09.01.2014 Views

Cauchy Integral Decomposition of Multi-Vector Valued Functions on ...

Cauchy Integral Decomposition of Multi-Vector Valued Functions on ...

Cauchy Integral Decomposition of Multi-Vector Valued Functions on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5 (2005), No. 1 <str<strong>on</strong>g>Cauchy</str<strong>on</strong>g> <str<strong>on</strong>g>Integral</str<strong>on</strong>g> <str<strong>on</strong>g>Decompositi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Multi</str<strong>on</strong>g>-<str<strong>on</strong>g>Vector</str<strong>on</strong>g> <str<strong>on</strong>g>Valued</str<strong>on</strong>g> <str<strong>on</strong>g>Functi<strong>on</strong>s</str<strong>on</strong>g> 131<br />

whence from (26) we get<br />

(27) F (k+1)∣ ∣<br />

Σ<br />

=<br />

C<strong>on</strong>diti<strong>on</strong> (A1), namely<br />

is thus equivalent to<br />

or to F (k+1) | Σ = 0.<br />

( ) ∣ −n<br />

∣∣∣Σ<br />

2 {n, [∂ x, F k ]} .<br />

d(ΘF k ) ∣ ∣<br />

Σ<br />

= 0<br />

Θ(F (k+1) | Σ ) = 0<br />

In view <str<strong>on</strong>g>of</str<strong>on</strong>g> (27) it is hence also equivalent to<br />

{n, [∂ x , F k ]} ∣ ∣<br />

Σ<br />

= 0.<br />

Now writing F k in the form (see also (25))<br />

F k = ˜F (k) + n ˜F (k−1) ,<br />

by using the relati<strong>on</strong> (7), straightforward calculati<strong>on</strong>s lead to<br />

where (CL1) is given by<br />

(A1) ⇐⇒ (CL1)<br />

(28) 0 = {n, [∂ x , F k ]} ∣ ∣<br />

Σ<br />

= {n, [∂ ‖x , F k ]} ∣ ∣<br />

Σ<br />

= {n, [∂ ω , F + k ]}.<br />

Analogously it may be shown that<br />

where (CL2) is given by<br />

(A2) ⇐⇒ (CL2)<br />

(29) 0 = [n, {∂ x , F k }] ∣ ∣<br />

Σ<br />

= [n, {∂ ‖x , F k }] ∣ ∣<br />

Σ<br />

= [n, {∂ ω , F + k }].<br />

Obviously, (28) and (29) imply the (CL)-c<strong>on</strong>diti<strong>on</strong><br />

n(∂ ω F + k )n + F + k ∂ ω = 0.<br />

C<strong>on</strong>versely, suppose that F k is a harm<strong>on</strong>ic k-multi-vector field in Ω which extends<br />

to C ∞ (Σ) and which is such that its trace <strong>on</strong> the boundary F + k<br />

= F k| Σ satisfies<br />

the (CL)-c<strong>on</strong>diti<strong>on</strong><br />

n(∂ ω F + k )n + F + k ∂ ω = 0<br />

or equivalently,<br />

(30) n(∂ ω F + k ) = (F + k ∂ ω)n.<br />

is R(k)<br />

As F + k 0,m-valued, ∂ ω F + k<br />

, which splits into a (k+1)- and a (k−1)-multivector,<br />

may be written as<br />

(31) ∂ ω F + k = A + nB,<br />

where<br />

A = A (k+1) + A (k−1) ,<br />

B = B (k) + B (k−2) .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!