04.01.2014 Views

Global Geospatial Conference 2012 - Global Spatial Data ...

Global Geospatial Conference 2012 - Global Spatial Data ...

Global Geospatial Conference 2012 - Global Spatial Data ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6/23/12<br />

Québec, 14-17 May <strong>2012</strong><br />

<strong>Global</strong> <strong>Geospatial</strong> <strong>Conference</strong> <strong>2012</strong><br />

High resolution spaceborne imagery for emergency response<br />

through faster image processing and analysis using cuttingedge<br />

remote sensing algorithms<br />

Dubois, David<br />

Lepage, Richard<br />

Benoit, Mathieu<br />

• Background<br />

• Very high resolution images<br />

• Methodology<br />

• Applications<br />

• Conclusions<br />

2<br />

1


6/23/12<br />

• Major disasters cause many casualties and<br />

material losses each year.<br />

• Steps in emergency management cycles [1]:<br />

– Mitigation<br />

– Prevention<br />

– Preparedness<br />

– Detection<br />

– Response<br />

– Recovery<br />

– Evaluation<br />

3<br />

• International Charter « Space and Major<br />

Disasters »<br />

– Aims at providing a unique gateway to request and<br />

obtain space acquired data when a natural or manmade<br />

disaster strikes<br />

– Prepared maps and analysis can be used for<br />

response, recovery and evaluation<br />

– Requests can only be made by Authorized Users<br />

4<br />

2


6/23/12<br />

• Members<br />

– ESA: European Space Agency<br />

– CNES: France’s Centre National d’Études <strong>Spatial</strong>es<br />

– CSA: Canadian Space Agency<br />

– NOAA, ISRO, CONAE, USGS, JAXA, CNSA,<br />

DLR, KARI, INPE<br />

• Each member commits resources to support the<br />

Charter<br />

5<br />

• 2011 – Earthquake and tsunami hitting Japan’s<br />

north-east coast<br />

– Fukushima Daiichi nuclear catastrophe<br />

– Multiple coastal villages<br />

destroyed<br />

– More than 200 000 people<br />

evacuated<br />

©USGS - Map produced by AIT - RADARSAT-2 <strong>Data</strong> and Products © MacDonald, Dettwiler and Associates<br />

Ltd.(2011) - All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency.<br />

6<br />

3


6/23/12<br />

• 2010 – Earthquake hitting Haiti’s main cities<br />

– More than 300 000 deaths<br />

– More than 1 million homeless<br />

– 250 000 residences and 30 000 commercial<br />

buildings destroyed<br />

7<br />

• Time is critical. Haste is vital!<br />

Disaster<br />

Charter<br />

activation<br />

Satellite<br />

tasking<br />

Image<br />

acquisition<br />

Response<br />

Image<br />

download<br />

Crisis<br />

information<br />

Image<br />

analysis<br />

Image preprocessing<br />

8<br />

4


6/23/12<br />

• Tasking of satellites (Priority and uplink delays)<br />

• Acquisition of raw images<br />

• Transfer of raw images<br />

• Availability of archive data<br />

• Size of images<br />

• Image analysis and interpretation<br />

• Map creation<br />

9<br />

• Reduce preparation time of damage maps in order<br />

to provide adequate information for the response<br />

phase of the emergency management cycle by<br />

detecting buildings and evaluating damage.<br />

• Objectives<br />

– Automate parts of the process for building detection<br />

– Provide object matching capacities between<br />

unregistered archive and acquisition images<br />

– Cut processing times for the preparation of value<br />

added products<br />

10<br />

5


6/23/12<br />

• Very high spatial resolution sensors can help in<br />

the identification of infrastructure and building<br />

damages [2-3]<br />

• Current and planned sensors pros:<br />

– A variety of spatial and spectral resolutions<br />

– Agility to change acquisition angle to shorten delays<br />

between acquisition dates<br />

– Short revisit time<br />

• Cons:<br />

– Images are HUGE (40 000 x 40 000 pixels for a scene)<br />

– Unwanted details (cars, individual trees and shrubs)<br />

11<br />

• Optical sensors<br />

Satellite Sensor types Resolution (m) Revisit (days)<br />

GeoEye-1 PAN/XS(4) 0,5/2 2 to 8<br />

IKONOS PAN/XS(4) 1/4 3<br />

Pléiades-1 PAN/XS(4) 0,5/2 1*<br />

Quickbird 2 PAN/XS(4) 0,6/2,4 1 to 4<br />

WorldView-1 PAN 0,5 2 to 6<br />

WorldView-2 PAN/XS(8) 0,5/1,8 to 2,4 1 to 4<br />

* When the constellation is operational<br />

12<br />

6


6/23/12<br />

• Synthetic Aperture Radar (SAR)*<br />

Satellite Freq. band Resolution (m) Revisit (days)<br />

COSMO/SkyMed X 1 0,25 to 0,5**<br />

Radarsat-2 C 1 24<br />

TerraSAR-X X 1 11<br />

* Only spotlight capable satellites are presented<br />

** Constellation<br />

13<br />

• GeoEye-2<br />

• Pléiades-2<br />

• Spot-6 and Spot-7<br />

• RADARSAT Constellation Mission (RCM)<br />

Keyword for future missions: CONSTELLATION<br />

14<br />

7


6/23/12<br />

• Requirements<br />

– Semi-automated process<br />

– Few parameters<br />

– Fast processing<br />

– High accuracy<br />

• Recent advances<br />

– Multi-scale segmentation<br />

– Object-based classification and analysis<br />

15<br />

• Level lines/level sets<br />

• Fast Level Set Transform (FLST) [4]<br />

– Hierarchical representation ideal for urban regions<br />

• Why?<br />

– Getting objects from pixels<br />

Image<br />

...<br />

City block<br />

Roofs<br />

Details<br />

Pixel<br />

...<br />

... ... ...<br />

...<br />

...<br />

...<br />

16<br />

8


6/23/12<br />

• Associate shape for each pixel<br />

– Local scale extraction [5]<br />

– Most representative scale for objects<br />

• Shape-driven segmentation<br />

– Area of shapes to consider (min, max)<br />

– Accounting for sharpness of shape edges<br />

17<br />

18<br />

9


6/23/12<br />

• Faster processing<br />

– 1 object vs 100 pixels<br />

• Relationnal analysis<br />

– Object A is close to object B<br />

• Geometrical features<br />

– Invariance to rotation, translation and possibly<br />

scale<br />

– Hierarchical shape relations is discriminant<br />

19<br />

• Building detection<br />

– Rescue operations<br />

– Identification of types (residential, commercial,<br />

industrial)<br />

• Damage evaluation<br />

– Planning<br />

– Reconstruction<br />

• What is needed?<br />

20<br />

10


6/23/12<br />

• Segmentation (FLST+Scale) and classification<br />

(SVM) of shapes<br />

Object-based<br />

Pixel-based<br />

– Building<br />

Producer Accuracy (%) 93.6 94<br />

– Not building User Accuracy (%) 93.3 88<br />

False Positive Rate (%) 4.5 7.4<br />

• Good results with high User Accuracy and low<br />

Execution time (s) 28,6 2416,6<br />

False Positive Rate<br />

• Fast<br />

21<br />

• False positives:<br />

– A few vegetation spots<br />

– Some shadows<br />

• False negatives<br />

– Gabled oofs (big slopes)<br />

– Roofless buildings<br />

22<br />

11


6/23/12<br />

• Coarse registration<br />

• Automated (few<br />

parameters)<br />

• Look for closest<br />

comparable shape<br />

Before<br />

Image<br />

Building A<br />

After<br />

Image<br />

Building<br />

A<br />

Damaged<br />

Building<br />

B<br />

Damaged<br />

Building<br />

C<br />

23<br />

• Shape deformation characteristics<br />

– Roof is displaced<br />

– Building appears larger because of<br />

adjacent debris<br />

• Texture changes<br />

– Cracks appear on roofs<br />

– Debris is formed on shape<br />

• Precise zones to work with = lower<br />

processing time<br />

24<br />

12


6/23/12<br />

City block damage evaluation<br />

More precise damage evaluation<br />

Extracted from SERTIT map produced January 18 2010 <br />

©SERTIT, GeoEye, DLR – map produced by SERTIT<br />

25<br />

• Remote sensing CAN help during disaster<br />

response<br />

• Fast object-based processing IS useful for<br />

building and damage detection<br />

• How can it all get better?<br />

– Multi-core processing (CPU, GPU)<br />

– Availability of more spaceborne sensors in the<br />

coming years<br />

– User feedback!<br />

26<br />

13


6/23/12<br />

Québec, 14-17 May <strong>2012</strong><br />

<strong>Global</strong> <strong>Geospatial</strong> <strong>Conference</strong> <strong>2012</strong><br />

Thank you!<br />

References<br />

[1] Becking, Ian. 2004. « How space can better support emergency management and critical<br />

infrastructure protection ». In Proceedings of the Envisat & ERS Sympsium. (Salzburg,<br />

Austria, 6-10 September 2004), p. 172-181.<br />

[2] Hussain, Ejaz, et al. 2011. « Building Extraction and Rubble Mapping for City Port-au-Prince<br />

Post-2010 Earthquake with GeoEye-1 Imagery and Lidar <strong>Data</strong> ». Photogrammetric<br />

Engineering and Remote Sensing, vol. 77, no 10, p. 1011-1023.<br />

[3] Dell’Acqua, Fabio, Diego Aldo Polli. 2011. « Post-event Only VHR Radar Satellite <strong>Data</strong> for<br />

Automated Damage Assessment: A Study on COSMO/SkyMed and the 2010 Haiti<br />

Earthquake ». Photogrammetric Engineering and Remote Sensing, vol. 77, no 10, p.<br />

1037-1043.<br />

[4] Monasse, Pascal, Frederic Guichard. 2000. « Fast computation of a contrast-invariant image<br />

representation ». IEEE Transactions on Image Processing, vol. 9, no 5, p. 860-872.<br />

[5] Bin, Luo, J. F. Aujol, Y. Gousseau, S. Ladjal, H. Maitre. 2007. « Resolution- independent<br />

characteristic scale dedicated to satellite images ». IEEE Transactions on Image<br />

Processing, vol. 16, no 10, p. 2503-2514.<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!