

c<strong>on</strong>ductors, <strong>in</strong>sulati<strong>on</strong> resistance between c<strong>on</strong>ductors at all current loops, fault<br />

loop impedance <strong>and</strong> prospective short-circuit current at all current loops, test of<br />

RCD protecti<strong>on</strong> devices at all current loops, phase sequence etc.).<br />

The test results obta<strong>in</strong>ed whilst carry<strong>in</strong>g out the above listed measurements, are<br />

to be stored to the prepared (<strong>in</strong>serted with structure) memory locati<strong>on</strong>s. The<br />

Eurotest 61557 will lead the operator while stor<strong>in</strong>g the test results, display<strong>in</strong>g real<br />

names of test locati<strong>on</strong>s (fuses, blocks etc.)<br />

The important advantage of the Eurotest 61557 is that the operator can verify at<br />

any time which measurements have not been completed <strong>and</strong> stored. Please f<strong>in</strong>d<br />

detailed <strong>in</strong>structi<strong>on</strong>s, about how to store test results, <strong>in</strong> Instructi<strong>on</strong> manual<br />

Eurotest 61557.<br />

Functi<strong>on</strong>al test of c<strong>on</strong>nected equipment (loads)<br />

After complet<strong>in</strong>g the measurements, it is also required to carry out functi<strong>on</strong>al tests<br />

<strong>on</strong> certa<strong>in</strong> eqipment c<strong>on</strong>nected to the <strong>in</strong>stallati<strong>on</strong> under test. Some examples of<br />

the equipment: Motors (rotati<strong>on</strong> directi<strong>on</strong>), ventilators, c<strong>on</strong>trol <strong>and</strong> protecti<strong>on</strong><br />

devices, heat<strong>in</strong>g systems, light<strong>in</strong>g systems etc. Results of the test (OK or not OK)<br />

are to be <strong>in</strong>serted manually <strong>in</strong>to blank form of f<strong>in</strong>al protocol, <strong>and</strong> later transferred<br />

to PC. They will automatically be <strong>in</strong>cluded <strong>in</strong> f<strong>in</strong>al protocol when pr<strong>in</strong>t<strong>in</strong>g it out.<br />

Transfer of stored results to PC<br />

106


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

The transfer is completed automatically by plac<strong>in</strong>g a simple comm<strong>and</strong> to the PC<br />

Fig. 108. Transfer of stored results from test <strong>in</strong>strument to the PC<br />

Inserti<strong>on</strong> of basic data <strong>on</strong> subscriber <strong>and</strong> tested <strong>in</strong>stallati<strong>on</strong> to PC<br />

The f<strong>in</strong>al protocol offered by the PC software requires the <strong>in</strong>serti<strong>on</strong> of various data<br />

obta<strong>in</strong>ed while perform<strong>in</strong>g a visual <strong>in</strong>specti<strong>on</strong> of the equipment under test. The<br />

data is described under paragraph »Visual <strong>in</strong>specti<strong>on</strong> of the equipment under<br />

test« <strong>and</strong> will be automatically <strong>in</strong>cluded <strong>in</strong> the f<strong>in</strong>al protocol when pr<strong>in</strong>t<strong>in</strong>g it out.<br />

Pr<strong>in</strong>t-out of f<strong>in</strong>al protocol <strong>in</strong>clud<strong>in</strong>g test results<br />

After transferr<strong>in</strong>g all of the data (visual <strong>in</strong>specti<strong>on</strong> of tested object, test results <strong>and</strong><br />

functi<strong>on</strong>al tests) to the PC, the f<strong>in</strong>al protocol can be created <strong>on</strong> the PC <strong>and</strong><br />

pr<strong>in</strong>ted out by the pr<strong>in</strong>ter. There are several forms of f<strong>in</strong>al protocol, see Instructi<strong>on</strong><br />

manual Eurotest 61557.<br />

There is <strong>on</strong>ly <strong>on</strong>e acti<strong>on</strong> left to be performed by the operator namely the test<br />

results <strong>and</strong> the <strong>in</strong>stallati<strong>on</strong> structure of the site under test are to be stored to the<br />

operator's archives. The data will be used aga<strong>in</strong> when carry<strong>in</strong>g out the next<br />

periodic <strong>in</strong>specti<strong>on</strong> of the same site.<br />

Thus the whole procedure is completed!<br />

107


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Let's sumarise aga<strong>in</strong> all the advantages, offered by the technology described<br />

<strong>in</strong> this chapter us<strong>in</strong>g the latest test <strong>in</strong>strument Eurotest 61557 <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with<br />

PC software, all produced by METREL.<br />

v The structure of a specific <strong>in</strong>stallati<strong>on</strong>, prepared just <strong>on</strong>ce, can be used to<br />

repeat the same measurements <strong>on</strong> the same equipment. It is <strong>on</strong>ly to be<br />

transferred from the archives to the Eurotest 61557. The <strong>in</strong>strument is<br />

then ready to store new test results to the same memory locati<strong>on</strong>s.<br />

v The structure of a specific <strong>in</strong>stallati<strong>on</strong>, sent to the Eurotest 61557 can be<br />

freely adapted whenever required. This feature offers complete flexibility<br />

<strong>in</strong> the field.<br />

The adaptati<strong>on</strong>s can be d<strong>on</strong>e regardless of how the structure has been<br />

entered <strong>on</strong> the test <strong>in</strong>strument (by PC software or manually).<br />

v When stor<strong>in</strong>g test results, the actual mark<strong>in</strong>gs of the distributi<strong>on</strong>boards,<br />

current loops (circuits), earth<strong>in</strong>g systems etc. are displayed. Additi<strong>on</strong>al<br />

manual not<strong>in</strong>g is not needed.<br />

v The operator can verify anytime which measurements have not yet been<br />

d<strong>on</strong>e <strong>and</strong> where.<br />

v Creat<strong>in</strong>g of f<strong>in</strong>al protocol is automatic <strong>and</strong> fast, thanks to the appropriate<br />

PC software. Pr<strong>in</strong>ted out document is ready to be h<strong>and</strong>ed over to client.<br />

v All the data (structure <strong>and</strong> test results) can be stored to the operators<br />

archives at PC or to disk. Whenever the same equipment is to be tested<br />

the operator need <strong>on</strong>ly transfer the stored structure back to the test<br />

<strong>in</strong>strument.<br />

If an operator does not set up the structure via the PC for any reas<strong>on</strong> (no plan of<br />

<strong>electric</strong> <strong>in</strong>stallati<strong>on</strong> available, etc.), the same technology can still be used. In this<br />

case the test <strong>in</strong>strument will offer general mark<strong>in</strong>gs of the <strong>in</strong>stallati<strong>on</strong> comp<strong>on</strong>ents<br />

when stor<strong>in</strong>g the test results, see page 105. After transferr<strong>in</strong>g the results to the<br />

PC the general names can still be exchanged with real <strong>on</strong>es which will be used <strong>in</strong><br />

f<strong>in</strong>al protocol.<br />

108


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

7. Presentati<strong>on</strong> of test <strong>in</strong>struments produced by<br />

Metrel d.d.<br />

There are various <strong>in</strong>struments available for the complete test<strong>in</strong>g of <strong>electric</strong>al<br />

<strong>in</strong>stallati<strong>on</strong>s. The ma<strong>in</strong> difference between the <strong>in</strong>struments is <strong>in</strong> the list of ma<strong>in</strong><br />

<strong>and</strong> auxiliary parameters (those not required by EN 61557 st<strong>and</strong>ard), that a<br />

specific <strong>in</strong>strument can support. Below are the ma<strong>in</strong> characteristics of each<br />

<strong>in</strong>strument.<br />

1. Highly professi<strong>on</strong>al multitester for the ultimate test<strong>in</strong>g of <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s<br />

Eurotest 61557.<br />

It is <strong>in</strong>tended for professi<strong>on</strong>al eng<strong>in</strong>eers who are deal<strong>in</strong>g with <strong>in</strong>stall<strong>in</strong>g,<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g, servic<strong>in</strong>g <strong>and</strong> approv<strong>in</strong>g <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s at the highest level<br />

(they possess wide knowledge about the <strong>in</strong>stallati<strong>on</strong>s). The advantage of the<br />

<strong>in</strong>strument is that <strong>in</strong> additi<strong>on</strong> to all of the ma<strong>in</strong> parameters required by the EN<br />

61557 st<strong>and</strong>ard, it can also measure a wide range of auxiliary parameters such<br />

as Harm<strong>on</strong>ics up to 21st comp<strong>on</strong>ent, Power, Energy, Current, Installati<strong>on</strong><br />

trac<strong>in</strong>g, C<strong>on</strong>t<strong>in</strong>uity us<strong>in</strong>g low test current, Varistor protecti<strong>on</strong> device test etc.<br />

2. Highly professi<strong>on</strong>al multitester for the complete test<strong>in</strong>g of <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s<br />

Instaltest 61557.<br />

It is <strong>in</strong>tended for all <strong>electric</strong>ians, who are deal<strong>in</strong>g with <strong>in</strong>stall<strong>in</strong>g, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g,<br />

servic<strong>in</strong>g <strong>and</strong> approv<strong>in</strong>g <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s. It offers measurements of all<br />

parameters required by the EN 61557 st<strong>and</strong>ard as well as some auxiliary <strong>on</strong>es<br />

such as Installati<strong>on</strong> trac<strong>in</strong>g, C<strong>on</strong>t<strong>in</strong>uity us<strong>in</strong>g low test current, Varistor protecti<strong>on</strong><br />

device test etc.<br />

3. Highly professi<strong>on</strong>al multitester for the complete test<strong>in</strong>g of Earth Resistances<br />

<strong>and</strong><br />

Insulati<strong>on</strong> Resistances<br />

Earth Insulati<strong>on</strong> Tester.<br />

It is <strong>in</strong>tended for eng<strong>in</strong>eers <strong>and</strong> <strong>electric</strong>ians who are deal<strong>in</strong>g with the <strong>in</strong>stall<strong>in</strong>g,<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g, servic<strong>in</strong>g <strong>and</strong> approv<strong>in</strong>g of earth<strong>in</strong>g systems <strong>and</strong> <strong>in</strong>sulati<strong>on</strong> <strong>on</strong><br />

<strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s. It measures a wide range of auxiliary measurements<br />

such as Current, C<strong>on</strong>t<strong>in</strong>uity of protecti<strong>on</strong> devices, C<strong>on</strong>t<strong>in</strong>uity us<strong>in</strong>g low-test<br />

current, Varistor protecti<strong>on</strong> device test etc.<br />

4. High professi<strong>on</strong>al portable three-phase Harm<strong>on</strong>ic - Power analyzer.<br />

It is <strong>in</strong>tended for high dem<strong>and</strong><strong>in</strong>g measurers, who are deal<strong>in</strong>g with <strong>in</strong>specti<strong>on</strong> of<br />

<strong>electric</strong>al energy quality. The advantage of the <strong>in</strong>strument is that it can m<strong>on</strong>itor<br />

all three phase currents <strong>and</strong> voltages <strong>on</strong> a three-phase system simultaneously.<br />

All the measurements run <strong>in</strong> real time (any period is c<strong>on</strong>trolled), results are<br />

recorded <strong>and</strong> can be used later for further analysis. The <strong>in</strong>strument operates<br />

aut<strong>on</strong>omously (<strong>in</strong>dependent of the c<strong>on</strong>nected ma<strong>in</strong>s voltage) thanks to <strong>in</strong>ternal<br />

battery power supply.<br />

109


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

7.1. Technical specificati<strong>on</strong>s Eurotest 61557<br />

Functi<strong>on</strong>s<br />

Insulati<strong>on</strong> resistance<br />

Meas. range Riso (Un ≥ 250V)...(0,008 ÷ 1000)MΩ<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Riso (MΩ)<br />

Un ≥ 250V<br />

(MΩ)<br />

0,000 ÷ 1,999 0,001<br />

2,00 ÷ 19,99 0,01 ±(2% of r. + 2D)<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1000 1 ±(10% of r.)<br />

Meas. range Riso (Un < 250V)..(0,012 ÷ 199,9)MΩ<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Riso (MΩ)<br />

Un < 250V<br />

(MΩ)<br />

0,000 ÷ 1,999 0,001<br />

2,00 ÷ 19,99 0,01 ±(5% of r. + 3D)<br />

20,0 ÷ 199,9 0,1<br />

*Specified accuracy is valid if Universal test cable<br />

is used while it is valid up to 20 MΩ if Tip<br />

Comm<strong>and</strong>er is used.<br />

Display range<br />

Test voltage<br />

(V)<br />

Resoluti<strong>on</strong><br />

(V)<br />

Accuracy<br />

0 ÷ 1200 1 ±(2% of r. + 3D)<br />

Nom. test voltage.......50, 100, 250, 500, 1000Vd.c.<br />

Current capability of test generator<br />

(at Utest. > UN) ............................................>1mA<br />

Short-circuit test current............................... 200 mA<br />

Compensati<strong>on</strong> of test leads (up to 5 Ω).............yes<br />

Sound signal.....................................................yes<br />

Automatic polarity exchange.............................yes<br />

Measurement mode................s<strong>in</strong>gle measurement<br />

C<strong>on</strong>t<strong>in</strong>uity<br />

Display range<br />

R (Ω)<br />

Resoluti<strong>on</strong><br />

(Ω)<br />

0,0 ÷ 199,9 0,1<br />

200 ÷ 2000 1<br />

Accuracy<br />

±(3% of r. + 3D)<br />

Open-term<strong>in</strong>al test voltage .....................4 - 7 Vd.c.<br />

Short-circuit test current............................. < 7 mA<br />

Sound signal....................................................yes<br />

Measurement mode........c<strong>on</strong>t<strong>in</strong>uous measurement<br />

Earth Resistance, four-lead method<br />

Meas. range RE............................(0,11 ÷ 19,99k)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

(Ω)<br />

(Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 ±(2% of r. + 3D)<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10 ±(5% of r.)<br />

Additi<strong>on</strong>al spike resistance error<br />

at Rc max. or Rp max.................... ±(3% of r. + 5D)<br />

Rc max.........(4kΩ + 100RE) or 50kΩ (lower value)<br />

Rc = Rc1 +Rc2 (Earth Resistivity)<br />

Rp max.........(4kΩ + 100RE) or 50kΩ (lower value)<br />

Rp = Rp1 +Rp2 (Earth Resistivity)<br />

Additi<strong>on</strong>al error<br />

at 20 V voltage noise (50 Hz)....... ±(5% of r. +10D)<br />

Open-term<strong>in</strong>al test voltage ........................40 Va.c.<br />

Test voltage shape.................................s<strong>in</strong>e wave<br />

Test voltage frequency................................125 Hz<br />

Short-circuit test current............................< 20 mA<br />

Automatic test of current <strong>and</strong><br />

potential test probe resistance..........................yes<br />

Automatic test of voltage noise.........................yes<br />

Earth Resistance us<strong>in</strong>g <strong>on</strong>e clamp<br />

<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with four-lead<br />

method<br />

All technical data listed under four-lead<br />

method are valid, additi<strong>on</strong>al <strong>on</strong>es are listed<br />

below:<br />

Additi<strong>on</strong>al error at 3A noise current generated<br />

by ma<strong>in</strong>s voltage (50 Hz)............. ±(5% of r. + 10D)<br />

Additi<strong>on</strong>al error<br />

of resistance ratio.....................Rpartial/Rtotal ⋅ 1%<br />

Rpartial = resistance measured with clamp<br />

Rtotal = resistance of total earthig system<br />

110


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Indicati<strong>on</strong> <strong>in</strong> case of low clamp current ....< 0,5 mA<br />

Automatic test of noise current..........................yes<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Earth Resistance us<strong>in</strong>g two clamps<br />

Meas. range RE ................................(0,08 ÷ 100)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

RE (Ω) (Ω)<br />

0,00 ÷ 19,99 0,01 ±(10% of r. +2D)<br />

20,0 ÷ 100,0 0,1 ±(20% of r.)<br />

*............distance between test clamps >25 cm<br />

Additi<strong>on</strong>al error at 3A noise current generated<br />

by ma<strong>in</strong>s voltage (50 Hz)...........±(10% of r. + 10D)<br />

Automatic test of noise current..........................yes<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Specific Earth Resistance (resistivity)<br />

All technical data listed under four-lead method are<br />

valid, except display range table, see below.<br />

Display range<br />

ρ (Ωm)<br />

Resoluti<strong>on</strong><br />

(Ωm)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10<br />

20,0k ÷ 199,9k 0.1k<br />

200k ÷ 2000k 1k<br />

Accuracy<br />

C<strong>on</strong>sider<br />

accuracy of RE<br />

Measurement<br />

ρ = 2πaRE<br />

Distance between test rods.................1 up to 30 m<br />

RCD – General data<br />

Nom<strong>in</strong>al differential<br />

currents................ 10, 30, 100, 300, 500, 1000 mA<br />

Accuracy of actual differential currents:<br />

-0 / +0,1⋅I∆; I∆ = I∆N, 2⋅I∆N, 5⋅I∆N<br />

-0,1⋅I∆N / +0; I∆ = 0,5⋅I∆N<br />

Test current shape..................................s<strong>in</strong>e wave<br />

Test current start at.................................0° or 180°<br />

RCD type..............................St<strong>and</strong>ard or Selective<br />

Nom<strong>in</strong>al <strong>in</strong>put voltage...........230/115V/ 45 - 65 Hz<br />

RCD – C<strong>on</strong>tact Voltage Uc<br />

Meas. range Uc...................................(10 ÷ 100)V<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Uc (V) (V)<br />

0,00 ÷ 9,99 0,01 (-0 / + 10)% of r.<br />

± 0,2V<br />

10,0 ÷ 100,0 0,1 (-0 / + 10)% of r.<br />

*The accuracy is valid if:<br />

Ma<strong>in</strong>s voltage is stable dur<strong>in</strong>g the<br />

meas.<br />

PE term<strong>in</strong>al is free of <strong>in</strong>terfer<strong>in</strong>g<br />

voltages<br />

Measurement pr<strong>in</strong>ciple...with or without aux. probe<br />

Test current..............................................< 0,5 I ∆N<br />

Limit c<strong>on</strong>tact voltage...............................25 or 50 V<br />

The C<strong>on</strong>tact Voltage is calculated to<br />

I∆N (st<strong>and</strong>ard type) or to 2I∆N (selective type).<br />

RCD – Earth (Fault Loop)<br />

Resistance RE/RL<br />

Display range<br />

RE (Ω)<br />

Resoluti<strong>on</strong><br />

(Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 10,00k 0,01k<br />

Accuracy<br />

C<strong>on</strong>sider acc. of<br />

Uc meas.<br />

Calculati<strong>on</strong>.................................RE (RL) = Uc / I∆N<br />

Measurement pr<strong>in</strong>ciple.....with auxiliary probe (RE)<br />

without auxiliary probe (RL)<br />

Test current..............................................< 0,5 I ∆N<br />

RCD – Trip out time<br />

Test current........................0,5 I ∆N, I∆N, 2 I∆N, 5 I∆N<br />

(multiplier 5 is not available if I∆N = 1000mA)<br />

Meas. range t (G type)....(0ms ÷ upper disp value)<br />

Display range t Resoluti<strong>on</strong> Accuracy<br />

t (ms) G type (ms)<br />

0 ÷ 300 1<br />

(1/2I∆N, I∆N)<br />

0 ÷ 150 1<br />

±3ms<br />

(2I∆N)<br />

0 ÷ 40<br />

(5I∆N)<br />

1<br />

Meas. range t (S type).....(0ms ÷ upper disp value)<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

t (ms) S type (ms)<br />

0 ÷ 500 1<br />

(1/2I∆N, I∆N)<br />

0 ÷ 200 1<br />

±3ms<br />

(2I∆N)<br />

0 ÷ 150<br />

(5I∆N)<br />

1<br />

RCD – Tripp<strong>in</strong>g current<br />

Meas. range I∆ ..................................(0,2 ÷ 1,1)I∆N<br />

Display range<br />

I∆<br />

Resoluti<strong>on</strong> Accuracy<br />

0,2I∆N ÷ 1,1I∆N 0,05I∆N ±0,1I∆N<br />

111


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Meas. range t∆.....................................(0 ÷ 300)ms<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

t∆ (ms) (ms)<br />

0 ÷ 300 1 ±3ms<br />

Meas. range Uci..................................(10 ÷ 100)V<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Uci (V) (V)<br />

0,00 ÷ 9,99 0,01 (0 ÷ 10)% of r.<br />

± 0,2V<br />

10,0 ÷ 100,0 0,1 (0 ÷ 10)% of r.<br />

*The accuracy is valid if:<br />

Ma<strong>in</strong>s voltage is stable dur<strong>in</strong>g the meas.<br />

PE term<strong>in</strong>al is free of <strong>in</strong>terfer<strong>in</strong>g voltages<br />

Uci voltage is calculated to Tripp<strong>in</strong>g current I∆<br />

Fault Loop Impedance<br />

<strong>and</strong> Prospective Short-circuit Current<br />

Meas. range ZL-PE, R, Xl.................(0,11 ÷ 1999)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

ZL-PE, R, Xl<br />

(Ω)<br />

(Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 ±(2% of r. + 3D)<br />

200 ÷ 2000 1<br />

Display range<br />

Ipsc (A)<br />

Resoluti<strong>on</strong><br />

(A)<br />

0,06 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10<br />

20,0k ÷ 24,4k 100<br />

Accuracy<br />

C<strong>on</strong>sider<br />

Accuracy<br />

of ZL-PE<br />

L<strong>in</strong>e Impedance <strong>and</strong> Prospective<br />

Short-circuit current<br />

Meas. range ZL-N, R, Xl..................(0,11 ÷ 1999)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

ZL-N, R, Xl<br />

(Ω)<br />

(Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 ±(2% of r. + 3D)<br />

200 ÷ 2000 1<br />

Display range<br />

Ipsc (A)<br />

Resoluti<strong>on</strong><br />

(A)<br />

0,06 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10<br />

20,0k ÷ 42,4k 100<br />

Accuracy<br />

C<strong>on</strong>sider acc.<br />

of ZL-N<br />

Ipsc calculati<strong>on</strong>:......................Ipsc = U N⋅1,06 / ZL-N<br />

UN = 115 V; (100 V ≤ UL-N < 160 V)<br />

UN = 230 V; (160 V ≤ UL-N ≤ 264 V)<br />

UN = 400 V; (264 V < UL-N ≤ 440 V)<br />

Max. test current (at 400 V).................40 A (10ms)<br />

Nom<strong>in</strong>al <strong>in</strong>put voltage...400/230/115 V/ 45 – 65 Hz<br />

Resistance of N-PE Loop <strong>and</strong><br />

Prospective Short-circuit Current<br />

Meas. range RN-PE.........................(0,11 ÷ 1999)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

RN-PE (Ω) (Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 ±(2% of r. + 3D)<br />

200 ÷ 1999 1<br />

Ipsc calculati<strong>on</strong>:....................Ipsc = U N⋅1,06 / ZL-PE<br />

UN = 115 V; (100 V ≤ UL-PE < 160 V)<br />

UN = 230 V; (160 V ≤ UL-PE ≤ 264 V)<br />

Max. test current (at 230 V).................23 A (10ms)<br />

Nom<strong>in</strong>al <strong>in</strong>put voltage...........230/115V/ 45 - 65 Hz<br />

C<strong>on</strong>tact Voltage at Short-circuit Current<br />

Display range<br />

Ipsc (A)<br />

Resoluti<strong>on</strong><br />

(A)<br />

0,06 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10<br />

20,0k ÷ 24,4k 100<br />

Accuracy<br />

C<strong>on</strong>sider acc.<br />

of RL-PE<br />

Display range<br />

Uc (V)<br />

Resoluti<strong>on</strong><br />

(V)<br />

0,00 ÷ 9,99 0,01<br />

10,0 ÷ 99,9 0,1<br />

100 ÷ 264 1<br />

Accuracy<br />

±(3% of r. +<br />

0,02Ω ⋅ Ipsc)<br />

Ipsc calculati<strong>on</strong>:....................Ipsc = U N⋅1,06 / ZL-PE<br />

UN = 115 V; (100 V ≤ UL-PE < 160 V)<br />

UN = 230 V; (160 V ≤ UL-PE ≤ 264 V)<br />

Technical data for generator see under Earth<br />

Resistance, four-lead method.<br />

Max. test current (at 230 V).............................23 A<br />

Nom<strong>in</strong>al <strong>in</strong>put voltage..........230/115 V/ 45 - 65 Hz<br />

Phase rotati<strong>on</strong><br />

Nom<strong>in</strong>al ma<strong>in</strong>s voltage range...............100 ÷ 440V<br />

Result displayed................................1.2.3 or 2.1.3<br />

Voltage (except <strong>in</strong> harm<strong>on</strong>ic functi<strong>on</strong>)<br />

112


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Display range Resoluti<strong>on</strong> Accuracy<br />

U (V)<br />

(V)<br />

0 ÷ 440 1 ±(2% of r. + 2D)<br />

Nom<strong>in</strong>al frequency range......................45 – 65 Hz<br />

Current (True RMS)<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

I (A)<br />

(A)<br />

0,0m ÷ 99,9m 0,1m ±(5% of r. + 3D)<br />

100m ÷ 999m 1m<br />

1,00 ÷ 9,99 0,01 ±(5% of r.)<br />

10,0 ÷ 99,9 0,1<br />

100 ÷ 200 1<br />

Input resistance.................................10 Ω/1Wmax.<br />

Measurement pr<strong>in</strong>ciple.........current clamp 1A/1mA<br />

Nom<strong>in</strong>al frequency...................................50/60 Hz<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Peak Current<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

I (A)<br />

(A)<br />

5 ÷ 280 1 ±(5% of r.)<br />

Sampl<strong>in</strong>g rate.......................2 measurements / ms<br />

Measurement pr<strong>in</strong>ciple......................current clamp<br />

Nom<strong>in</strong>al frequency...................................50/60 Hz<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Varistor Overvoltage Protecti<strong>on</strong> Devices<br />

(Breakdown voltage)<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

U (V)<br />

(V)<br />

0 ÷ 1000 1 ±(5% of r. +<br />

10V)<br />

Measurement pr<strong>in</strong>ciple................. d.c.voltage ramp<br />

Test voltage slope ..................................... 500 V/s<br />

Treshold current............................................1 mA<br />

Fault/Fuse/C<strong>on</strong>ductor locator<br />

Pr<strong>in</strong>ciple......L<strong>in</strong>e load<strong>in</strong>g or Impos<strong>in</strong>g of test signal<br />

Load<strong>in</strong>g (ma<strong>in</strong>s voltage range 30÷264V/45÷65Hz):<br />

Is < 1A pulsed<br />

fs = 3600 Hz<br />

Impos<strong>in</strong>g (voltage free <strong>in</strong>stallati<strong>on</strong>):<br />

Us < 7V pulsed<br />

Power<br />

fs = 3600 Hz<br />

Isc < 50mA pulsed<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

(W/VAr/VA) (W/VAr/VA)<br />

0,00 ÷ 9,99 0,01<br />

10,0 ÷ 99,9 0,1<br />

100 ÷ 999 1<br />

±(7% of r. + 1D)<br />

1,00k ÷ 9,99k 0,01k<br />

10,0k ÷ 88,0k 0,1k<br />

*(U: 10 ÷ 440V, I: 10mA ÷ 200A)<br />

Pr<strong>in</strong>ciple......................s<strong>in</strong>gle-phase, clamp current<br />

Power type...........................................W, VAr, VA<br />

Nom<strong>in</strong>al <strong>in</strong>put voltage.....400/230/115 V / 50/60 Hz<br />

Display range (cos ϕ)...........................0,00 – 1,00<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Energy<br />

Display range<br />

W (Wh)<br />

Resoluti<strong>on</strong><br />

(Wh)<br />

0,000 ÷ 1,999 0,001<br />

2,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 0,01k<br />

20,0k ÷ 199,9k 0,1k<br />

200k ÷ 1999k 1k<br />

Accuracy<br />

±(7% of r. + 1D)<br />

Calculati<strong>on</strong>...........................................W = ∑ P⋅ ∆t<br />

Time <strong>in</strong>terval...............presetable 1m<strong>in</strong> up to 25 hr<br />

Nom<strong>in</strong>al <strong>in</strong>put voltage......400/230/115V / 50/60 Hz<br />

Harm<strong>on</strong>ic Analysis (voltage <strong>and</strong><br />

current)<br />

Voltage measurement (True RMS):<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

U (V)<br />

(V)<br />

10 ÷ 440 1 ±(5% of r. + 3D)<br />

Current measurement (True RMS):<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

I (A)<br />

(A)<br />

10,0m ÷ 99,9m 0,1m ±(5% of r. + 3D)<br />

100m ÷ 999m 1m<br />

1,00 ÷ 9,99 0,01 ±(5% of r.)<br />

10,0 ÷ 99,9 0,1<br />

100 ÷ 200 1<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

THD (%) (%)<br />

0,0 ÷ 100,0 0,1 ±(5% of r. + 5D)<br />

113


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Display range<br />

Harm<strong>on</strong>ics up<br />

to 21-th (%)<br />

Resoluti<strong>on</strong><br />

(%)<br />

Accuracy<br />

0,0 ÷ 100,0 0,1 ±(5% of r. + 5D)<br />

Nom<strong>in</strong>al frequency ..................................50/60 Hz<br />

Clamp error is to be c<strong>on</strong>sidered additi<strong>on</strong>ally.<br />

Display of result............<strong>in</strong> % of total effective value<br />

General characteristics Eurotest 61557<br />

Power supply... 6Vd.c. (4 × 1,5V battery IEC LR14)<br />

Automatic comparis<strong>on</strong> of test result with set<br />

high <strong>and</strong> low limit value.....................................yes<br />

Visual <strong>and</strong> sound warn<strong>in</strong>gs...............................yes<br />

Dimensi<strong>on</strong>s (w × h × d)...........26,5 × 11 × 18,5 cm<br />

Weight (without accessories, with batteries)..2,1 kg<br />

Display... matrix LCD with backlight, 128 × 64 dots<br />

Memories...............................2000 measurements<br />

Computer c<strong>on</strong>necti<strong>on</strong>..................................RS 232<br />

Protecti<strong>on</strong> classificati<strong>on</strong>...............double <strong>in</strong>sulati<strong>on</strong><br />

Overvoltage cat. .........CATIII/300V or CATII/600V<br />

Polluti<strong>on</strong> degree...................................................2<br />

Degree of protecti<strong>on</strong>......................................IP 44<br />

Work<strong>in</strong>g temp. range ...............................0 ÷ 40 °C<br />

Nom<strong>in</strong>al (reference) temp. range............10 ÷ 30 °C<br />

Max. humidity ........................85 % RH (0 ÷ 40°C)<br />

Nom<strong>in</strong>al (reference) hum. range....... 40 ÷ 60 % RH<br />

Auto power off..................................................yes<br />

114


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

7.2. Technical specificati<strong>on</strong>s Instaltest 61557<br />

Functi<strong>on</strong>s<br />

Insulati<strong>on</strong> resistance<br />

Meas. range Riso (Un ≥ 250V)...(0,008 ÷ 1000)MΩ<br />

..................................<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Riso (MΩ)<br />

Un ≥ 250V<br />

(MΩ)<br />

0,000 ÷ 1,999 0,001<br />

2,00 ÷ 19,99 0,01 ±(2% of r. + 2D)<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1000 1 ±(10% of r.)<br />

Meas. range Riso (Un < 250V)..(0,012 ÷ 199,9)MΩ<br />

..................................<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Riso (MΩ)<br />

Un < 250V<br />

(MΩ)<br />

0,000 ÷ 1,999 0,001<br />

2,00 ÷ 19,99 0,01 ±(5% of r. + 3D)<br />

20,0 ÷ 199,9 0,1<br />

*Specified accuracy is valid if Universal test cable<br />

is used while it is valid up to 20 MΩ if Tip<br />

Comm<strong>and</strong>er is used.<br />

Display range<br />

Test voltage<br />

(V)<br />

Resoluti<strong>on</strong><br />

(V)<br />

Accuracy<br />

0 ÷ 1200 1 ±(2% of r. + 3D)<br />

Nom. test voltage....50 ÷ 1000Vd.c. <strong>in</strong> steps of 10V<br />

Current capability of test generator<br />

(at Utest. > UN) ............................................>1mA<br />

Short-circuit test current............................... 200 mA<br />

Compensati<strong>on</strong> of test leads (up to 5 Ω).............yes<br />

Sound signal.....................................................yes<br />

Automatic polarity exchange.............................yes<br />

Measurement mode................s<strong>in</strong>gle measurement<br />

C<strong>on</strong>t<strong>in</strong>uity<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

R (Ω)<br />

(Ω)<br />

0,0 ÷ 199,9 0,1 ±(3% of r. + 3D)<br />

200 ÷ 2000 1<br />

Open-term<strong>in</strong>al test voltage .....................4 - 7 Vd.c.<br />

Short-circuit test current............................. < 7 mA<br />

Sound signal....................................................yes<br />

Measurement mode........c<strong>on</strong>t<strong>in</strong>uous measurement<br />

RCD – general data<br />

Nom<strong>in</strong>al differential<br />

currents.................10, 30, 100, 300, 500, 1000 mA<br />

Accuracy of actual differential currents:<br />

-0 / +0,1⋅I∆; I∆ = I∆N, 2⋅I∆N, 5⋅I∆N<br />

-0,1⋅I∆N / +0; I∆ = 0,5⋅I∆N<br />

Accuracy of actual diff. currents..........(-0 / +0,1)I ∆N<br />

Test current shape.................................s<strong>in</strong>e wave<br />

Test current start at................................0° or 180°<br />

RCD type.............................St<strong>and</strong>ard or Selective<br />

RCD – C<strong>on</strong>tact Voltage Uc<br />

Meas. range Uc................................... (10 ÷ 100)V<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Uc (V) (V)<br />

0,00 ÷ 9,99 0,01 (-0 / + 10)% of r.<br />

± 0,2V<br />

10,0 ÷ 100,0 0,1 (-0 / + 10)% of r.<br />

*The accuracy is valid if:<br />

Ma<strong>in</strong>s voltage is stable dur<strong>in</strong>g the meas.<br />

PE term<strong>in</strong>al is free of <strong>in</strong>terfer<strong>in</strong>g voltage<br />

Measurement pr<strong>in</strong>ciple............. without aux. probe<br />

Test current..............................................< 0,5 I ∆N<br />

Limit c<strong>on</strong>tact voltage...............................25 or 50 V<br />

The C<strong>on</strong>tact Voltage is calculated to I∆N<br />

(st<strong>and</strong>ard type) or to 2I∆N (selective type).<br />

RCD – Fault Loop Resistance RL<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

RL (Ω) (Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 C<strong>on</strong>sider acc. of<br />

200 ÷ 1999 1<br />

Uc <strong>and</strong> I∆N<br />

2,00k ÷ 10,00k 0,01k<br />

RL = Uc / I∆n<br />

Calculati<strong>on</strong>.........................................R L = Uc / I∆N<br />

Measurement pr<strong>in</strong>ciple........without auxiliary probe<br />

Test current..............................................< 0,5 I ∆N<br />

115


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

RCD – Trip out time<br />

Test current.......................0,5 I ∆N, I∆N, 2 I∆N, 5 I∆N<br />

(multiplier 5 is not available if I∆N = 1000mA)<br />

Meas. range t (G type)....(0ms ÷ upper disp. value)<br />

..............................................................................<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

t (ms) G type (ms)<br />

0 ÷ 300 1<br />

(1/2I∆N, I∆N)<br />

0 ÷ 150 (2I∆N) 1<br />

±3ms<br />

0 ÷ 40 (5I∆N) 1<br />

Meas. range t (S type)....(0ms ÷ upper disp. value)<br />

..............................................................................<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

t (ms) S type (ms)<br />

0 ÷ 500 1<br />

(1/2I∆N, I∆N)<br />

0 ÷ 200 (2I∆N) 1<br />

±3ms<br />

0 ÷ 150 (5I∆N) 1<br />

RCD – Tripp<strong>in</strong>g current<br />

Meas. range I∆..................................(0,2 ÷ 1,1) I∆N<br />

Display range<br />

I∆<br />

Resoluti<strong>on</strong> Accuracy<br />

0,2I∆N ÷ 1,1I∆N 0,05I∆N ±0,1I∆N<br />

Meas. range t∆...................................(10 ÷ 300)ms<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

t∆ (ms) (ms)<br />

0 ÷ 300 1 ±3ms<br />

Meas. range Uci..................................(10 ÷ 100)V<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

Uci (V) (V)<br />

0,00 ÷ 9,99 0,01 (-0/+10)% of r.<br />

± 0,2V<br />

10,0 ÷ 100,0 0,1 (-0/+10)% of r.<br />

*The accuracy is valid if:<br />

Ma<strong>in</strong>s voltage is stable dur<strong>in</strong>g the meas.<br />

PE term<strong>in</strong>al is free of <strong>in</strong>terfer<strong>in</strong>g voltage<br />

Uci voltage is calculated to Tripp<strong>in</strong>g current I∆.<br />

Fault Loop Resistance<br />

<strong>and</strong> Prospective Short-circuit Current<br />

Meas. range RL-PE..........................(0,20 ÷ 1999)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

RL-PE, (Ω) (Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 ±(5% of r. + 5D)<br />

200 ÷ 1999 1<br />

Display range<br />

Ipsc (A)<br />

Resoluti<strong>on</strong><br />

(A)<br />

0,06 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10<br />

20,0k ÷ 24,4k 100<br />

Accuracy<br />

C<strong>on</strong>sider<br />

accuracy<br />

of RL-PE<br />

Ipsc calculati<strong>on</strong>:....................Ipsc = U N⋅1,06 / RL-PE<br />

UN = 115 V; (100 V ≤ UL-PE < 160 V)<br />

UN = 230 V; (160 V ≤ UL-PE ≤ 264 V)<br />

Max. test current (at 230 V)........................... 2,5 A<br />

Nom<strong>in</strong>al voltage range .......100 ÷264V / 45 - 65 Hz<br />

L<strong>in</strong>e Resistance <strong>and</strong> Prospective<br />

short-circuit current<br />

Meas. range RL-N ...........................(0,20 ÷ 1999)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

RL-N, (Ω) (Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 ±(5% of r. + 5D)<br />

200 ÷ 1999 1<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

Ipsc (A) (A)<br />

0,06 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 C<strong>on</strong>sider<br />

200 ÷ 1999 1<br />

accuracy<br />

2,00k ÷ 19,99k 10<br />

of RL-N<br />

20,0k ÷ 24,4k 100<br />

Ipsc calculati<strong>on</strong>:.....................Ipsc = U N⋅1,06 / RL-N<br />

UN = 115 V; (100 V ≤ UL-N < 160 V)<br />

UN = 230 V; (160 V ≤ UL-N ≤ 264 V)<br />

Max. test current (at 230 V)........................... 2,5 A<br />

Nom<strong>in</strong>al voltage range .......100 ÷264V / 45 - 65 Hz<br />

Phase rotati<strong>on</strong><br />

Nom<strong>in</strong>al ma<strong>in</strong>s voltage range...............100 ÷ 440V<br />

Result displayed................................1.2.3 or 2.1.3<br />

Voltage<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

U (V)<br />

(V)<br />

0 ÷ 264 1 ±(2% of r. + 2D)<br />

Nom<strong>in</strong>al frequency range......................45 – 65 Hz<br />

Frequency<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

f (Hz)<br />

(Hz)<br />

45,0 ÷ 65,0 0,1 ±(0,1% of r.<br />

+1D)<br />

Nom<strong>in</strong>al voltage range ...........................10 ÷ 440V<br />

116


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Varistor Overvoltage Protecti<strong>on</strong> Devices<br />

(Breakdown voltage)<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

U (V)<br />

(V)<br />

0 ÷ 1000 1 ±(5% of r. +<br />

10V)<br />

Measurement pr<strong>in</strong>ciple................. d.c.voltage ramp<br />

Test voltage slope ..................................... 500 V/s<br />

Threshold current..........................................1 mA<br />

Fault/Fuse/C<strong>on</strong>ductor locator<br />

Pr<strong>in</strong>ciple......L<strong>in</strong>e load<strong>in</strong>g or Impos<strong>in</strong>g of test signal<br />

Load<strong>in</strong>g (ma<strong>in</strong>s voltage range<br />

30÷264V/45÷65Hz):<br />

Is < 1A pulsed<br />

fs = 3600 Hz<br />

Impos<strong>in</strong>g (voltage free <strong>in</strong>stallati<strong>on</strong>):<br />

Us < 7V pulsed<br />

fs = 3600 Hz<br />

Isc < 50mA pulsed<br />

Voltage Logg<strong>in</strong>g<br />

F<strong>in</strong>al result............UAVG, Umax/Nmax, Um<strong>in</strong>/Nm<strong>in</strong><br />

Input voltage range ....................................0 ÷440V<br />

Sampl<strong>in</strong>g <strong>on</strong>ce per................1s÷99s <strong>in</strong> steps of 1s<br />

Total number of samples............................1÷1999<br />

General characteristics Instaltest 61557<br />

Power supply... 6Vd.c. (4 × 1,5V battery IEC LR14)<br />

Automatic comparis<strong>on</strong> of test result with set<br />

high <strong>and</strong> low limit value.....................................yes<br />

Visual <strong>and</strong> sound warn<strong>in</strong>gs...............................yes<br />

Dimensi<strong>on</strong>s (w × h × d)...........26,5 × 11 × 18,5 cm<br />

Weight (without accessories, with batteries)..1,8 kg<br />

Display.................................... LCD with backlight<br />

Memories...............................1000 measurements<br />

Computer c<strong>on</strong>necti<strong>on</strong>..................................RS 232<br />

Protecti<strong>on</strong> classificati<strong>on</strong>...............double <strong>in</strong>sulati<strong>on</strong><br />

Overvoltage cat..........CATIII/300V or CATII/600V<br />

Polluti<strong>on</strong> degree...................................................2<br />

Degree of protecti<strong>on</strong>......................................IP 44<br />

Work<strong>in</strong>g temp. range ...............................0 ÷ 40 °C<br />

Nom<strong>in</strong>al (reference) temp. range............10 ÷ 30 °C<br />

Max. humidity ........................85 % RH (0 ÷ 40°C)<br />

Nom<strong>in</strong>al (reference) hum. range....... 40 ÷ 60 % RH<br />

Auto power off..................................................yes<br />

117


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

7.3. Technical specificati<strong>on</strong>s Earth Insulati<strong>on</strong> Tester<br />

Functi<strong>on</strong>s<br />

Insulati<strong>on</strong> Resistance<br />

Meas. range Riso (Un ≥ 250V)..(0,008 ÷ 29,9k)MΩ<br />

Display range<br />

Riso (Ω)<br />

Un ≥ 250V<br />

Resoluti<strong>on</strong><br />

(MΩ)<br />

Accuracy*<br />

0,000M ÷ 1,999M 0,001<br />

2,00M ÷ 19,99M 0,01<br />

20,0M ÷ 199,9M 0,1<br />

200M ÷ 1999M 1<br />

2,00G ÷ 19,99G 10<br />

20,0G ÷ 29,9G 100<br />

±(2% of r. +<br />

2D)<br />

±(10% of r.)<br />

Meas. range Riso (Un < 250V)..(0,012 ÷ 199,9)MΩ<br />

Display range<br />

Riso (Ω)<br />

Un < 250V<br />

Resoluti<strong>on</strong><br />

(MΩ)<br />

Accuracy*<br />

0,000M ÷ 1,999M 0,001<br />

2,00M ÷ 19,99M 0,01<br />

20,0M ÷ 199,9M 0,1<br />

±(5% of r. +<br />

3D)<br />

*Specified accuracy is valid if Universal test<br />

cable is used while it is valid up to 20 MΩ if Tip<br />

Comm<strong>and</strong>er is used.<br />

Display range<br />

Test voltage<br />

(V)<br />

Resoluti<strong>on</strong><br />

(V)<br />

Accuracy<br />

0 ÷ 1200 1 ±(2% of r. + 3D)<br />

Nom. test voltage...50 ÷ 1000Vd.c. <strong>in</strong> steps of 10 V<br />

Current capability of test generator<br />

(at Utest. > UN) ............................................>1mA<br />

Short-circuit test current............................... 200 mA<br />

Compensati<strong>on</strong> of test leads (up to 5 Ω).............yes<br />

Sound signal.....................................................yes<br />

Automatic polarity exchange.............................yes<br />

Measurement mode................s<strong>in</strong>gle measurement<br />

C<strong>on</strong>t<strong>in</strong>uity<br />

Display range<br />

R (Ω)<br />

Resoluti<strong>on</strong><br />

(Ω)<br />

0,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

Accuracy<br />

±(3% of r. + 3D)<br />

Open-term<strong>in</strong>al test voltage.....................4 - 7 Vd.c.<br />

Short-circuit test current..............................< 7 mA<br />

Sound signal (R > 20Ω)....................................yes<br />

Measurement mode........c<strong>on</strong>t<strong>in</strong>uous measurement<br />

Earth Resistance four – lead method<br />

Meas. range RE ...........................(0,11 ÷ 19,99k)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

(Ω)<br />

(Ω)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1 ±(2% of r. + 3D)<br />

200 ÷ 999 1<br />

1,000 ÷ 1,999 1<br />

2,00k ÷ 19,99k 10 ±(5% of r.)<br />

Additi<strong>on</strong>al spike resistance error<br />

at Rc max. or Rp max................... ±(3% of r. + 5D)<br />

Rc max.......................................(4k Ω + 100RE) or<br />

50kΩ (whichever is lower)<br />

Rp max.......................................(4k Ω + 100RE) or<br />

50kΩ (whichever is lower)<br />

Additi<strong>on</strong>al error<br />

at 20 V voltage noise (50 Hz)........±(5% of r. +10D)<br />

Open-term<strong>in</strong>al test voltage........................40 Va.c.<br />

Test voltage shape .................................s<strong>in</strong>e wave<br />

Test voltage frequency.........................125/150 Hz<br />

Short-circuit test current............................< 20 mA<br />

Automatic test of current <strong>and</strong><br />

potential test probe resistance..........................yes<br />

Automatic test of voltage noise .........................yes<br />

Earth Resistance us<strong>in</strong>g <strong>on</strong>e clamp <strong>in</strong><br />

comb<strong>in</strong>ati<strong>on</strong> with four – lead method<br />

All technical data listed under four-lead method<br />

are valid, except display <strong>and</strong> meas. ranges, see<br />

adapted <strong>on</strong>es below.<br />

Meas. range RE .............................(0,11 ÷ 1,99k)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

(Ω)<br />

(Ω)<br />

0,00 ÷ 19,99 0,01<br />

118


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 999 1<br />

1,00k ÷ 1,99k 10<br />

Additi<strong>on</strong>al specificati<strong>on</strong>:<br />

±(2% of r. + 3D)<br />

Additi<strong>on</strong>al error at 3A noise current generated<br />

by ma<strong>in</strong>s voltage (50 Hz).............±(5% of r. + 10D)<br />

Noise current <strong>in</strong>dicati<strong>on</strong>................................>2,4A<br />

Additi<strong>on</strong>al error<br />

of resistance ratio....................Rpartial/Rtotal ⋅ 1%<br />

Rpartial = resistance measured with clamp<br />

Rtotal = resistance of earth<strong>in</strong>g system<br />

Indicati<strong>on</strong> <strong>in</strong> case of low clamp current ....< 0,5 mA<br />

Automatic test of noise current..........................yes<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Earth Resistance us<strong>in</strong>g two clamps<br />

Meas. range RE ................................(0,08 ÷ 100)Ω<br />

Display range Resoluti<strong>on</strong> Accuracy*<br />

RE (Ω) (Ω)<br />

0,00 ÷ 19,99 0,01 ±(10% of r. +2D)<br />

20,0 ÷ 100,0 0,1 ±(20% of r.)<br />

*Distance between test clamps >30 cm<br />

Additi<strong>on</strong>al error at 3A current noise generated<br />

by ma<strong>in</strong>s voltage (50 Hz)...........±(10% of r. + 10D)<br />

Automatic test of noise current..........................yes<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Specific Earth Resistance (resistivity)<br />

All technical data listed under four-lead method<br />

are valid, except display range table, see below.<br />

Display range Resoluti<strong>on</strong><br />

ρ (Ωm) (Ωm)<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10<br />

20,0k ÷ 199,9k 0.1k<br />

200k ÷ 999k<br />

(a < 8m)<br />

1k<br />

200k ÷ 1999k<br />

(a ≥ 8m)<br />

Display range<br />

ρ (Ωft)<br />

Resoluti<strong>on</strong><br />

(Ωft)<br />

Accuracy<br />

C<strong>on</strong>sider<br />

accuracy of RE<br />

measurement<br />

ρ = 2πaRE<br />

Accuracy<br />

0,00 ÷ 19,99 0,01<br />

20,0 ÷ 199,9 0,1<br />

200 ÷ 1999 1<br />

2,00k ÷ 19,99k 10<br />

20,0k ÷ 199,9k 0.1k<br />

200k ÷ 999k<br />

(a < 8ft)<br />

1k<br />

200k ÷ 1999k<br />

(a ≥ 8ft)<br />

Distance between test rods.............1 up to 30 m or<br />

1 up to 60 ft<br />

Voltage a.c./d.c.<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

U (V)<br />

(V)<br />

0 ÷ 600 1 ±(2% of r. + 2D)<br />

Nom<strong>in</strong>al frequency range...............45 – 65 Hz, d.c.<br />

Current (True RMS)<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

I (A)<br />

(A)<br />

0,0m ÷ 99,9m 0,1m ±(5% of r. + 3D)<br />

100m ÷ 999m 1m<br />

1,00 ÷ 9,99 0,01 ±(5% of r.)<br />

10,0 ÷ 99,9 0,1<br />

100 ÷ 200 1<br />

Input resistance........................................10 Ω/1W<br />

Measurement pr<strong>in</strong>ciple.........current clamp 1A/1mA<br />

Nom<strong>in</strong>al frequency...................................50/60 Hz<br />

Additi<strong>on</strong>al clamp error is to be c<strong>on</strong>sidered.<br />

Varistor overvoltage protecti<strong>on</strong> devices –<br />

Breakdown voltage<br />

Display range Resoluti<strong>on</strong> Accuracy<br />

U (V)<br />

(V)<br />

0 ÷ 1000 1 ±(5% of r. +<br />

10V)<br />

Measurement pr<strong>in</strong>ciple.................d.c.voltage ramp<br />

Test voltage slope......................................500 V/s<br />

Threshold current...........................................1 mA<br />

119


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

General characteristics<br />

Power supply.. 6 Vd.c. (4 × 1,5V battery IEC LR14)<br />

Automatic comparis<strong>on</strong> of test result with set<br />

high <strong>and</strong> low limit value.....................................yes<br />

Visual <strong>and</strong> sound warn<strong>in</strong>gs...............................yes<br />

Dimensi<strong>on</strong>s (w × h × d)...........26,5 × 11 × 18,5 cm<br />

Weight (without accessories, with batteries)...1,7kg<br />

Display.................................... LCD with backlight<br />

Memories...............................1000 measurements<br />

Computer c<strong>on</strong>necti<strong>on</strong>..................................RS 232<br />

Protecti<strong>on</strong> classificati<strong>on</strong>...............double <strong>in</strong>sulati<strong>on</strong><br />

Overvoltage cat. ........CATIII/300V or CATII/600 V<br />

Polluti<strong>on</strong> degree...................................................2<br />

Degree of protecti<strong>on</strong>......................................IP 44<br />

Work<strong>in</strong>g temp. range...............................0 ÷ 40 °C<br />

Nom<strong>in</strong>al (reference) temp. range ...........10 ÷ 30 °C<br />

Max. humidity ........................ 85 % RH (0 ÷ 40°C)<br />

Nom<strong>in</strong>al (reference) hum. range.......40 ÷ 60 % RH<br />

Auto power off..................................................yes<br />

120


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Patents<br />

METREL have registered <strong>and</strong> used the follow<strong>in</strong>g patents when develop<strong>in</strong>g their latest<br />

family of test <strong>in</strong>struments:<br />

v Patent for measurement of earth resistance <strong>in</strong> presence of noise<br />

signals.<br />

v Patent for measurement of c<strong>on</strong>tact voltage.<br />

v Patent for generati<strong>on</strong> of test current when test<strong>in</strong>g FI protecti<strong>on</strong> devices.<br />

v Patent <strong>on</strong> how to prevent double c<strong>on</strong>necti<strong>on</strong> of test cables <strong>and</strong><br />

communicati<strong>on</strong> cable.<br />

v Patent for measurement of l<strong>in</strong>e <strong>and</strong> loop impedance <strong>and</strong> prospective<br />

short-circuit current.<br />

121


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Cross-reference of important parameters <strong>on</strong> <strong>in</strong>struments<br />

produced by METREL<br />

Eurotest<br />

61557<br />

Instaltest<br />

61557<br />

Earth – Insul.<br />

Tester<br />

Parameter<br />

Insulati<strong>on</strong> resistance<br />

Display range 0,001 – 1000 MΩ 0,001 – 1000 MΩ 0,001M – 30GΩ<br />

Test voltage 50 V<br />

Test voltage 100 V<br />

Test voltage 250 V<br />

Test voltage 500 V<br />

Test voltage 1000 V<br />

Opti<strong>on</strong>al test voltage (50 – 1000 V) ⁄<br />

Test of varistor over-voltage<br />

protecti<strong>on</strong> devices<br />

Test range (c<strong>on</strong>t<strong>in</strong>uously) 0 – 1000 V 0 – 1000 V 0 – 1000 V<br />

C<strong>on</strong>t<strong>in</strong>uity of protecti<strong>on</strong> c<strong>on</strong>ductors<br />

Display range 0,01 – 2000 Ω 0,01 – 2000 Ω 0,01 – 2000 Ω<br />

Automatic polarity exchange<br />

Compensati<strong>on</strong> of test leads<br />

Possible test of <strong>in</strong>ductive loads<br />

Acoustic sygnal<br />

Low resistances<br />

(c<strong>on</strong>t<strong>in</strong>uous measurement)<br />

Display range 0,01 – 2000 Ω 0,01 – 2000 Ω 0,01 – 2000 Ω<br />

Acoustic sygnal<br />

Earth resistance (<strong>in</strong>ternal source) ⁄<br />

Display range 0,01 Ω – 20 kΩ ⁄ 0,01 Ω – 20 kΩ<br />

Measurement pr<strong>in</strong>ciple 4 ter., 2 probes ⁄ 4 ter., 2 probes<br />

Shape of test voltage s<strong>in</strong>e wave ⁄ s<strong>in</strong>e wave<br />

Measurement us<strong>in</strong>g <strong>on</strong>e test clamp ⁄<br />

Measurement us<strong>in</strong>g two test clamps ⁄<br />

Automatic test of Rc <strong>and</strong> Rp ⁄<br />

High immunity aga<strong>in</strong>st noise sygnal (patent) ⁄ (patent)<br />

Earth resistivity (specific earth resist.) ⁄<br />

Display range 0 – 2,5 MΩm ⁄ 0 – 1999 kΩm<br />

Measurement pr<strong>in</strong>ciple 4 ter., 4 probes ⁄ 4 ter., 4 probes<br />

Distance between test rods 1 – 30 m ⁄ 1 – 30 m<br />

RCD protecti<strong>on</strong> switches - General ⁄<br />

Nom<strong>in</strong>al differential currents<br />

⁄<br />

0,01; 0,03; 0,1; 0,3; 0,5; 1A<br />

Type of protecti<strong>on</strong> switches AC AC ⁄<br />

St<strong>and</strong>ard <strong>and</strong> selective switches ⁄<br />

Autimatic evaluati<strong>on</strong> of test result ⁄<br />

C<strong>on</strong>tact voltage (patent) ⁄<br />

Display range 0 – 100 V 0 – 100 V ⁄<br />

Measurement current < 0,5 I∆n < 0,5 I∆n ⁄<br />

Measurement without auxiliary test<br />

⁄<br />

probe<br />

Measurement with auxiliary test probe ⁄ ⁄<br />

Automatic recogniti<strong>on</strong> of c<strong>on</strong>nected<br />

⁄ ⁄<br />

auxiliary test probe<br />

Limit c<strong>on</strong>tact voltage 25 or 50 V 25 or 50 V ⁄<br />

Trip out time ⁄<br />

Display range 0 – 300 ms 0 – 300 ms ⁄<br />

122


<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

Test current (1/2, 1, 2, 5) × I∆n (1/2, 1, 2, 5) × I∆n ⁄<br />

Tripp<strong>in</strong>g current ⁄<br />

Display range 0,2 I∆n – 1,1 I∆n 0,2 I∆n – 1,1 I∆n ⁄<br />

Ris<strong>in</strong>g current <strong>in</strong> steps of 0,05 I∆n In steps of 0,05 I∆n ⁄<br />

Earth resistance (external source) ⁄<br />

Display range 0,01 Ω – 2 kΩ 0,01 Ω – 2 kΩ ⁄<br />

Measurement current < 0,5 I∆n < 0,5 I∆n ⁄<br />

Measurement without auxiliary test<br />

⁄<br />

probe<br />

Measurement with auxiliary test probe ⁄ ⁄<br />

Automatic recogniti<strong>on</strong> of c<strong>on</strong>nected<br />

⁄ ⁄<br />

uxiliary test probe<br />

Avtomatic test of RCD ⁄<br />

Fault loop impedance (Resistance) ⁄<br />

Display range 0,01 Ω – 2 kΩ 0,01 Ω – 2 kΩ ⁄<br />

Test current 23 A; 2,3 A 2,5 A ⁄<br />

Autimatic evaluati<strong>on</strong> of test result ⁄<br />

Measurement of c<strong>on</strong>tact voltage at<br />

⁄ ⁄<br />

prospective short-circuit current, us<strong>in</strong>g<br />

auxiliary test probe<br />

Prosp. short-circuit fault loop curr. ⁄<br />

Display range 0 – 23 kA 0 – 23 kA ⁄<br />

L<strong>in</strong>e Impedance (Resistance) ⁄<br />

Display range 0,01 Ω – 2 kΩ 0,01 Ω – 2 kΩ<br />

ZL-N (230 V) ⁄<br />

ZL-L (400 V) ⁄<br />

Prospect. short-circuit l<strong>in</strong>e current ⁄<br />

Display range 0 – 40 kA 0 – 40 kA ⁄<br />

Resistance of N - PE loop (without<br />

⁄ ⁄<br />

trip out RCD protecti<strong>on</strong> switch)<br />

Display range 0,01 – 2000 Ω ⁄ ⁄<br />

Phase rotati<strong>on</strong> ⁄<br />

Current (with clamp) ⁄<br />

Display range (two ranges) 1 mA – 200 A ⁄ 1 mA – 200 A<br />

Voltage<br />

Display range 1 V – 440 V 1 V – 440 V 1 V – 600 V<br />

Voltage record<strong>in</strong>g ⁄ ⁄<br />

Frequency ⁄ ⁄<br />

Display range ⁄ 45 – 65 Hz ⁄<br />

Installati<strong>on</strong> trac<strong>in</strong>g ⁄<br />

Installati<strong>on</strong> under voltage ⁄<br />

Voltage-free <strong>in</strong>stallati<strong>on</strong> ⁄<br />

Active power ⁄ ⁄<br />

Display range 0 – 88 kW ⁄ ⁄<br />

Reactive power ⁄ ⁄<br />

Display range 0 – 88 kW ⁄ ⁄<br />

Apparent power ⁄ ⁄<br />

Display range 0 – 88 kW ⁄ ⁄<br />

Energy ⁄ ⁄<br />

Display range 0 – 1999 kWh ⁄ ⁄<br />

Harm<strong>on</strong>ic analysis ⁄ ⁄<br />

Display range up to n = 21 st . ⁄ ⁄<br />

General<br />

123


RS 232 communicati<strong>on</strong><br />

Memories<br />

Display<br />

<str<strong>on</strong>g>Measurements</str<strong>on</strong>g> <strong>on</strong> <strong>electric</strong> <strong>in</strong>stallati<strong>on</strong>s <strong>in</strong> <strong>theory</strong> <strong>and</strong> <strong>practice</strong><br />

graphic LCD<br />

75 × 42 mm<br />

LCD<br />

75 × 42 mm<br />

Display backlight<br />

Coustic warn<strong>in</strong>gs<br />

Automatic power OFF<br />

PE – test electrode ⁄ ⁄<br />

Possible SW upgrade by means of<br />

Internet<br />

W<strong>in</strong>dows compatible SW<br />

⁄ ⁄<br />

LCD<br />

75 × 42 mm<br />

Questi<strong>on</strong>s, advice, suggesti<strong>on</strong>s, remarks…. In c<strong>on</strong>necti<strong>on</strong><br />

with measurements <strong>on</strong> <strong>electric</strong>al <strong>in</strong>stallati<strong>on</strong>s <strong>and</strong><br />

measurement equipment produced by<br />

METREL d.d.<br />

Ljubljanska 77<br />

SI-1354 Horjul<br />

Tel.: +386 1 75 58 200<br />

Fax: +386 1 75 49 226<br />

E-mail: metrel@metrel.si<br />

http://www.metrel.si<br />

124

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!