07.01.2014 Views

Thad M. Adams, Marie Kane, & Paul S. Korinko Materials Science ...

Thad M. Adams, Marie Kane, & Paul S. Korinko Materials Science ...

Thad M. Adams, Marie Kane, & Paul S. Korinko Materials Science ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.00E-01<br />

2.50E-01<br />

2.00E-01<br />

1.50E-01<br />

1.00E-01<br />

5.00E-02<br />

0.00E+00<br />

MetGlas Permeation Test<br />

0 1000 2000 3000 4000 5000 6000 7000 8000<br />

Time (s)<br />

Leak 400C<br />

Perm 400 T 400C<br />

Sat 400T 400C<br />

Perm 700T 400C<br />

Sat 700T 400C<br />

Alternative <strong>Materials</strong> to Pd Membranes for Hydrogen Purification<br />

Pressure (Torr)<br />

<strong>Thad</strong> M. <strong>Adams</strong>, <strong>Marie</strong> <strong>Kane</strong>, & <strong>Paul</strong> S. <strong>Korinko</strong><br />

<strong>Materials</strong> <strong>Science</strong> and Technology<br />

Savannah River National Laboratory<br />

Prepared for the U.S. Department of Energy under Contract DE-AC09-96SR1850<br />

WSRC-STI-2007-00379


Background<br />

• DOE interested in developing low cost membrane<br />

purification technology to replace Pd based<br />

membranes<br />

• Target application is forecourt purification for<br />

distributed hydrogen production<br />

• Purity target 99.99% H2, ideally to meet SAE/ISO<br />

requirements to be defined by 2010


Membrane Properties and Technologies<br />

Membrane Properties<br />

• High flux<br />

• Low pressure drop<br />

• High contaminant tolerance<br />

– S, CO, solids, etc.<br />

• Low cost<br />

• Moderate operating<br />

temperature<br />

– 250 – 600 o C<br />

Membrane Separation<br />

Technologies<br />

• Molecular<br />

• Atomic<br />

• Ionic


Molecular Membranes<br />

• Porous media<br />

– Physical size separation<br />

• Φ H2 = 2.89 Å<br />

– Small pore ceramics, metals, etc. Ф Holes = 10 Å<br />

• Zeolites, SiC, SiO 2 , Al 2 O 3 , metals<br />

– Mean free path dependant<br />

– Flux α P H2<br />

– 99% purity achievable<br />

Oak Ridge National Laboratory


Proton Transport<br />

• Protons and electrons transported separately<br />

– Single or dual phase materials<br />

– Mixed conductor materials<br />

• Ceramic oxides<br />

• High temp (>800 o C)<br />

• Flux currently lower than desired<br />

– Cermet<br />

• Ceramic and metal composite<br />

• Higher electron flow and proton flow<br />

• May use separate membranes<br />

• Flux α fn(e - & p + conductivities)<br />

• Flux αln (P H2 , T)


Atomic Membranes<br />

• Dense metallic membrane<br />

– Thin metal sheets / tubes<br />

• Active surfaces<br />

– Dissociates H 2<br />

– H diffuses<br />

– H recombines to H 2+<br />

• May need supports<br />

– Porous metals<br />

– May be poisoned<br />

• CO, S, etc<br />

– Not thermally stable<br />

• High temp phase change<br />

• Low temp hydriding<br />

• No long range order<br />

possible<br />

– Flux α√P H2<br />

– High purity possible > 99.99%


Metallic Membrane Hydrogen Purification<br />

H-H<br />

H-H<br />

High Pressure<br />

H-H<br />

H-H<br />

C-O<br />

H-H<br />

O-C-O<br />

H-H<br />

H<br />

|<br />

H -C- H<br />

|<br />

H<br />

Absorption<br />

N-N<br />

H-<br />

H-<br />

Dissolution<br />

and<br />

Diffusion<br />

H<br />

H<br />

H<br />

H<br />

H<br />

Desorption<br />

-H<br />

-H<br />

Membrane<br />

Low Pressure<br />

H-H<br />

H-H<br />

H-H


Why Dense Metallic Membranes?<br />

• Simple to operate<br />

• Reliable—No moving parts<br />

• High purity hydrogen product—99.95% or better<br />

• Small size<br />

• Flexible designs<br />

• Cost effective—more so with non-noble metal<br />

membranes


Approach<br />

• Investigate non-precious metal membrane materials<br />

– High H 2 solubility (S)<br />

– High H 2 diffusivity (D)<br />

• High Permeability (Φ = D*S)<br />

• Bulk amorphous metals<br />

– Bulk metallic glasses (BMG)<br />

• Commercially available<br />

– Low cost<br />

– Dense metallic membranes<br />

• Aqueous and gaseous permeation testing


<strong>Materials</strong> of Interest<br />

• Pd / Pd alloys<br />

– Good solubility and diffusion<br />

characteristics<br />

– Well accepted in use<br />

– Susceptible to poisoning and<br />

embrittlement<br />

– High raw material costs<br />

• Alternatives to Pd based membranes<br />

– Pd-Coated Porous Ceramics<br />

• Pin-holes/holidays create short<br />

circuit pathways<br />

– Others investigating V and V-alloys<br />

and V-Al and V-Ni alloys<br />

• V has high solubility and<br />

diffusivity but suffers severely<br />

from embrittlement<br />

• Attempts at alloying V have not<br />

made significant decrease in<br />

embrittlement susceptibility<br />

– Group 5A-Ti-Ni Alloys<br />

• Ni-Ti alloys have been researched<br />

for decades due to their shape<br />

memory properties<br />

• NI-Ti Alloys are susceptible to H2<br />

Embrittlment and do not possess<br />

high permeability<br />

• Additions of Group 5A Metals (<br />

Nb, V, and Ta)<br />

• Nb additions have produced high<br />

permeation and good resistance<br />

to embrittlement<br />

• Duplex structure—Ni4Ti13Nb83<br />

and eutectic<br />

– Bulk Metallic Glasses<br />

• Commercially available Fe and Co<br />

based foil materials<br />

• Zr-Cu-Ni-Al-Y Bulk Metallic Glass


Ni-Ti-Group 5A Alloys<br />

Composite Membranes?<br />

Nb<br />

Zr<br />

V<br />

Ta<br />

H<br />

2<br />

Undesired<br />

contaminants or<br />

poison gases<br />

leakage through<br />

the ceramic.<br />

Pd<br />

Ceramic<br />

Pt<br />

Pinholes<br />

Dense Metallic<br />

Steward, LLNL, 1983<br />

Non-alloyed membranes highly susceptible to embrittlement


Previous Work<br />

Previous Work by Hashi, Ishikawa, Matsuda, and Aoki—Kitami Institute of Technology--Japan<br />

•<br />

Duplex Ni 30 Ti 31 Nb 39<br />

Ternary Eutectic Ni 41 Ti 42 Nb 17<br />

Permeability of Ni 30<br />

Ti 31<br />

Nb 39


Sample Preparation<br />

•Raw <strong>Materials</strong>:<br />

•99.95% Ti<br />

•99.6% Nb<br />

•99.7% V<br />

•99.99 Ni<br />

•Vacuum and Backfill with Ar<br />

•UHP Ar:


Microstructure Results<br />

Scanning Electron Microscopy<br />

Nb51-Ti28-Ni21<br />

Nb48-Ti28-Ni24<br />

Nb54-Ti28-Ni18<br />

V51-Ti28-Ni21


Microchemical Results<br />

X-ray Mapping of Nb48-Ni24-Ti28 Alloy<br />

x<br />

Element<br />

Weight%<br />

Atomic%<br />

Ti K<br />

Ni K<br />

Nb L<br />

13.4<br />

1.76<br />

84.84<br />

22.87<br />

2.45<br />

74.68<br />

Totals<br />

100


Microchemical Results<br />

X-ray Mapping of V51-Ni21-Ti28 Alloy<br />

x<br />

Element<br />

Weight%<br />

Atomic%<br />

Ti K<br />

V K<br />

Ni K<br />

19.46<br />

72.21<br />

8.33<br />

15.54<br />

65.28<br />

6.53<br />

Totals<br />

100


Devanathan Permeation Cell<br />

Sample<br />

SCE<br />

Gas Bubbler<br />

Pt Counter Electrode<br />

ASTM G148-97


Experimental Parameters<br />

• ASTM G-148-97<br />

• Devanathan permeation cell<br />

• 0.1 M sodium hydroxide solution<br />

• 22 and 50 °C<br />

• Nitrogen deaerated solution<br />

• Anode side: -0.125 V, SCE<br />

• Cathode side: 0.1, 0.5, 1.0 mA<br />

• Background stabilization, 2-24 hours


Sample Preparation<br />

• EDM from cast buttons<br />

• Size: 12.5 mm (0.5 in) diameter,<br />

0.64 mm (0.025 in) thick<br />

• Surface ground with 600 grit SiC paper<br />

• Plasma coated with Pd on either anode side or both<br />

• Contact wires spot welded on edge


Permeation Results<br />

• Platinum efficiencies 85-90% (40 °C) and 80% (22°)<br />

• Permeation currents increased with Nb concentration<br />

• V alloy showed better permeation than Nb alloys<br />

• Alloys appear to have a saturation level<br />

• No alloys failed during testing


Ni-Ti-X Permeation Curves<br />

3.0E-05<br />

2.5E-05<br />

2.0E-05<br />

Current (A)<br />

1.5E-05<br />

1.0E-05<br />

21Ni-28Ti-48Nb<br />

24Ni-28Ti-51Nb<br />

21Ni-28-Ti-54Nb<br />

24Ni-28Ti-51V<br />

5.0E-06<br />

0.0E+00<br />

0.0E+00 5.0E+03 1.0E+04 1.5E+04 2.0E+04 2.5E+04 3.0E+04<br />

Time (Sec)


Permeation Rates<br />

Material Permeation Rate (mol H2/m s)<br />

Palladium 3.26-4.25 x 10 -10<br />

Nb48 Alloy 6.58 x 10 -11 - 1.65 x 10 -10<br />

Nb51 Alloy 2.96 x 10 -10 - 6.0 x 10 -9<br />

Nb54 Alloy 3.25 x 10 -10<br />

V51 Alloy 1.0- 3.7 x 10 -9


• Tested at 250°, 300°, &<br />

400°C<br />

• Gaseous Hydrogen @ 400 &<br />

700Torr<br />

• Two Alloy Compositions<br />

Tested:<br />

– V48-Ti28-Ni24<br />

– V51-Ti28-Ni21<br />

• Lower Temp Membrane<br />

Failure<br />

• Membrane Robustness Test<br />

– 400°C @ 10Torr H2<br />

Gaseous Permeation Testing


Results—V48-Ti28-Ni24 Alloy<br />

Test Conditions<br />

•Temperature: 400°C<br />

•H2 Pressure: 700T<br />

•Thickness: 0.089cm (0.035in)<br />

2.00E+00<br />

1.80E+00<br />

1.60E+00<br />

V48-Ti28-Ni24 Permeation Test<br />

1.40E+00<br />

•SA:≅ 5 cm 2 1.20E+00<br />

1.00E+00<br />

8.00E-01<br />

Determine Permeability at Steady-State<br />

Pressure (torr)<br />

6.00E-01<br />

4.00E-01<br />

2.00E-01<br />

0.00E+00<br />

0 2 4 6 8 10 12 14<br />

Time (hr)<br />

•Slope of Saturation Data= Torr/hr—convert to mols H 2<br />

/min<br />

•Flux (J)= K/l (P feed<br />

1/2<br />

)<br />

•Flux (J)= (Sat Slope (mols H 2<br />

/min)/Area Permeating (m 2 )) = mols H 2<br />

/min m 2<br />

•l=m and P feed<br />

=Pascals and Solve for K=Permeability (mols H 2<br />

/m s Pa 1/2 )<br />

•For V48-Ti28-Ni24 Permeability = 1.0 x 10 -9 mols H 2<br />

/m s Pa 1/2


Bulk Metallic Glass Raw Permeation Data<br />

Sample #1<br />

1.20E-01<br />

1.00E-01<br />

Pressure (Torr)<br />

8.00E-02<br />

6.00E-02<br />

4.00E-02<br />

350C Lk<br />

350c 400T<br />

350C 400T S<br />

350C 700T<br />

350C 700T S<br />

400C Lk<br />

400C 400T<br />

400C 400T S<br />

400C 700T<br />

400C 700T S<br />

2.00E-02<br />

0.00E+00<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

Time (s)


Initial Gaseous Hydrogen Results for Both<br />

V alloys and BMG <strong>Materials</strong><br />

Compare Favorably to Palladium<br />

Results--Comparison


Results--Comparison


XRD Results—V48-Ti28-Ni24 Alloy<br />

5000<br />

[metalground.xrdml] metal ground <strong>Adams</strong><br />

04-003-5868> Ti 0.5V 0.5 - Titanium Vanadium<br />

04-007-8828> VH 2 - Vanadium Hydride<br />

04-003-2228> Ti 0.8V 0.2 - Titanium Vanadium<br />

04-005-6101> Ti 0.11V 0.82 O - Titanium Vanadium Oxide<br />

4000<br />

Intensity(Counts)<br />

3000<br />

2000<br />

Vanadium Hydride Formation @250°C @700T<br />

1000<br />

0<br />

20 30 40 50 60<br />

Two-Theta (deg)


Summary<br />

• Dense metallic membranes are an attractive means for<br />

purification of hydrogen isotopes streams<br />

• Group 5A-Ti-Ni alloys offer the potential for a lower<br />

cost alternative to Pd-based membranes<br />

• Initial results for Nb- and V- alloys are favorable


Summary<br />

• Gaseous hydrogen testing has demonstrated permeabilities<br />

similar to Pd-alloy systems<br />

– Further understanding of robustness of these membrane materials is<br />

required<br />

• Longer term exposure to hydrogen<br />

• Some preliminary evidence at lower temps (250°C) indicate potential<br />

issue with embrittlment<br />

– Alloys could be optimized to further enhance permeability<br />

• Gaseous hydrogen testing for BMG demonstrated permeabilities<br />

like Pd-alloys<br />

– Further testing is needed,<br />

• Scaling to larger size is needed<br />

– Thermal cycling under hydrogen to demonstrate embrittlement<br />

resistance

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!