04.01.2014 Views

In vitro UGT assay for inhibition studies of benzodiazepines ... - GTFCh

In vitro UGT assay for inhibition studies of benzodiazepines ... - GTFCh

In vitro UGT assay for inhibition studies of benzodiazepines ... - GTFCh

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>In</strong> <strong>vitro</strong> <strong>UGT</strong> <strong>assay</strong> <strong>for</strong> <strong>inhibition</strong> <strong>studies</strong><br />

<strong>of</strong> <strong>benzodiazepines</strong> and opiates during<br />

phase II-metabolism<br />

T. Pallmann, K. Bender, G. Sticht, M.A. Rothschild, H. Käferstein<br />

<strong>In</strong>troduction<br />

Hydroxy-<strong>benzodiazepines</strong> and opiates are metabolized through glucuronidation<br />

which is the predominant pathway in the clearance mechanism <strong>of</strong> exogenous<br />

and endogenous substances during phase II-metabolism. The reaction is<br />

catalyzed by uridine-diphosphoglucuronyltransferases (<strong>UGT</strong>s) [1]. The presented<br />

work is motivated by the fact that the combination <strong>of</strong> <strong>benzodiazepines</strong> and opiates<br />

is common both in clinical practice and as combined abuse. <strong>In</strong>hibition <strong>of</strong> the glucuronidation<br />

can lead to a decelerated elimination <strong>of</strong> the phase I-metabolites,<br />

respectively <strong>of</strong> substances which are subjects <strong>of</strong> the phase II-metabolism. <strong>In</strong> the<br />

case <strong>of</strong> pharmacological and toxicological active substances, like the hydroxy<strong>benzodiazepines</strong><br />

and opiates, this can result in a prolonged pharmacological<br />

activity and in a higher risk <strong>of</strong> side effects <strong>of</strong> these substances [2, 3]. There<strong>for</strong>e an<br />

in <strong>vitro</strong> <strong>UGT</strong>-<strong>assay</strong> <strong>for</strong> <strong>inhibition</strong> <strong>studies</strong> between hydroxy-<strong>benzodiazepines</strong> and<br />

opiates has been developed and optimized using pooled human liver microsomes<br />

(HLMs).<br />

Methods<br />

For the investigation <strong>of</strong> the interaction capabilities <strong>of</strong> some <strong>benzodiazepines</strong><br />

and opiates during phase II-metabolism an in <strong>vitro</strong> <strong>assay</strong> was developed<br />

<strong>for</strong> oxazepam and temazepam (10-1000 µmol), morphine and codeine (2.5, 5 and<br />

10 mM) using pooled human liver microsomes (HLMs, BD Bioscience) with a<br />

total protein concentration <strong>of</strong> 1.0 mg/ml. As shown in Fig. 1, the maximum <strong>of</strong> the<br />

enzymatic activity <strong>of</strong> the <strong>UGT</strong>s was achieved at a pH <strong>of</strong> 9 using 50 mM Tris<br />

buffer, 40 °C, 8 mM UDPGA, and an incubation time <strong>of</strong> 240 min. It is striking,<br />

that the pH- and temperature-values do not reflect physiological conditions.<br />

There<strong>for</strong>e, the incubations were per<strong>for</strong>med at 37 o C in 50 mM Tris buffer (pH 7.4)<br />

with 5 mM MgCl 2 , 8 mM UDPGA, and alamethicin (50 µg/mg microsomal proteins)<br />

in a total volume <strong>of</strong> 100 µl <strong>for</strong> 240 min. After quenching <strong>of</strong> the enzymatic<br />

activity and centrifugation, the supernatant was analyzed by HPLC/DAD.<br />

165


22<br />

6000<br />

velocity (pmol/min/mg)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Menge OG1/Protein (pmol/mg)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

6 7 8 9 10 11 12<br />

pH<br />

0<br />

0 1 2 3 4 5 6<br />

time (h)<br />

50<br />

14<br />

40<br />

12<br />

velocity (pmol/min/mg)<br />

30<br />

20<br />

velocity (pmol/min/mg)<br />

10<br />

8<br />

6<br />

4<br />

10<br />

2<br />

0<br />

0 20 40 60<br />

temperature [C o ]<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

UDPGA (mM)<br />

Fig. 1: The maximum <strong>of</strong> enzymatic activity <strong>of</strong> the <strong>UGT</strong>-enzyme superfamily could be<br />

archived at pH 9 in 50 mM Tris buffer, incubation time <strong>of</strong> 4 h, 40 °C and 8 mM<br />

and UDPGA.<br />

mAU<br />

Phenacetin<br />

25 Oxazepam<br />

Temazepam<br />

20<br />

15<br />

10<br />

5<br />

R-Oxazepam glucuronide<br />

S-Oxazepam glucuronide<br />

R-Temazepam glucuronide<br />

S-Temazepam glucuronide<br />

0<br />

5 10 15 20 25 30min<br />

Fig. 2: Chromatographic separation <strong>of</strong> the diastereomeric benzodiazepine-glucuronides<br />

and its aglycons. Phenacetin was used as internal standard.<br />

Chromatographic separation (Fig. 2) <strong>of</strong> the diastereomeric benzodiazepine<br />

glucuronides was possible using a RP-C 18 column (Spherisorb ODS2, 5 µm, 250 x<br />

4 mm, Trentec), an column oven temperature <strong>of</strong> 40 °C, and an isocratic mobile<br />

phase (flow rate 1.7 mL/min.) consisting <strong>of</strong> 0.3 % phosphoric acid (78 %),<br />

166


acetonitrile (16 %), and isopropanol (6 %). For morphine-3- and morphine-6-<br />

glucuronide a mobile phase consisting <strong>of</strong> 98 % 10 mM phosphoric acid (pH 2.7)<br />

and 2 % acetonitrile was used and <strong>for</strong> codeine-6-glucuronidethe concentration<br />

was 93 % 10 mM phosphoric acid (pH 2.7) and 7 % acetonitrile.<br />

Results<br />

K m and V max values have been evaluated <strong>for</strong> both enantiomers <strong>of</strong><br />

temazepam and oxazepam with two batches <strong>of</strong> HLMs (Fig. 3).<br />

50<br />

velocity (pmol/min/mg)<br />

40<br />

30<br />

20<br />

10<br />

S-Oxazepam: Substrate <strong>inhibition</strong> model<br />

K m = 28.8 µM<br />

V max = 54.9 pmol/min/mg<br />

R-Oxazepam: Michaelis Menten model<br />

K m = 90.7 µM<br />

V max = 25.1 pmol/min/mg<br />

(A)<br />

(B)<br />

0<br />

0 200 400 600 800 1000 1200<br />

Oxazepam (µM)<br />

100<br />

velocity (pmol/min/mg)<br />

80<br />

60<br />

40<br />

20<br />

S-Temazepam: Substrate <strong>inhibition</strong> model<br />

K m = 82.9 µM<br />

V max = 83.7 pmol/min/mg<br />

R-Temazepam: Michaelis Menten model<br />

K m = 370.2 µM<br />

V max = 110.2 pmol/min/mg<br />

(C)<br />

(D)<br />

0<br />

0 200 400 600 800 1000 1200<br />

Temazepam (µM)<br />

Fig. 3: Enzyme kinetic data <strong>of</strong> S-oxazepam (A), R-oxazepam (B), R-temazepam (C),<br />

and S-temazepam using HLMs.<br />

167


The results show that the K m values <strong>for</strong> S-oxazepam (28.8+/-5.3 and<br />

37.1+/-9.6 µmol) and S-temazepam (77.4+/-12.6 and 82.9+/-7.7 µmol) were<br />

lower than <strong>for</strong> R-enantiomers (R-oxazepam (90.7+/-12.6 and 104.9+/-10.6 µmol),<br />

R-temazepam (336.4+/-37.6 and 370.2+/-94.6 µmol)). The determined K m -values<br />

<strong>of</strong> R- and S-oxazepam indicating a higher affinity to the <strong>UGT</strong>-enzyme<br />

superfamily as the enantiomers <strong>of</strong> temazepam. Furthermore the measured<br />

K m -values are indicating a higher <strong>UGT</strong>-affinity <strong>of</strong> the S-enantiomers unlike the R-<br />

enantiomers <strong>of</strong> the <strong>benzodiazepines</strong> oxazepam and temazepam. <strong>In</strong>hibition <strong>studies</strong><br />

between the <strong>benzodiazepines</strong> oxazepam, temazepam and the opiates morphine and<br />

codeine as inhibitors showed that the K i -values <strong>for</strong> S-enantiomers are smaller than<br />

<strong>for</strong> R-enantiomers, which is exemplarily shown in Fig. 4.<br />

velocity(pmol/min/mg)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

(A)<br />

1/velocity(pmol/min/mg)<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

(B)<br />

velocity(pmol/min/mg)<br />

0<br />

0 50 100 150 200 250 300<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

(C)<br />

(R,S) Oxazepam (µM)<br />

-0,010 -0,005 0,000 0,005 0,010 0,015 0,020 0,025<br />

1/velocity(pmol/min/mg)<br />

0,12<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

1/(R,S) Oxazepam (µM)<br />

(D)<br />

0<br />

0 50 100 150 200 250 300<br />

(R,S) Oxazepam (µM)<br />

-0,02 -0,01 0,00 0,01 0,02 0,03<br />

1/(R,S) Oxazepam(µM)<br />

Fig. 4: Michaelis-Menten plot (left) and Lineweaver-Burk plot (right) <strong>of</strong> R-oxazepam (A/B) and<br />

S-oxazepam (C/D) inhibited by 0 µM (-●-), 2.5 µM (-○-), 5.0 µM (-▼-), and 10.0 µM (-∇-)<br />

morphine.<br />

By using the <strong>benzodiazepines</strong> as inhibitors, temazepam showed the highest<br />

inhibitory effect on the glucuronidation <strong>of</strong> morphine, whereas oxazepam inhibited<br />

the codeine glucuronidation most. <strong>In</strong> addition, the glucuronidation <strong>of</strong> codeine was<br />

much more affected by the <strong>benzodiazepines</strong> than it was observable <strong>for</strong> morphine.<br />

168


Conclusion<br />

With the developed and optimized in <strong>vitro</strong> <strong>assay</strong>, consisting <strong>of</strong> pooled<br />

human liver microsomes, it was possible to analyze the interaction potentials<br />

between the hydroxy-<strong>benzodiazepines</strong> oxazepam and temazepam and the opiates<br />

morphine and codeine. Furthermore it was possible to consider the enantiomer<br />

specific differences <strong>of</strong> the benzodiazepine-glucuronidation. The results show that<br />

S-enantiomers <strong>of</strong> the <strong>benzodiazepines</strong> exhibit a higher affinity to the <strong>UGT</strong>s than<br />

the R-enantiomers do. This can be deduced from the lower K m -values <strong>of</strong> the<br />

S-enantiomers compared to the R-enantiomers. The glucuronidation <strong>of</strong> morphine<br />

was more negatively affected by temazepam than by oxazepam. <strong>In</strong> addition to<br />

these findings the <strong>benzodiazepines</strong> exhibits a higher inhibitory effect on the<br />

codeine glucuronidation as on the morphine glucuronidation. Furthermore, the<br />

codeine itself is a stronger inhibitor <strong>of</strong> the benzodiazepine-glucuronidation<br />

compared to morphine. <strong>In</strong> particular, the glucuronidation <strong>of</strong> the S-enantiomers are<br />

more affected by the opiates than the R-enantiomers. This is feasible by the fact<br />

that the S-enantiomers exhibits a higher <strong>UGT</strong>-affinity as mentioned be<strong>for</strong>e. It is<br />

thought, that S-oxazepam is more active on the GABA A -receptor than R-<br />

oxazepam [4]. Due to this, it can be derived that the <strong>inhibition</strong> <strong>of</strong> the S-<br />

enantiomer glucuronidation <strong>of</strong> the <strong>benzodiazepines</strong> by morphine and codeine can<br />

contribute to the side effects <strong>of</strong> the <strong>benzodiazepines</strong>.<br />

<strong>In</strong> fact, <strong>UGT</strong>-catalyzed metabolic reactions account <strong>for</strong> about 35 % <strong>of</strong> all<br />

drugs which undergo phase II-metabolism [5]. Assuming, there is a high number<br />

<strong>of</strong> other substances which can at least partly inhibit the glucuronidation, drug<br />

interactions based on inhibitory effects during the phase II-metabolism, becomes<br />

obvious [2, 3].<br />

The presented work was financially supported by the Koeln Fortune<br />

Program / Faculty <strong>of</strong> Medicine, University <strong>of</strong> Cologne, Grants 51/2005 and<br />

68/2006. Full paper version will be published in an additional journal.<br />

References<br />

[1] King, C. D.; Rios, G. R.; Green, M. D.; Tephly, T. R., UDP-glucuronosyltransferases.<br />

Current Drug Metabolism 2000, 1, (2), 143-161.<br />

[2] Kiang, T. K. L.; Ensom, M. H. H.; Chang, T. K. H., UDP-glucuronosyltransferases and<br />

clinical drug-drug interactions. Pharmacology & Therapeutics 2005, 106, (1), 97-132.<br />

[3] Lin, J. H.; Wong, B. K., Complexities <strong>of</strong> glucuronidation affecting in <strong>vitro</strong>-in vivo<br />

extrapolation. Current Drug Metabolism 2002, 3, (6), 623-646.<br />

[4] Mohler, H.; Okada, T.; Heitz, P.; Ulrich, J., Biochemical Identification Of Site Of Action Of<br />

Benzodiazepines <strong>In</strong> Human-Brain By Diazepam-H-3 Binding. Life Sciences 1978, 22, (11),<br />

985-995.<br />

169


[5] Evans, W. E.; Relling, M. V., Pharmacogenomics: translating functional genomics into<br />

rational therapeutics. Science 1999, 286, 487-491.<br />

Dr. Katja Bender<br />

<strong>In</strong>stitut für Rechtsmedizin<br />

Klinikum der Universität zu Köln<br />

E-Mail: katja.bender@uk-koeln.de<br />

170

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!