31.12.2013 Views

Keeping dry in the rain - European-coatings.com

Keeping dry in the rain - European-coatings.com

Keeping dry in the rain - European-coatings.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

.<br />

Quelle/Publication: <strong>European</strong> Coat<strong>in</strong>gs Journal<br />

Ausgabe/Issue: 09/2009<br />

Seite/Page: 1<br />

<strong>Keep<strong>in</strong>g</strong> <strong>dry</strong> <strong>in</strong> <strong>the</strong> ra<strong>in</strong><br />

Hydrophilic polyurethane (HPU) membranes are<br />

widely used <strong>in</strong> <strong>the</strong> construction of various types<br />

of ‘breathable’ fabrics. The history, formulation,<br />

application procedures and end-uses of <strong>the</strong>se materials<br />

are outl<strong>in</strong>ed. In addition to many different forms of<br />

functional cloth<strong>in</strong>g, HPU systems are used <strong>in</strong> a grow<strong>in</strong>g<br />

range of medical applications.<br />

Hydrophilic textile treatments enhance user <strong>com</strong>fort<br />

Robert Lomax<br />

As <strong>the</strong> name suggests, hydrophilic polymers have an<br />

unusual aff<strong>in</strong>ity for water. In <strong>the</strong> case of polyurethanes,<br />

this hydrophilic property spectrum ranges from polymers<br />

that are <strong>com</strong>pletely water-soluble to those with surfaces<br />

that merely allow better wick<strong>in</strong>g and wett<strong>in</strong>g. Hydrophilic<br />

polyurethanes (HPUs) used <strong>in</strong> <strong>the</strong> textile coat<strong>in</strong>g and<br />

lam<strong>in</strong>at<strong>in</strong>g <strong>in</strong>dustry fall somewhere <strong>in</strong> between <strong>the</strong>se two<br />

extremes.<br />

HPU membranes have a solid structure (typically 1530<br />

µm thick) which prevents <strong>in</strong>gress of liquid water, but<br />

transmits moisture vapour as <strong>in</strong>dividual water molecules<br />

via an enhanced diffusion mechanism [1]. They are<br />

easily dist<strong>in</strong>guished from alternative breathable membranes<br />

(made from PUs, PTFE or polyolef<strong>in</strong>s) which have a<br />

permanent microporous structure as shown <strong>in</strong> Figure 1.<br />

Not surpris<strong>in</strong>gly, HPUs are widely used <strong>in</strong> waterproof,<br />

breathable fabrics (WBFs). These products offer full<br />

wea<strong>the</strong>r protection, with <strong>the</strong> ability to allow perspiration to<br />

escape through <strong>the</strong> outer layer. Consequently, garments<br />

made from WBFs are less prone to condensation, and<br />

can provide a real <strong>the</strong>rmophysiological benefit, dependent<br />

on <strong>the</strong> wearer’s activity level and <strong>the</strong> ambient wea<strong>the</strong>r<br />

conditions.<br />

Development of HPUs <strong>com</strong>menced <strong>in</strong> 1970s<br />

Our HPU technology stems from extensive polymer<br />

research carried out at <strong>the</strong> Shirley Institute, Manchester,<br />

UK, <strong>in</strong> <strong>the</strong> late 1970s and 1980s [2]. It concentrated on three<br />

ma<strong>in</strong> areas:<br />

››› Wea<strong>the</strong>rproof cloth<strong>in</strong>g. This research was orig<strong>in</strong>ally<br />

carried out for <strong>the</strong> UK M<strong>in</strong>istry of Defence. The aim was<br />

to meet all <strong>the</strong> exist<strong>in</strong>g requirements for PU-coated military<br />

ra<strong>in</strong>wear plus adequate breathability (<strong>in</strong>itially, a moisture<br />

vapour transmission rate of<br />

2000 g/m2/day was set). Once this objective was achieved,<br />

research switched to <strong>the</strong> emerg<strong>in</strong>g civilian market for WBFs,<br />

which had been stimulated by <strong>the</strong> <strong>in</strong>troduction of "Gore-Tex"<br />

lam<strong>in</strong>ates.<br />

››› Mattress covers. Direct and transfer-coated fabrics for<br />

hospital and o<strong>the</strong>r <strong>in</strong>stitutional mattress covers, where <strong>the</strong><br />

PU layer forms <strong>the</strong> exposed outer surface.<br />

››› O<strong>the</strong>r medical textiles. Subjects <strong>in</strong>cluded <strong>in</strong>fection<br />

barriers (such as occlusive wound dress<strong>in</strong>gs, hospital<br />

drapes, masks and surgeons’ gowns), semi-disposable<br />

workwear, gloves, bio-separation membranes, hydrogels,<br />

foams, moisture vapour permeable adhesives, anti-static<br />

coat<strong>in</strong>gs and even nappy l<strong>in</strong>ers with a mixed degree of<br />

success.<br />

These rema<strong>in</strong> amongst <strong>the</strong> ma<strong>in</strong> applications for HPUs <strong>in</strong><br />

today’s textile <strong>in</strong>dustry, which are summarised <strong>in</strong> Table 1.<br />

How HPUs are formulated<br />

HPU coat<strong>in</strong>gs and films can be produced from organic<br />

solutions, from aqueous solutions or dispersions, and from<br />

various 100 % solids systems. The majority <strong>in</strong>corporate<br />

poly(ethylene oxide) PEO-segments with<strong>in</strong> <strong>the</strong> urethane<br />

polymer backbone. PEO itself is water-soluble, and <strong>in</strong><br />

copolymers such as HPUs and certa<strong>in</strong> polyamides and<br />

polyesters it functions as <strong>the</strong> vapour transfer agent.<br />

It is important to note that this "stepp<strong>in</strong>g-stone" type of<br />

mechanism for water transfer is stereo-specific for PEO and<br />

water molecules, and that o<strong>the</strong>r polye<strong>the</strong>rs do not show<br />

hydrophilic characteristics [1]. The fundamental chemistry<br />

is shown <strong>in</strong> Figure 2.<br />

Polymer chemists will recognise that this sequence is ra<strong>the</strong>r<br />

simplistic, and that <strong>in</strong> practice <strong>the</strong> chemistry is far more<br />

<strong>com</strong>plex <strong>in</strong> terms of <strong>the</strong> type, number and molar ratio<br />

of constituents. It also allows for great versatility <strong>in</strong> <strong>the</strong><br />

design of HPUs for specific application techniques and<br />

performance requirements.<br />

The urethane (X = O) or urea (X = NH) hard segments<br />

function as molecular constra<strong>in</strong>ts, which control <strong>the</strong><br />

vapour transport and liquid water uptake properties of <strong>the</strong><br />

membrane. The residues R1 and R2 are derived from<br />

<strong>com</strong>mon diisocyanates, diols and diam<strong>in</strong>es used <strong>in</strong> <strong>the</strong> PU<br />

<strong>in</strong>dustry, and it is <strong>the</strong> elaboration of <strong>the</strong>se hard segments<br />

which is most often <strong>the</strong> <strong>in</strong>ventive step <strong>in</strong> HPU technology.<br />

As a guidel<strong>in</strong>e for achiev<strong>in</strong>g hydrophilicity, <strong>the</strong> overall PEO<br />

content and segment length are best kept with<strong>in</strong> certa<strong>in</strong><br />

limits, typically 3060 % w/w and n values (<strong>the</strong> average<br />

number of EO units per segment) of between 12 and<br />

45. For <strong>the</strong> <strong>in</strong>terested reader, fur<strong>the</strong>r details on HPU and<br />

microporous membrane formation are given <strong>in</strong> Träubel’s<br />

excellent book [3].<br />

Fabric structure may take many forms<br />

The location of <strong>the</strong> HPU layer with<strong>in</strong> a garment assembly<br />

is important for moisture management, durability and<br />

general aes<strong>the</strong>tics. Some of <strong>the</strong> ma<strong>in</strong> variations are shown<br />

schematically <strong>in</strong> Figure 3. The earliest garments were made<br />

from direct-coated fabric usually a pla<strong>in</strong>-woven polyamide,<br />

weigh<strong>in</strong>g 60 or 120 g/m2 with <strong>the</strong> membrane on <strong>the</strong> <strong>in</strong>side,<br />

Figure 3(b), to m<strong>in</strong>imise snagg<strong>in</strong>g, puncture or abrasion<br />

damage.<br />

L<strong>in</strong>er fabrics were often omitted to reduce costs, which<br />

meant that <strong>the</strong> membrane could <strong>com</strong>e <strong>in</strong>to direct contact<br />

with <strong>the</strong> sk<strong>in</strong>. When this happened, <strong>the</strong> wearer sometimes<br />

<strong>com</strong>pla<strong>in</strong>ed of clamm<strong>in</strong>ess or a ‘wet-cl<strong>in</strong>g’ sensation.<br />

Design of garments quickly evolved so that bonded<br />

and loose l<strong>in</strong>ers, drop l<strong>in</strong>ers and <strong>in</strong>serts, Figure 3 (dh),<br />

improved <strong>the</strong> handle, tactile qualities and moisturedissipat<strong>in</strong>g<br />

properties of <strong>the</strong> orig<strong>in</strong>al unl<strong>in</strong>ed construction.<br />

V<strong>in</strong>centz Network +++ Plathnerstr. 4c +++ D-30175 Hannover +++ Tel.:+49(511)9910-000


.<br />

Quelle/Publication: <strong>European</strong> Coat<strong>in</strong>gs Journal<br />

Ausgabe/Issue: 09/2009<br />

Seite/Page: 2<br />

Simple l<strong>in</strong>ers based on lightweight scrims or tricots can<br />

be replaced by wadd<strong>in</strong>gs or o<strong>the</strong>r bulky textiles for added<br />

<strong>in</strong>sulation <strong>in</strong> garments that <strong>com</strong>b<strong>in</strong>e foul- and cold-wea<strong>the</strong>r<br />

protection.<br />

HPUs can be applied to textiles by <strong>the</strong> well-established<br />

techniques of direct coat<strong>in</strong>g, transfer coat<strong>in</strong>g (us<strong>in</strong>g<br />

siliconised belts or release papers) and film lam<strong>in</strong>ation.<br />

WBFs, for example, are normally made <strong>in</strong> cont<strong>in</strong>uous rolls,<br />

with lengths vary<strong>in</strong>g between 100 and 5000 m and widths of<br />

1.5 1.8 m for apparel. Wider mach<strong>in</strong>ery (up to 2.23.0 m) is<br />

required for certa<strong>in</strong> end-uses such as tarpaul<strong>in</strong>s, mattress<br />

covers and horse blankets.<br />

Performance requirements summarised<br />

The coat<strong>in</strong>g weight for WBFs varies accord<strong>in</strong>g to <strong>the</strong> fabric,<br />

but is typically 2025 g/m2 for lightweight syn<strong>the</strong>tic fabrics<br />

and up to 5070 g/m2 for heavier syn<strong>the</strong>tic, cotton, cotton/<br />

polyester and textured fabrics such as Cordura. This usually<br />

represents an effective barrier layer thickness of 2030 µm,<br />

an optimum for a good balance of water vapour transfer<br />

properties, liquid water resistance and general durability.<br />

A respected performance benchmark is EN 343:2003,<br />

which "specifies requirements and test methods applicable<br />

to materials and seams of protective cloth<strong>in</strong>g aga<strong>in</strong>st <strong>the</strong><br />

<strong>in</strong>fluence of precipitation (e.g. ra<strong>in</strong>, snowflakes), fog and<br />

ground humidity". It classifies three grades of fabric, where<br />

<strong>the</strong> technical balance of properties improves progressively<br />

from Class 1 (effectively non-breathable) through to Class<br />

3, as shown <strong>in</strong> Table 2.<br />

A good HPU-coated fabric or lam<strong>in</strong>ate should easily satisfy<br />

Class 3 requirements. Our orig<strong>in</strong>al HPUs were prepared<br />

<strong>in</strong> solvent for coat<strong>in</strong>g directly onto <strong>the</strong> surface of closelywoven<br />

filament nylon and polyester fabrics us<strong>in</strong>g knife-overroll<br />

and knife-on-air techniques. This rema<strong>in</strong>s a major outlet<br />

for HPU, and it can be used to illustrate WBF manufacture.<br />

Multilayer coat<strong>in</strong>gs provide optimum performance<br />

Solvent-based HPUs are typically made <strong>in</strong> 1015 tonne<br />

batches, and resemble golden syrup <strong>in</strong> appearance and<br />

‘spread<strong>in</strong>g’ consistency. As a broad guidel<strong>in</strong>e, 1 tonne of<br />

HPU solution will coat 10,000 runn<strong>in</strong>g metres of mediumweight<br />

polyester fabric, sufficient to make about 7000<br />

average-size anoraks.<br />

Direct coat<strong>in</strong>gs are non-uniform <strong>in</strong> thickness, because <strong>the</strong><br />

applied <strong>com</strong>pound follows <strong>the</strong> surface contours of <strong>the</strong> fabric<br />

and fills <strong>in</strong> <strong>the</strong> <strong>in</strong>terstices between yarns. They usually have<br />

a stratified <strong>com</strong>position, as <strong>in</strong> Figure 1(f), with each layer<br />

hav<strong>in</strong>g a different chemistry and fulfill<strong>in</strong>g a different function.<br />

For <strong>in</strong>stance:<br />

››› Base coats are normally very soft and extensible, to<br />

m<strong>in</strong>imise <strong>the</strong> natural stiffen<strong>in</strong>g effect on fabric handle and<br />

aes<strong>the</strong>tics. Crossl<strong>in</strong>kers are required to provide adequate<br />

"wet" properties <strong>in</strong> use, durability and chemical bond<strong>in</strong>g<br />

as well as mechanical adhesion to <strong>the</strong> base substrate.<br />

They are normally supplied as 4555 % solids <strong>in</strong> methyl<br />

ethyl ketone (MEK) or ethyl acetate, with solution viscosities<br />

of 200-400 poise. Multifunctional isocyanate or MF res<strong>in</strong><br />

crossl<strong>in</strong>kers, diluents and optional additives such as<br />

pigments and flame retardants can be mixed <strong>in</strong> just prior to<br />

use.<br />

››› Middle coat(s) often have a similar chemistry to base<br />

coats, and are usually applied as fill<strong>in</strong>g layers to <strong>in</strong>crease<br />

<strong>the</strong> weight and thickness of <strong>the</strong> protective layer. Skimp<strong>in</strong>g<br />

on coat<strong>in</strong>g weight is often false economy, especially with<br />

<strong>the</strong> more uneven substrates. Unless surface protrusions<br />

are <strong>com</strong>pletely encased by <strong>the</strong> polymer coat<strong>in</strong>g, <strong>the</strong>y<br />

rema<strong>in</strong> weak spots and <strong>the</strong> coated fabric is more prone to<br />

hydrostatic failure <strong>in</strong> use.<br />

››› Top coat HPUs are tougher, more abrasion resistant<br />

and usually less hydrophilic than o<strong>the</strong>r layers. The polymers<br />

show strong <strong>in</strong>termolecular hydrogen bond<strong>in</strong>g, and require<br />

more powerful solvents such as dimethylformamide (DMF)<br />

or DMF blends to produce coat<strong>in</strong>g solutions (typically at<br />

2530 % solids).<br />

Top coats usually conta<strong>in</strong> f<strong>in</strong>ely-divided silica to reduce<br />

gloss. Crossl<strong>in</strong>kers are not required, because <strong>the</strong> top coat<br />

must rema<strong>in</strong> <strong>the</strong>rmoplastic and suitable for hot-air tap<strong>in</strong>g.<br />

This is a technique for apply<strong>in</strong>g narrow heat-seal<strong>in</strong>g tapes<br />

over <strong>the</strong> stitch<strong>in</strong>g <strong>in</strong>side garments to make <strong>the</strong> seams fully<br />

waterproof.<br />

As each layer is progressively built up, <strong>the</strong> solvent is<br />

removed and <strong>the</strong> dried layer be<strong>com</strong>es <strong>the</strong> substrate for <strong>the</strong><br />

next. The best practice is to carry this out <strong>in</strong> a one-pass<br />

operation and l<strong>in</strong>es with 2, 3 and even 4 coat<strong>in</strong>g heads and<br />

associated ovens <strong>in</strong> tandem are now <strong>com</strong>monplace.<br />

These mach<strong>in</strong>e l<strong>in</strong>es can be up to 100 m long, operat<strong>in</strong>g<br />

at speeds of 15 40 m/m<strong>in</strong>. The coat<strong>in</strong>g as a whole must be<br />

fully consolidated at <strong>the</strong> end of <strong>the</strong> operation, with all layers<br />

work<strong>in</strong>g <strong>in</strong> unison. This requires close control of successive<br />

<strong>dry</strong><strong>in</strong>g and cur<strong>in</strong>g cycles, so that all solvents have been<br />

removed and adequate crossl<strong>in</strong>k<strong>in</strong>g has taken place before<br />

<strong>the</strong> coated fabric is f<strong>in</strong>ally wound up.<br />

Transfer coat<strong>in</strong>g is useful on ‘difficult’ fabrics<br />

Similar solvent-borne HPUs can be used for transfer<br />

coat<strong>in</strong>g, where <strong>the</strong> HPU layers are laid down <strong>in</strong> reverse<br />

order, i.e. top-middle-base. The first (top coat) layer is<br />

applied onto a cont<strong>in</strong>uous roll of siliconised release paper,<br />

which takes all <strong>the</strong> applied mach<strong>in</strong>e tensions. This top coat<br />

is dried and subsequent coat(s) are applied.<br />

Whilst <strong>the</strong> f<strong>in</strong>al base (or tie) coat is still tacky, <strong>the</strong> fabric<br />

substrate is brought <strong>in</strong>to contact with it under a nip roll.<br />

The film-fabric-paper lam<strong>in</strong>ate <strong>the</strong>n passes through <strong>the</strong> f<strong>in</strong>al<br />

<strong>dry</strong><strong>in</strong>g/cur<strong>in</strong>g oven and onto <strong>the</strong> w<strong>in</strong>d<strong>in</strong>g station, where <strong>the</strong><br />

coated fabric and paper are stripped apart and separately<br />

wound up.<br />

This technique allows open, flimsy and dimensionally<br />

unstable fabrics such as coarse weaves, knits, nonwovens<br />

and scrims to be used as carriers. Release papers can be<br />

re-used a number of times, but <strong>the</strong>y make <strong>the</strong> process more<br />

costly than direct coat<strong>in</strong>g.<br />

Transfer coat<strong>in</strong>g mach<strong>in</strong>ery can also be used to produce<br />

uniformly th<strong>in</strong> HPU membranes which are stripped from <strong>the</strong><br />

paper and wound up as a free-stand<strong>in</strong>g film, or <strong>in</strong>terleaved<br />

with a release carrier such as poly<strong>the</strong>ne sheet. Cast-film<br />

production has some advantages, e.g. for small production<br />

runs <strong>in</strong>corporat<strong>in</strong>g a variety of pigments, biocides, special<br />

effect additives etc. The ma<strong>in</strong> applications for cast HPU film<br />

are customised WBFs and medical textiles.<br />

Solvent emissions can be reduced <strong>in</strong> various ways<br />

Environmental legislation and <strong>the</strong> recurr<strong>in</strong>g threat to<br />

coat<strong>in</strong>g <strong>com</strong>panies us<strong>in</strong>g large volumes of solvent-based<br />

hydrophilic PU prompted <strong>the</strong> development of water-based<br />

systems <strong>in</strong> <strong>the</strong> early 1990s. They have some drawbacks,<br />

most of which arise from <strong>the</strong> physical properties of water<br />

itself. Never<strong>the</strong>less, aqueous HPUs are successfully used<br />

by a number of coaters <strong>in</strong> <strong>the</strong> textile <strong>in</strong>dustry.<br />

V<strong>in</strong>centz Network +++ Plathnerstr. 4c +++ D-30175 Hannover +++ Tel.:+49(511)9910-000


.<br />

Quelle/Publication: <strong>European</strong> Coat<strong>in</strong>gs Journal<br />

Ausgabe/Issue: 09/2009<br />

Seite/Page: 3<br />

100 % solids systems are hydrophilic versions of<br />

<strong>the</strong>rmoplastic PUs (HTPUs), manufactured by a solventfree<br />

process follow<strong>in</strong>g <strong>the</strong> basic chemistry shown <strong>in</strong> Figure<br />

2. They are used <strong>in</strong> two ways by <strong>the</strong> <strong>in</strong>dustry. HTPU<br />

pellets can be dissolved and converted <strong>in</strong>to homogeneous<br />

coat<strong>in</strong>g solutions, typically 2530 % solids <strong>in</strong> DMF or o<strong>the</strong>r<br />

strong solvents. These solutions can <strong>the</strong>n be used for<br />

normal direct and transfer coat<strong>in</strong>g operations, as outl<strong>in</strong>ed<br />

above. Conversely, HTPUs can be <strong>the</strong>rmally reprocessed<br />

above <strong>the</strong>ir melt<strong>in</strong>g po<strong>in</strong>ts (ca. 180190 °C) for calender<strong>in</strong>g/<br />

extrusion coat<strong>in</strong>g onto fabrics and for blown film extrusion.<br />

Reactive PU hot-melt adhesives are special types of HTPU<br />

characterised by relatively low molecular weights, low<br />

melt<strong>in</strong>g po<strong>in</strong>ts and free isocyanate contents of ca. 35 %.<br />

They are designed as one-<strong>com</strong>ponent adhesives applied<br />

<strong>in</strong> <strong>the</strong> molten state, typically at temperatures of 90140 °C,<br />

us<strong>in</strong>g a screen pr<strong>in</strong>t<strong>in</strong>g unit, slot nozzles or more usually a<br />

heated gravure-roll coater.<br />

Once on <strong>the</strong> substrate, <strong>the</strong> polymer layer absorbs<br />

atmospheric moisture, which <strong>in</strong>itiates a series of irreversible<br />

cha<strong>in</strong> extension, adhesion promotion and crossl<strong>in</strong>k<strong>in</strong>g<br />

reactions with<strong>in</strong> <strong>the</strong> PU molecular network. These products<br />

have extremely good solvent, wash and <strong>dry</strong> clean<strong>in</strong>g<br />

resistance <strong>com</strong>pared with o<strong>the</strong>r textile adhesives.<br />

This is a relatively new, but grow<strong>in</strong>g, area for HPUs<br />

<strong>in</strong> textiles. The ma<strong>in</strong> <strong>in</strong>terest to date is for lam<strong>in</strong>at<strong>in</strong>g<br />

breathable membranes, especially ePTFE, to a fabric or<br />

fabrics. Us<strong>in</strong>g a cont<strong>in</strong>uous, breathable adhesive layer<br />

ma<strong>in</strong>ta<strong>in</strong>s <strong>the</strong> high water vapour transport of <strong>the</strong> membrane,<br />

and at <strong>the</strong> same time optimises coverage and bond<br />

strength.<br />

REFERENCES<br />

[ [1] Lomax G. R., J. Mater. Chem., 2007, 17, 2775-2784<br />

[2] Lomax G. R., J. Coated Fabrics, 1985, 15, 4066 [3]<br />

Träubel H., New Materials Permeable to Water Vapor,<br />

Spr<strong>in</strong>gerVerlag, Berl<strong>in</strong>, 1999, part 4, pp.107-213 [4]<br />

Baxenden Chemicals Ltd., World Patent 2006 075 144<br />

Results at a glance<br />

Hydrophilic polyurethane (HPU) membranes are widely<br />

used <strong>in</strong> <strong>the</strong> construction of various types of ‘breathable’<br />

fabrics. Unlike o<strong>the</strong>r breathable systems, <strong>the</strong>y do not<br />

conta<strong>in</strong> physical micropores but rely on <strong>the</strong> hydrophilic<br />

properties of polyethylene oxide with<strong>in</strong> <strong>the</strong> polymer to<br />

transport moisture. A number of different multilayer fabric<br />

constructions are used to enhance wearer <strong>com</strong>fort. The<br />

coat<strong>in</strong>gs <strong>the</strong>mselves are usually multilayer, to optimise<br />

bond<strong>in</strong>g to <strong>the</strong> fabric (base coat) ensure full coverage and<br />

effective moisture transport (mid coat) and provide abrasion<br />

resistance (top coat). HPU systems are used not only<br />

<strong>in</strong> many forms of functional cloth<strong>in</strong>g, but also <strong>in</strong> medical<br />

applications rang<strong>in</strong>g from wound dress<strong>in</strong>gs to mattress<br />

covers. When <strong>the</strong> membrane forms <strong>the</strong> outer, visible layer<br />

of a material, it may be necessary to restrict <strong>the</strong> (reversible)<br />

swell<strong>in</strong>g of <strong>the</strong> HPU which occurs dur<strong>in</strong>g moisture pick-up.<br />

Water swell<strong>in</strong>g sometimes has to be m<strong>in</strong>imised<br />

HPUs transport moisture vapour by a mechanism that<br />

encourages its rapid absorption <strong>in</strong>to <strong>the</strong> polymer. At high<br />

humidities, and especially when liquid water is <strong>in</strong> contact<br />

with <strong>the</strong> polymer, this causes <strong>the</strong> HPU layer to swell. Once<br />

<strong>the</strong> moisture is removed, <strong>the</strong> polymer returns to its normal<br />

state.<br />

For most end-uses, this layer is hidden from view and <strong>the</strong><br />

reversible swell<strong>in</strong>g mechanism goes unnoticed. However,<br />

<strong>in</strong> some important applications such as mattress covers,<br />

medical dress<strong>in</strong>gs, shoes and easy-wipe workwear, <strong>the</strong><br />

membrane forms <strong>the</strong> visible outer layer, as <strong>in</strong> Figure 3(c).<br />

Normal HPUs are rarely used here, because <strong>the</strong>y may<br />

develop unsightly wr<strong>in</strong>kl<strong>in</strong>g or water-spott<strong>in</strong>g effects <strong>in</strong> wet<br />

or ra<strong>in</strong>y conditions.<br />

Most approaches to solv<strong>in</strong>g this problem lead to an<br />

<strong>in</strong>evitable trade-off between breathability and dimensional<br />

swell<strong>in</strong>g. Baxenden has developed a top coat system<br />

based on PEO-free PUs that have exceptionally low water<br />

uptake (&lt; 2 % w/w) yet reasonable water vapour transfer<br />

properties when <strong>the</strong>y form part of an <strong>in</strong>tegrated coat<strong>in</strong>g<br />

system.<br />

They fit <strong>in</strong>to a spectrum of products where breathability<br />

and swell<strong>in</strong>g can be traded off to suit a particular<br />

application, depend<strong>in</strong>g on membrane thickness, see Figure<br />

4. Composite membranes, e.g. trilayers of low, medium<br />

and high swell propensity, show <strong>in</strong>terest<strong>in</strong>g anisotropic<br />

behaviour where breathability depends on <strong>the</strong> direction of<br />

water vapour flow and <strong>the</strong> stack<strong>in</strong>g order of <strong>the</strong> <strong>in</strong>dividual<br />

layers [4]. This is a development area that <strong>com</strong>plements <strong>the</strong><br />

<strong>com</strong>pany’s exist<strong>in</strong>g HPU technology.<br />

V<strong>in</strong>centz Network +++ Plathnerstr. 4c +++ D-30175 Hannover +++ Tel.:+49(511)9910-000


.<br />

Quelle/Publication: <strong>European</strong> Coat<strong>in</strong>gs Journal<br />

Ausgabe/Issue: 09/2009<br />

Seite/Page: 4<br />

Figure 1: Some features of membranes used <strong>in</strong> waterproof breathable fabrics<br />

(WBFs). Top row: surfaces of membranes; bottom row, sections through<br />

coat<strong>in</strong>gs, lam<strong>in</strong>ated to polyamide fabric unless o<strong>the</strong>rwise stated. Left to right:<br />

Solid hydrophilic coat<strong>in</strong>g (a) show<strong>in</strong>g multiple layers at (f); Microporous PU<br />

produced by wet coagulation (b) and (g); Microporous PU produced by phase<br />

separation (c) with very th<strong>in</strong> pore-seal<strong>in</strong>g topcoat shown at (h); Mechanicallyfoamed<br />

PU dispersion (d) with mechanically-foamed acrylic coat<strong>in</strong>g shown <strong>in</strong><br />

(i) with first layer crushed; ePTFE membrane (e) and PU film produced by salt<br />

extraction lam<strong>in</strong>ated to polyester with discont<strong>in</strong>uous adhesive (shown as solid<br />

dots) (j)<br />

V<strong>in</strong>centz Network +++ Plathnerstr. 4c +++ D-30175 Hannover +++ Tel.:+49(511)9910-000


.<br />

Quelle/Publication: <strong>European</strong> Coat<strong>in</strong>gs Journal<br />

Ausgabe/Issue: 09/2009<br />

Seite/Page: 5<br />

Figure 2: Basic reaction sequence for<br />

manufactur<strong>in</strong>g HPUs based on PEO<br />

V<strong>in</strong>centz Network +++ Plathnerstr. 4c +++ D-30175 Hannover +++ Tel.:+49(511)9910-000


.<br />

Quelle/Publication: <strong>European</strong> Coat<strong>in</strong>gs Journal<br />

Ausgabe/Issue: 09/2009<br />

Seite/Page: 6<br />

Figure 3: Schematic diagram of outer<br />

garment constructions <strong>in</strong>corporat<strong>in</strong>g<br />

WBFs: (a) membrane only; (b) basic<br />

2layer fabric with coat<strong>in</strong>g on <strong>in</strong>side,<br />

water repellenttreated outer surface;<br />

(c) basic 2layer fabric with coat<strong>in</strong>g<br />

on outside; (d) 2layer plus loose l<strong>in</strong>er<br />

fabric; (e) typical pictogram show<strong>in</strong>g<br />

breathability and wea<strong>the</strong>rproofness<br />

of a 3layer lam<strong>in</strong>ate (often used <strong>in</strong><br />

advertis<strong>in</strong>g, brochures and sw<strong>in</strong>g<br />

tickets); (f) loose outer fabric plus<br />

scrimsupported membrane (drop<br />

l<strong>in</strong>er); (g) drop l<strong>in</strong>er <strong>in</strong>sert; (h) double<br />

membrane system, e.g. "Dual<br />

Protection" us<strong>in</strong>g ‘cold bridg<strong>in</strong>g’<br />

pr<strong>in</strong>ciple<br />

V<strong>in</strong>centz Network +++ Plathnerstr. 4c +++ D-30175 Hannover +++ Tel.:+49(511)9910-000


.<br />

Quelle/Publication: <strong>European</strong> Coat<strong>in</strong>gs Journal<br />

Ausgabe/Issue: 09/2009<br />

Seite/Page: 7<br />

Figure 4: Breathability wedges<br />

for textilegrade HPU membranes<br />

(show<strong>in</strong>g water uptake w/w): (a)<br />

nonbreathable (13 %); (b) low-swell<br />

development, top-coat (13 %); (c)<br />

hybrids of low swell/hydrophilic (1025<br />

%); (d) hydrophilic top coat layer (4070<br />

%); (e) hydrophilic base coat layer<br />

(70100 %)<br />

V<strong>in</strong>centz Network +++ Plathnerstr. 4c +++ D-30175 Hannover +++ Tel.:+49(511)9910-000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!