09.01.2014 Views

Schwarz-Christoffel Formula for Multiply Connected Domains

Schwarz-Christoffel Formula for Multiply Connected Domains

Schwarz-Christoffel Formula for Multiply Connected Domains

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Computational Methods and Function Theory<br />

Volume 12 (2012), No. 2, 449–463<br />

<strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong><br />

<strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong><br />

Vladimir Mityushev<br />

(Communicated by Lloyd N. Trefethen)<br />

Dedicated to Nick Papamichael<br />

Abstract. We derive a <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>for</strong>mula <strong>for</strong> the con<strong>for</strong>mal mapping<br />

of an arbitrary n-connected domain D bounded by mutually disjoint<br />

circles |z − a k | = r k , k = 1, 2, . . . , n, onto the exterior of mutually disjoint<br />

polygons. The derivation is based on the exact solution to a Riemann-Hilbert<br />

problem <strong>for</strong> D without any geometric restriction imposed upon the location of<br />

the non-overlapping disks |z − a k | ≤ r k .<br />

Keywords. <strong>Multiply</strong> connected domain, <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>for</strong>mula, Riemann-<br />

Hilbert problem, con<strong>for</strong>mal mapping, functional equation, Poincaré series.<br />

2000 MSC. Primary 30C20; Secondary 30E25.<br />

1. Introduction<br />

A <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>for</strong>mula <strong>for</strong> multiply connected domains has recently been<br />

discussed by many mathematicians [1, 2, 3, 4, 5, 6, 7, 8, 9]. In order to describe<br />

the results consider a multiply connected circular domain D bounded by mutually<br />

disjoint circles L k = {z ∈ C: |z − a k | = r k }, k = 1, 2, . . . , n, in the complex<br />

plane C. The <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>for</strong>mula was constructed as a con<strong>for</strong>mal mapping<br />

of D onto a domain P bounded by n mutually disjoint polygons under the<br />

following geometric restriction to the locations of the circles [8]:<br />

(1) max<br />

k≠m<br />

r k + r m<br />

|a k − a m | < 1<br />

(n − 1) 1/4 .<br />

Similar restrictions were imposed by many authors (see references in [11, 12,<br />

13, 14, 15, 16]) to solve various boundary value problems in terms of absolutely<br />

convergent series including the alternating method of <strong>Schwarz</strong>. The Schottky-<br />

Klein prime function was used <strong>for</strong> such problems <strong>for</strong> arbitrary multiply connected<br />

Received July 20, 2011, in revised <strong>for</strong>m April 8, 2012.<br />

Published online August 21, 2012.<br />

ISSN 1617-9447/$ 2.50 c○ 2012 Heldermann Verlag


450 V. Mityushev CMFT<br />

domains [1, 2, 3, 4, 5]. However, explicit <strong>for</strong>mulae <strong>for</strong> the Schottky-Klein prime<br />

function are known only under the restriction (1).<br />

In the present paper, we follow the method presented in [15] which is based on the<br />

construction of the con<strong>for</strong>mal mapping via exact solution of a Riemann-Hilbert<br />

boundary value problem [11, 13, 14, 16] and on the uni<strong>for</strong>mly convergent Poincaré<br />

series [12] <strong>for</strong> the classical Schottky groups. As a result we explicitly obtain<br />

the <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>for</strong>mula <strong>for</strong> arbitrary domains D without any geometric<br />

restriction. In order to construct the con<strong>for</strong>mal mapping we solve the following<br />

Riemann-Hilbert problem [8]<br />

(2) Re[(t − a k )ψ(t)] = −1, |t − a k | = r k , k = 1, 2, . . . , n,<br />

<strong>for</strong> the function ψ(z) analytic in D and continuous in D ∪ ∂D except at the point<br />

singularities on the boundary ∂D prescribed below.<br />

2. Preliminaries<br />

The clockwise orientation is taken on each L k , hence the boundary ∂D = ⋃ n<br />

k=1 L k<br />

has the domain D to the left. First, we normalize the required con<strong>for</strong>mal mapping<br />

f : D → P by the condition f(∞) = ∞. Let the boundary of the domain P consist<br />

of n mutually disjoint polygons Γ k = f(L k ) with P lying to the left. Let the M k<br />

vertices of Γ k be denoted by w lk , l = 1, 2, . . . , M k , numbered clockwise around<br />

Γ k <strong>for</strong> each k = 1, 2, . . . , n. The corresponding vertex angles of the Γ k at the<br />

vertices w lk , measured from the exterior of P, are introduced as π(1+β lk ), where<br />

πβ lk is the turning of the tangent at w lk . The constants β lk satisfy the inequality<br />

−1 < β lk ≤ 1 and the relations<br />

(3)<br />

∑M k<br />

l=1<br />

β lk = 2, k = 1, 2, . . . , n.<br />

The prevertices are denoted by z lk with f(z lk ) = w lk .<br />

Our study is based on the fact established in [8] that the pre<strong>Schwarz</strong>ian<br />

(4) S(z) = f ′′ (z)<br />

f ′ (z)<br />

is one of the solutions of the Riemann-Hilbert problem (2) in the class of functions<br />

having prescribed singularities at the points z lk ∈ L k , l = 1, 2, . . . , M k ,<br />

k = 1, 2, . . . , n, where<br />

(5) S(z) ∼ β lk<br />

z − z lk<br />

as z → z lk .<br />

In order to recover f(z) from S(z) one can integrate twice the relation (4) since<br />

S(z) = (ln f ′ (z)) ′ . The primitive function<br />

(6) ω(z) =<br />

∫ z<br />

S(ζ) dζ


12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 451<br />

yields the <strong>Schwarz</strong>-<strong>Christoffel</strong> integral<br />

(7) f(z) =<br />

∫ z<br />

exp(ω(ζ)) dζ.<br />

The pre<strong>Schwarz</strong>ian and exp(ω(ζ)) were constructed by DeLillo et al. [8] by infinite<br />

sequences of iterated reflections that generate a series which absolutely converges<br />

under the restriction (1) (<strong>for</strong> details see [8] and the next section)<br />

⎡<br />

⎤<br />

(8) exp(ω(z)) =<br />

n∏ ∏M m<br />

⎣ ∏<br />

m=1 l=1<br />

γ o∈O ′ m<br />

z − γ o (z lm )<br />

z − γ o (a m )<br />

∏<br />

γ e∈E ′ m<br />

z − γ e (z lm )<br />

z − γ e (a m )<br />

⎦β lm<br />

.<br />

In the present paper, we follow another method based on the Riemann-Hilbert<br />

problem (2) in the class of functions satisfying the asymptotic <strong>for</strong>mulae (5).<br />

General solution ψ(z) of the problem (2) contains n arbitrary real constants [15],<br />

say ξ 1 , . . . , ξ n , i.e. ψ(z) = ψ(z; ξ 1 , . . . , ξ n ). In order to construct the required<br />

functions S(z) and ω(z), we first construct the functions ψ(z; ξ 1 , . . . , ξ n ) and<br />

Ω(z; ξ 1 , . . . , ξ n ). Further, the arbitrary constants ξ 1 , . . . , ξ n are chosen in such a<br />

way that ψ(z; ξ 1 , . . . , ξ n ) yields S(z) and Ω(z; ξ 1 , . . . , ξ n ) yields ω(z).<br />

3. Schottky group<br />

The inversion of z through the circle L k is given by<br />

z ∗ (k) = r k 2<br />

z − a k<br />

+ a k .<br />

It is known that if a function Φ(z) is analytic in the disk |z − a k | < r k and<br />

continuous in its closure, then Φ(z ∗ (k) ) is analytic in |z − a k| > r k and continuous<br />

in |z − a k | ≥ r k .<br />

Introduce the composition of successive inversions through the circles L k1 , L k2 ,<br />

. . . , L kp<br />

( ) ∗<br />

(9) z(k ∗ pk p−1 ...k 1 ) := z(k ∗ p−1 ...k 1 ) .<br />

(k p)<br />

In the sequence k 1 , k 2 , . . . , k p no two neighboring numbers are equal. The number<br />

p is called the level of the mapping. When p is even, these are Möbius<br />

trans<strong>for</strong>mations. If p is odd, we have anti-Möbius trans<strong>for</strong>mations, i.e., Möbius<br />

trans<strong>for</strong>mations in z. Thus, these mappings can be written in the <strong>for</strong>m<br />

(10a)<br />

(10b)<br />

γ j (z) = e jz + b j<br />

c j z + d j<br />

<strong>for</strong> p ∈ 2Z,<br />

γ j (z) = e jz + b j<br />

c j z + d j<br />

<strong>for</strong> p ∈ 2Z + 1,


452 V. Mityushev CMFT<br />

where e j d j − b j c j = 1, j = 0, 1, 2, . . .. Here<br />

γ 0 (z) := z<br />

(identical mapping with the level p = 0),<br />

γ 1 (z) := z ∗ (1), . . . , γ n (z) := z ∗ (n)<br />

(n simple inversions, p = 1),<br />

γ n+1 (z) := z ∗ (12), γ n+2 (z) := z ∗ (13), . . . , γ n 2(z) := z ∗ (n,n−1)<br />

(n 2 − n double inversions, p = 2),<br />

γ n 2 +1(z) := z ∗ (121), . . .<br />

and so on.<br />

The set of the subscripts j of γ j is ordered in such a way that the level p is increasing.<br />

The functions (10) generate a Schottky group K. Thus, each element of K<br />

is presented in the <strong>for</strong>m of the composition of inversions (9) or in the <strong>for</strong>m of linearly<br />

ordered functions (10). Let K m be a subset of K such that the last inversion<br />

of each element of K m is different from z ∗ (m) , i.e. K m = {z ∗ (k pk p−1 ...k 1 ) : k p ≠ m}.<br />

The set K ′ m = {z ∗ (k pk p−1 ...k 1 ) : k 1 ≠ m} is introduced similarly. All elements γ j<br />

of the even levels generate a subgroup E of the group K. The set of the elements<br />

γ j of odd level K\E is denoted by O. Introduce the notation E m = E ∩K m ,<br />

O m = O ∩ K m and E ′ m = E ∩ K ′ m, O ′ m = O ∩ K ′ m.<br />

Let us fix an inversion z(m) ∗ . Consider the trans<strong>for</strong>mation<br />

γ j (z) = ( γt<br />

−1 (z) ) ∗<br />

(m)<br />

from E, where γt<br />

−1<br />

have<br />

(11)<br />

is the inverse trans<strong>for</strong>mation to γ t ∈ O ′ m. Then from [15] we<br />

ζ − γ j (z)<br />

ζ − γ j (w) = z − γ t(ζ(m) ∗ )<br />

w − γ t (ζ(m) ∗ ) · w − γ t(a m )<br />

z − γ t (a m ) .<br />

Consider now a trans<strong>for</strong>mation γ j ∈ O and<br />

from E ′ m. Then [15]<br />

(12)<br />

( )<br />

γ s (z) = γ −1<br />

j z(m)<br />

∗<br />

( ) ζ − γj (w)<br />

= w − γ s(ζ(m) ∗ )<br />

ζ − γ j (z) z − γ s (ζ(m) ∗ ) · z − γ s(a m )<br />

w − γ s (a m ) .


12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 453<br />

4. Reduction of the Riemann-Hilbert problem to<br />

functional equations<br />

It follows from [15] that the inhomogeneous Riemann-Hilbert problem (2) always<br />

has solutions. The general solution amounts of a particular solution of the inhomogeneous<br />

problem and a linear combination of n solutions of the homogeneous<br />

problem.<br />

In order to solve the problem (2) rewrite it in the <strong>for</strong>m of the R-linear problem<br />

(13)<br />

(t − a k )ψ(t) = (t − a k )ψ k (t) − (t − a k )ψ k (t) − 1 + iξ k ,<br />

|t − a k | = r k , k = 1, . . . , n.<br />

Here, ξ k are undetermined real constants, ψ k (z) is analytic in |z − a k | < r k ,<br />

continuous in |z − a k | ≤ r k except the points z lk , where<br />

(14) ψ k (z) ∼<br />

β lk<br />

2(z − z lk )<br />

as z → z lk .<br />

It will be shown below in Lemma 1 that the asymptotics (14) and (5) <strong>for</strong> ψ(z)<br />

are matched. Hence, the R-linear problem (13) must be stated in a class of<br />

functions with prescribed singularities. It is convenient to describe this class by<br />

introduction of the Banach spaces as follows.<br />

Let G be a domain on the extended complex plane. Introduce the Banach space<br />

C(∂G) of functions continuous on ∂G with the norm<br />

‖F ‖ = max |F (t)|.<br />

t∈∂G<br />

Let us consider a closed subspace C A (G) of C(∂G) consisting of functions analytically<br />

continued into G. The Maximum Principle implies that convergence in<br />

the space C A (G) is equivalent to uni<strong>for</strong>m convergence in the closure of G. Let<br />

a fixed function F 0 have a finite number of singularities on the boundary ∂G.<br />

Introduce the space<br />

of functions endowed with the norm<br />

C A (G, F 0 ) = {F : F − F 0 ∈ C A (G)}<br />

‖F ‖ CA (G,F 0 ) = max<br />

t∈∂G |F (t) − F 0(t)|.<br />

The spaces C A (G, F 0 ) and C A (G) are isomorphic.<br />

Introduce mutually disjointed disks<br />

D k = {z ∈ C: |z − a k | < r k }, k = 1, 2, . . . , n.<br />

The multiply connected domain D complements all the closed disks D k ∪ L k to<br />

the extended complex plane Ĉ = C ∪ {∞}, i.e.<br />

n<br />

D = Ĉ\ ⋃<br />

(D k ∪ L k ).<br />

k=1


454 V. Mityushev CMFT<br />

Introduce the function<br />

(15) Φ(z) =<br />

where<br />

(16) Φ k (z) = 1 2<br />

n∑<br />

Φ k (z),<br />

k=1<br />

∑M k<br />

l=1<br />

β lk<br />

z − z lk<br />

.<br />

Then ψ(z) ∈ C A (D, 2Φ) and ψ k (z) ∈ C A (D k , Φ k ). The problems (2) and (13) in<br />

the classes considered are equivalent in the sense of the following result.<br />

Lemma 1.<br />

(i) If ψ(z) and ψ k (z) are solutions of (13) in the class considered, then ψ(z)<br />

satisfies (2).<br />

(ii) If ψ(z) is a solution of (2), there exist functions ψ k ∈ C A (D k , Φ k ) and real<br />

constants ξ k such that the R-linear conditions (13) are fulfilled.<br />

Proof. The proof of the first assertion is evident. It is sufficient to take the real<br />

part of (13).<br />

Conversely, let ψ(z) satisfy (2). The function<br />

Ψ k (z) = iξ k<br />

2 + (z − a k)ψ k (z)<br />

can be uniquely determined from the simple <strong>Schwarz</strong> problem <strong>for</strong> the disk D k<br />

[10, 16]<br />

(17) 2 Im Ψ k (t) = Im(t − a k )ψ(t), |t − a k | = r k .<br />

It is assumed that the function Ψ k (z) is continuous in |z − a k | ≤ r k except at<br />

the points z lk , where the principal part β lk (z lk − a k )/[2(z − z lk )] of Ψ k (z) is<br />

determined by the right hand part of (17). The problem (17) <strong>for</strong> the function<br />

Ψ k (z) has a unique solution, since Re Ψ k (a k ) = 0. There<strong>for</strong>e, the function<br />

ψ k (z) and the constant ξ k are uniquely determined in terms of ψ(z) <strong>for</strong> each<br />

k = 1, . . . , n. Direct calculations yields the asymptotic (14).<br />

Hence the lemma is proved.<br />

We now proceed to solve the R-linear problem (13) written in the <strong>for</strong>m<br />

( ) 2 rk<br />

(18) ψ(t) = ψ k (t) − ψ k (t) − 1 − iξ k<br />

, |t − a k | = r k , k = 1, . . . , n.<br />

t − a k t − a k


12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 455<br />

Introduce the function<br />

⎧<br />

(<br />

rm<br />

ψ k (z) + ∑ ) 2<br />

ψ m (z(m) ∗ ⎪⎨<br />

z − a ) + ∑ m<br />

m≠k<br />

m≠k<br />

˜Φ(z) :=<br />

n∑<br />

( ) 2 rm<br />

n∑<br />

⎪⎩ ψ(z) +<br />

ψ m (z(m) ∗ z − a ) +<br />

m<br />

m=1<br />

Calculate its jump across the circle L k<br />

∆ k :=<br />

m=1<br />

1 − iξ m<br />

z − a m<br />

, |z − a k | ≤ r k ,<br />

1 − iξ m<br />

z − a m<br />

, z ∈ D.<br />

lim ˜Φ(z) − lim ˜Φ(z), t ∈ Lk .<br />

z→t z∈D<br />

z→t z∈D k<br />

Using (18) we get ∆ k = 0. It follows from the Analytic Continuation Principle<br />

that ˜Φ (z) is analytic in the extended complex plane except at the points z lk . A<br />

straight<strong>for</strong>ward calculation shows that ˜Φ(z) has the same asymptotics as Φ(z)<br />

from (15). Then the generalized Liouville theorem implies that ˜Φ(z) coincides<br />

with Φ(z). Here, the relation ˜Φ(∞) = 0 is used. The definition (15) of Φ(z) in<br />

|z − a k | ≤ r k yields the following system of functional equations<br />

ψ k (z) = ∑ ( ) 2 rm<br />

)<br />

ψ m<br />

(z(m)<br />

∗ − ∑ 1 − iξ m<br />

(19)<br />

+ Φ(z),<br />

z − a m z − a m<br />

m≠k<br />

m≠k<br />

|z − a k | ≤ r k , k = 1, . . . , n.<br />

The general solution of the Riemann-Hilbert problem (2) is constructed via ψ k (z)<br />

(see the definition of ˜Φ(z) in D)<br />

n∑<br />

( ) 2 rm<br />

) n∑<br />

ψ(z) = −<br />

ψ m<br />

(z ∗ 1 − iξ m<br />

(20)<br />

(m)<br />

−<br />

+ Φ(z),<br />

z − a m z − a m<br />

m=1<br />

z ∈ D ∪ ∂D.<br />

The function ψ(z) is analytic in D except at the points z lk where its principal<br />

part is β lk /(z − z lk ).<br />

m=1<br />

5. Solution to functional equations<br />

Lemma 2. The system of functional equations (19) has a unique solution in<br />

C A (D k , Φ k ) (k = 1, 2, . . . , n). This solution can be found by the method of successive<br />

approximations.<br />

Proof. The proof of the lemma follows from [16, Lem. 4.8, p. 167] and [14]<br />

where functional equations had been solved in C A (D k ). Introduce the function χ k<br />

analytic in |z − a k | < r k and continuous in |z − a k | ≤ r k defined by<br />

(21) χ k (z) = ψ k (z) − Φ k (z),


456 V. Mityushev CMFT<br />

i.e. χ k ∈ C A (D k ). Substitution of (21) into (19) yields the system of functional<br />

equations in C A (D k ), k = 1, 2, . . . , n,<br />

χ k (z) = − ∑ ( ) 2 rm<br />

)<br />

(22)<br />

χ m<br />

(z(m)<br />

∗ + h k (z),<br />

z − a m<br />

m≠k<br />

where<br />

(23) h k (z) = − ∑ m≠k<br />

|z − a k | ≤ r k , k = 1, . . . , n,<br />

1 − iξ m<br />

+ Φ(z) − Φ k (z) − ∑ ( ) 2 rm<br />

)<br />

Φ m<br />

(z(m)<br />

∗ z − a m z − a m<br />

m≠k<br />

belongs to C A (D k ) (see (15) and (16)). It follows from [16, 14] that the system of<br />

functional equations (22) has a unique solution in C A (D k ). This solution χ k (z)<br />

can be found by the method of uni<strong>for</strong>mly convergent successive approximations.<br />

Then (21) yields ψ k (z) = Φ k (z) + χ k (z). Hence, ψ k (z) can be found by the<br />

method of successive approximations applied to (19). Convergence of the series<br />

<strong>for</strong> ψ k (z) is uni<strong>for</strong>m in every compact subset of D k ∪ ∂D k \ ⋃ M k<br />

l=1 {z lk}.<br />

This completes the proof of the lemma.<br />

It is possible to write ψ k explicitly in the <strong>for</strong>m of a series. But ultimately a<br />

primitive of ψ k is needed. In order to properly define it we fix a point w ∈ D\{∞}<br />

and introduce the functions<br />

(24) ϕ m (z) =<br />

and<br />

(25)<br />

Ω(z) =<br />

n∑<br />

m=1<br />

−<br />

∫ z<br />

w ∗ (m)<br />

ψ m (ζ) dζ + ϕ m (w ∗ (m)), m = 1, 2, . . . , n,<br />

( ) ( ) [ϕ ]<br />

m z(m)<br />

∗ − ϕ m w(m)<br />

∗<br />

n∑<br />

(1 − iξ m ) ln a m − z<br />

a m − w + 1 2<br />

m=1<br />

n∑ ∑M m<br />

m=1 l=1<br />

β lm ln z lm − z<br />

z lm − w ,<br />

where a single valued branch of the logarithm is fixed in such a way that all cuts<br />

of<br />

ln a m − z<br />

a m − w , ln z lm − z<br />

z lm − w<br />

lie in D ∪ D m ∪ ∂D m and ln x is real <strong>for</strong> positive x → +∞. In calculating the<br />

integral (24), the following relation is used [16]<br />

d<br />

(<br />

(26)<br />

[ϕ m z ∗<br />

dz<br />

(m)) ] ( ) 2 rk dϕ<br />

( )<br />

m<br />

= −<br />

z(m)<br />

∗ , |z − a k | > r k .<br />

z − a k dz


12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 457<br />

The functions Ω(z) and ϕ m (z) belong to<br />

)<br />

n∑ ∑M m<br />

C A<br />

(D, β lm ln(z − z lm )<br />

and to<br />

m=1 l=1<br />

(<br />

)<br />

C A D m , 1 ∑M m<br />

β lm ln(z − z ml ) ,<br />

2<br />

l=1<br />

respectively. One can see from (24) that the function ϕ m (z) is determined by<br />

ψ m (z) up to an additive constant which vanishes in (25). The function Ω(z)<br />

vanishes at z = w.<br />

Integrate each functional equation (19). Application of (24) yields functional<br />

equations<br />

ϕ k (z) = ∑ ( ) ( ) [ϕ ] m z(m)<br />

∗ − ϕ m w(m)<br />

∗ − ∑ (1 − iξ m ) ln a m − z<br />

(27)<br />

a m − w<br />

m≠k<br />

m≠k<br />

<strong>for</strong> the functions<br />

+ 1 2<br />

n∑ ∑M m<br />

m=1 l=1<br />

β lm ln z − z lm<br />

w − z lm<br />

+ c k , |z − a k | ≤ r k , k = 1, . . . , n,<br />

ϕ k ∈ C A<br />

(<br />

and undetermined constants c k .<br />

D k , 1 2<br />

∑M k<br />

l=1<br />

β lk ln(z − z lk )<br />

Lemma 3. The system of functional equations (27) with fixed c k has a unique<br />

solution in<br />

(<br />

)<br />

C A D k , 1 ∑M k<br />

β lk ln(z − z lk ) , k = 1, . . . , n.<br />

2<br />

l=1<br />

This solution can be found by the method of successive approximations.<br />

Proof. The proof follows from Lemma 2, since (27) is the result of the integral<br />

operator<br />

(28) F ↦→<br />

applied to (19). Convergence in<br />

C A<br />

(<br />

D k , 1 2<br />

∫ z<br />

∑M k<br />

l=1<br />

w ∗ (k)<br />

F (t)dt<br />

β lk ln(z − z lk )<br />

)<br />

)


458 V. Mityushev CMFT<br />

means uni<strong>for</strong>m convergence in every compact subset of<br />

⋃M k<br />

(D k ∪ ∂D k )\ {z lk }.<br />

There<strong>for</strong>e, the integral operator (28) can be applied term by term to the successive<br />

approximations <strong>for</strong> (19). This yields the uni<strong>for</strong>mly convergent successive<br />

approximations <strong>for</strong> (28) in the compact subsets considered.<br />

Equations (27) can be compactly written in the operator <strong>for</strong>m<br />

l=1<br />

(29) X = AX + h,<br />

where X(z) = ϕ k (z) in |z − a k | ≤ r k , k = 1, . . . , n, the linear operator A and the<br />

function h are defined by the right hand part of (27). Application of Lemma 3<br />

yields the representation <strong>for</strong> X in the <strong>for</strong>m of uni<strong>for</strong>mly convergent series<br />

∞∑<br />

(30) X = A s h.<br />

Let<br />

with constants C 1 , C 2 and<br />

h 1 , h 2 ∈ C A<br />

(<br />

D k , 1 2<br />

Then<br />

i.e.<br />

(31)<br />

∑M k<br />

l=1<br />

s=0<br />

h = C 1 h 1 + C 2 h 2<br />

β kl ln(z − z kl )<br />

)<br />

<strong>for</strong> all k = 1, . . . , n.<br />

∑ ∞<br />

X = X 1 + X 2 , where X 1 = C 1 A s h 1 , X 2 = C 2<br />

∞∑<br />

A s h = C 1<br />

s=0<br />

∞<br />

∑<br />

s=0<br />

s=0<br />

A s h 1 + C 2<br />

∞<br />

∑<br />

s=0<br />

A s h 2 .<br />

∞<br />

∑<br />

s=0<br />

A s h 2 ,<br />

The later equality in particular means that it is possible to change the order of<br />

summation in (30) in such a way that summation keeps the increasing level in<br />

each infinite sum. Uniqueness based on Lemma 3 yields the same results in the<br />

left and right parts of (31). There<strong>for</strong>e, one can take any linear combination of<br />

(1 − iξ m ) ln(z − a m ), β mj ln(z − z mj ) and compose the corresponding series <strong>for</strong><br />

the solution. This observation allows us to avoid additional conditions related<br />

to unnecessary absolute convergence.<br />

Applications of the successive approximations to (27) separately to the right<br />

hand part terms<br />

c k , β lm ln z − z lm<br />

, − ∑ (1 − iξ m ) ln a m − z<br />

w − z lm a m − w<br />

m≠k


12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 459<br />

∑<br />

and summation of the results obtained (including 1 n<br />

2 m=1<br />

term) yields<br />

(32)<br />

ϕ k (z) = c k + 1 2<br />

<strong>for</strong> |z − a k | ≤ r k .<br />

n∑ ∑M m<br />

m=1 l=1<br />

∑ Mm<br />

l=1<br />

(<br />

β lm ln z lm − z<br />

z lm − w + ∑ ln z lm − z(k ∗ 1 )<br />

z<br />

k 1 ≠k lm − w(k ∗ 1 )<br />

+ ∑ k 1 ≠k<br />

+ ∑ k 1 ≠k<br />

∑<br />

ln z lm − z(k ∗ 2 k 1 )<br />

z lm − w ∗ k 2 ≠k 1<br />

(k 2 k 1 )<br />

∑<br />

k 2 ≠k 1<br />

∑<br />

ln z lm − z(k ∗ 3 k 2 k 1 )<br />

z<br />

k 3 ≠k lm − w ∗ 2 (k 3 k 2 k 1 )<br />

<strong>for</strong> the second<br />

)<br />

+ · · ·<br />

− ∑ (1 − iξ k1 ) ln a k 1<br />

− z<br />

a k1 − w − ∑ ∑<br />

(1 − iξ k2 ) ln a k 2<br />

− z(k ∗ 1 )<br />

a<br />

k 1 ≠k<br />

k 1 ≠k k 2 ≠k k2 − w ∗ 1 (k 1 )<br />

− ∑ ∑ ∑<br />

(1 − iξ k3 ) ln a k 3<br />

− z(k ∗ 2 k 1 )<br />

a k3 − w ∗ k 1 ≠k k 3 ≠k 2<br />

(k 2 k 1 )<br />

− ∑ k 1 ≠k<br />

k 2 ≠k 1<br />

∑<br />

∑<br />

k 2 ≠k 1 k 3 ≠k 2<br />

∑<br />

k 4 ≠k 3<br />

(1 − iξ k4 ) ln a k 4<br />

− z ∗ (k 3 k 2 k 1 )<br />

a k4 − w ∗ (k 3 k 2 k 1 )<br />

+ · · · ,<br />

6. Construction of f ′ (z)<br />

Substitute equation (32) <strong>for</strong> ϕ k in (25) and write the result <strong>for</strong> the function<br />

F (z; ξ 1 , ξ 2 , . . . , ξ n ) = exp(Ω(z)) in the <strong>for</strong>m of the infinite product<br />

{ ⎡<br />

n∏ ∏M m ( ) ( )<br />

βlm /2<br />

zlm − z<br />

n∏<br />

⎤ zlm − z ∗ βlm /2<br />

(k)<br />

(33) F (z; ξ 1 , ξ 2 , . . . , ξ n ) =<br />

⎣<br />

⎦<br />

z<br />

m=1<br />

lm − w<br />

z<br />

l=1<br />

k=1 lm − w(k)<br />

∗<br />

⎡ ( )<br />

n∏<br />

⎤ ∏ zlm − z ∗ βlm /2 }<br />

(k<br />

× ⎣<br />

1 k)<br />

⎦ · · ·<br />

z lm − w ∗ k=1 k 1 ≠k<br />

(k 1 k)<br />

[<br />

∏ n ( ) ] ⎡ ( ) ⎤<br />

1−iξk<br />

ak − w<br />

n∏ ∏ ak1 − w ∗ 1−iξk1<br />

(k)<br />

×<br />

⎣<br />

⎦<br />

a k − z<br />

a<br />

k=1<br />

k=1 k 1 ≠k k1 − z(k)<br />

∗<br />

⎡<br />

( ) ⎤<br />

n∏ ∏ ∏ ak2 − w ∗ 1−iξk2<br />

(k<br />

× ⎣<br />

1 k)<br />

⎦ · · · .<br />

a k2 − z ∗ k=1 k 1 ≠k k 2 ≠k 1<br />

(k 1 k)<br />

This product converges uni<strong>for</strong>mly in every compact subset of D\{∞}.


460 V. Mityushev CMFT<br />

Theorem 4. The function (33) yields exp(ω(z)) from the <strong>Schwarz</strong>-<strong>Christoffel</strong><br />

integral (7) when all ξ m vanish. The function exp(ω(z)) has the <strong>for</strong>m<br />

(34)<br />

exp(ω(z)) = F (z; 0, . . . , 0)<br />

{ ⎡<br />

n∏ ∏M m ( ) ( )<br />

βlm /2<br />

zlm − z<br />

n∏<br />

⎤ zlm − z ∗ βlm /2<br />

(k)<br />

=<br />

⎣<br />

⎦<br />

z<br />

m=1 j=1 lm − w<br />

z<br />

k=1 lm − w(k)<br />

∗<br />

⎡ ( )<br />

n∏<br />

⎤ ∏ zlm − z ∗ βlm /2 }<br />

(k<br />

× ⎣<br />

1 k)<br />

⎦ · · ·<br />

z lm − w ∗ k=1 k 1 ≠k<br />

(k 1 k)<br />

( n<br />

) (<br />

∏<br />

n<br />

)<br />

a k − w ∏ ∏ a k1 − w(k)<br />

∗<br />

×<br />

a k − z<br />

a<br />

k=1<br />

k=1 k 1 ≠k k1 − z(k)<br />

∗<br />

( n<br />

)<br />

∏ ∏ ∏ a k2 − w(k ∗<br />

×<br />

1 k)<br />

· · · .<br />

a k2 − z ∗ k=1 k 1 ≠k k 2 ≠k 1<br />

(k 1 k)<br />

Proof. The function F (z; ξ 1 , ξ 2 , . . . , ξ n ) is constructed on the basis of the general<br />

solution ψ(z) of the Riemann-Hilbert problem (2) which contains the singularity<br />

function (4) as a particular solution. There<strong>for</strong>e, F (z; ξ 1 , ξ 2 , . . . , ξ n ) contains the<br />

function exp(ω(z)) <strong>for</strong> appropriate constants ξ 1 , ξ 2 , . . . , ξ n . In order to prove<br />

the theorem it is sufficient to check that all singular points of the function (33)<br />

coincide to the singular points of the function exp(ω(z)) (including orders of the<br />

singularities) if and only if all ξ m are equal to zero.<br />

DeLillo et al. [8] used the <strong>Schwarz</strong> Reflection Principle to prove that the asymptotic<br />

behavior of the analytic continuation of exp(ω(z)) near the singular points<br />

is described by the relations<br />

(35a)<br />

(35b)<br />

<strong>for</strong> γ j ∈ E ′ m and<br />

(36a)<br />

(36b)<br />

<strong>for</strong> γ j ∈ O ′ m.<br />

exp(ω(z)) ∼ (z − γ j (z lm )) β lm<br />

as z → γ j (z lm ),<br />

exp(ω(z)) ∼ (z − γ j (a m )) −2<br />

as z → a m<br />

exp(ω(z)) ∼ (z − γ j (z lm )) β lm<br />

as z → γ j (z lm ),<br />

exp(ω(z)) ∼ (z − γ j (a m )) −2<br />

as z → a m<br />

After application of the <strong>for</strong>mula (3) one can observe all these singularities in (8).<br />

Though <strong>for</strong>mula (8) does not hold in the general case, asymptotic <strong>for</strong>mulae (35)<br />

and (36) always valid <strong>for</strong> exp(ω(z)) [8].<br />

We now investigate the question, <strong>for</strong> which parameters ξ 1 , ξ 2 , . . . , ξ n the function<br />

F (z; ξ 1 , ξ 2 , . . . , ξ n ) has the same asymptotic (35), (36). Let us fix a m and consider<br />

the term<br />

µ(z) = z lk − γ e (z)<br />

z lk − γ e (w)


12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 461<br />

from (33) where the last inversion of γ e ∈ E is z(m) ∗ , i.e. γ e(z) can be written as<br />

γ e (z) = z(k ∗ pk p−1···k 1 m)<br />

with odd p. The relation (11) implies that<br />

(37) µ(z) = z − γ t((z lk ) ∗ (m) )<br />

w − γ t ((z lk ) ∗ (m) ) w − γ t (a m )<br />

z − γ t (a m ) ,<br />

where γ t (z) = z(k ∗ 1 k belongs to 2···k p) O′ m. One can see that (37) gives the required<br />

first asymptotic (36) <strong>for</strong> F (z; ξ 1 , ξ 2 , . . . , ξ n ). It follows from (37) and (3) that the<br />

multiplier from (33)<br />

∏M m<br />

[µ(z)] β lm/2<br />

contains the multiplier<br />

l=1<br />

∏M m<br />

[z − γ t (a m )] −βlm/2 = [z − γ t (a m )] −1 .<br />

l=1<br />

Similar arguments can be applied to obtain the required first asymptotic (35) <strong>for</strong><br />

F (z; ξ 1 , ξ 2 , . . . , ξ n ) by use of<br />

ν(z) = z lk − γ o (z)<br />

z lk − γ o (w)<br />

where γ o ∈ O. One can see also that the multiplier from (33)<br />

∏M m<br />

[ν(z)] β lm/2<br />

l=1<br />

contains [z − γ s (a m )] −1 <strong>for</strong> some γ s ∈ E ′ m.<br />

There<strong>for</strong>e, the function F (z; ξ 1 , ξ 2 , . . . , ξ n ) contains the multiplier<br />

<strong>for</strong> γ s ∈ E ′ m (the multiplier<br />

[z − γ s (a m )] −2+iξm<br />

[z − γ t (a m )] −2+iξm<br />

<strong>for</strong> γ t ∈ O ′ m) which determines its behavior near the singular point z = γ s (a m )<br />

(z = γ t (a m )). One can see that F (z; ξ 1 , ξ 2 , . . . , ξ n ) has the same behavior as<br />

exp(ω(z)) at these points if and only if ξ m = 0.<br />

The theorem is proved.<br />

Remark 1. It follows from Theorem 4 that<br />

S(z) = O(|z| −3 )<br />

(see (3) and (15)–(16)) that corresponds to [8].<br />

as z → ∞


462 V. Mityushev CMFT<br />

We refer to the paper [15] <strong>for</strong> comparison of the general <strong>for</strong>mula (34) with the<br />

partial <strong>for</strong>mula (8) by DeLillo et al. [8]. A similar discussion concerning Riemann-<br />

Hilbert problems can be found in [11]–[14]. Here, we just note that (8) can be<br />

established by the limit w → ∞ in (34), by using the arguments from [15]<br />

and from the proof of Theorem 4. It is worth noting that the substitution<br />

w = ∞ is <strong>for</strong>bidden in the general case since it yields the integral ∫ ∞<br />

· · · in (25)<br />

z<br />

after application of (24) and the substitution ζ = t ∗ (m). This integral over the<br />

infinite path can produce a divergent series (<strong>for</strong> details see [15, Sect. 4] and<br />

[16, Sec. 4.10]).<br />

Acknowledgement. I am grateful to Professor Thomas K. DeLillo <strong>for</strong> stimulating<br />

discussions of the problems considered during the perfectly organized Conference<br />

on Computational Complex Analysis and Approximation Theory in 2011,<br />

honoring Professor Nicolas Papamichael to whom I also express my gratitude.<br />

References<br />

1. D. G. Crowdy The <strong>Schwarz</strong>-<strong>Christoffel</strong> mapping to bounded multiply connected polygonal<br />

domains, Proc. Roy. Soc. A 461 (2005), 2653–2678.<br />

2. , <strong>Schwarz</strong>-<strong>Christoffel</strong> mappings to unbounded multiply connected polygonal regions,<br />

Math. Proc. Camb. Phil. Soc. 142 (2007), 319–339.<br />

3. , Con<strong>for</strong>mal Mappings between Canonical <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong>, Comput.<br />

Methods Funct. Theory 6 no.1 (2006), 59–76.<br />

4. D. G. Crowdy anbd A. S. Fokas Con<strong>for</strong>mal mappings to a doubly connected polycircular<br />

arc domain, Proc. Roy. Soc. A 463 (2007), 1885–1907.<br />

5. D. G. Crowdy, A. S. Fokas and C. C. Green, Con<strong>for</strong>mal mappings to multiply connected<br />

polycircular arc domains, Comput. Methods Funct. Theory 11 no.2 (2011), 685–706.<br />

6. T. K. DeLillo, <strong>Schwarz</strong>-<strong>Christoffel</strong> mapping of bounded, multiply connected domains, Comput.<br />

Methods Funct. Theory 6 no.2 (2006), 275–300.<br />

7. T. K. DeLillo, T. A. Driscoll, A. R. Elcrat and J. A. Pfaltzgraff, Computation of multiply<br />

connected <strong>Schwarz</strong>-<strong>Christoffel</strong> map <strong>for</strong> exterior domains, Comput. Methods Funct. Theory<br />

6 no.2 (2006), 301–315.<br />

8. T. K. DeLillo, A. R. Elcrat and J. A. Pfaltzgraff, <strong>Schwarz</strong>-<strong>Christoffel</strong> mapping of multiply<br />

connected domains, J. d’Analyse Math. 94 (2004), 17–47.<br />

9. T. A. Driscoll and L. N. Trefethen, <strong>Schwarz</strong>-<strong>Christoffel</strong> Mapping, Cambridge University<br />

Press, Cambridge, 2002.<br />

10. F. D. Gakhov, Boundary Value Problems, Nauka, Moscow, 1977 (3rd edition) (in Russian);<br />

Engl. transl. of 1st ed.: Pergamon Press, Ox<strong>for</strong>d, 1966.<br />

11. V. V. Mityushev, Solution of the Hilbert boundary value problem <strong>for</strong> a multiply connected<br />

domain, Slupskie Prace Mat.-Przyr. 9a (1994), 37–69.<br />

12. , Convergence of the Poincaré series <strong>for</strong> classical Schottky groups, Proc. Amer.<br />

Math. Soc. 126 no.8 (1998), 2399–2406.<br />

13. , Hilbert boundary value problem <strong>for</strong> multiply connected domains, Complex Variables<br />

35 (1998), 283–295.<br />

14. , Scalar Riemann-Hilbert problem <strong>for</strong> multiply connected domains, in: Th. M.<br />

Rassias and J. Brzdek (eds.), Functional Equations in Mathematical Analysis, Springer-<br />

Verlag, New York, 2011, 599–632.


12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 463<br />

15. , Riemann-Hilbert problem <strong>for</strong> multiply connected domains and circular slit map,<br />

Comput. Methods Funct. Theory 11 no.2 (2011), 575–590.<br />

16. V. V. Mityushev and S.V. Rogosin, Constructive Methods <strong>for</strong> Linear and Nonlinear Boundary<br />

Value Problems <strong>for</strong> Analytic Functions. Theory and Applications, Monographs and<br />

Surveys in Pure and Applied Mathematics, Chapman & Hall / CRC, Boca Raton etc.,<br />

2000.<br />

Vladimir Mityushev<br />

E-mail: vmityu@yahoo.com<br />

Address: Pedagogical University, Department of Computer Sciences and Computer Methods,<br />

ul. Podcharazych 2, Krakow 30-084, Poland.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!