11.01.2014 Views

Vibration of a diatomic molecule Helmholtz free energy

Vibration of a diatomic molecule Helmholtz free energy

Vibration of a diatomic molecule Helmholtz free energy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

31.10.08<br />

Boltzmann<br />

Partition function for one <strong>molecule</strong><br />

z =<br />

∞∑<br />

e −βεn = Z(T, v, i)<br />

n=0<br />

β = 1<br />

k B T<br />

for N <strong>molecule</strong>s, Z = z n if distinguishable, Z(T, v, N) = 1 N! ZN if indistinguishable.<br />

<strong>Helmholtz</strong> <strong>free</strong> <strong>energy</strong>:<br />

F = −k B T ln Z<br />

<strong>Vibration</strong> <strong>of</strong> a <strong>diatomic</strong> <strong>molecule</strong><br />

Using the harmonic oscillator approximation<br />

(<br />

ε n = hν n + 1 )<br />

2<br />

z =<br />

∞∑<br />

e −βhν(n+ 1 2 ) = e −βh ν 2<br />

n=0<br />

∞∑ (<br />

e<br />

−βhν ) n<br />

let’s change the variable, e −βhν = x. We know that ∑ ∞<br />

n=0 xn = 1<br />

1−x , so<br />

<strong>Helmholtz</strong> <strong>free</strong> <strong>energy</strong><br />

z = e −βh ν 2 ·<br />

n=0<br />

1<br />

1 − e −βhν<br />

1<br />

1<br />

=<br />

e βh ν 2 − e −βh = ν<br />

2<br />

2 sinh( βhν<br />

2 )<br />

F = −k B T ln(Z n )<br />

= − 1 β N (<br />

−βh ν 2 − ln ( 1 − e −βhν))<br />

= N 2 hν + N β ln ( 1 − e −βhν)<br />

(where N 2<br />

hν is the zero point <strong>energy</strong> <strong>of</strong> N <strong>molecule</strong>s)<br />

Combined 1. and 2. law<br />

dF = −SdT − P dV + µdN<br />

1


So S = − ( ∂F<br />

∂T<br />

So<br />

so<br />

)v,N = − (<br />

∂F<br />

∂β<br />

) ( )<br />

∂β<br />

βT<br />

[<br />

]<br />

βhν<br />

S = Nk<br />

e βhν − 1 − ln(1 − e−βhν<br />

F = U − T S<br />

U = F + T S<br />

[ ]<br />

1<br />

U = Nhν<br />

2 + 1<br />

e βhν − 1<br />

clearly,<br />

[ ]<br />

1<br />

〈ε〉 = hν<br />

2 + 1<br />

e βhν − 1<br />

Testing the limits<br />

As T approaches 0, β → ∞<br />

, the ZPE.<br />

As T approaches infinity, β → 0<br />

U → N hν<br />

2<br />

U = N hν<br />

2 + Nhν 1<br />

βhν + (βhν)2<br />

2<br />

+ . . .<br />

= N hν<br />

2 + N β<br />

= N hν<br />

2 + N β<br />

= N β<br />

= Nk B T<br />

= nRT<br />

1<br />

1 + βhν<br />

2<br />

+ . . .<br />

(<br />

1 + βhν )<br />

2 + . . .<br />

which is the classical result. Equipartition principle.<br />

Heat Capacity<br />

C v =<br />

( ) ∂U<br />

∂T<br />

V,N<br />

e βhν<br />

C v = Nk(βhν) 2<br />

(e βhν − 1) 2<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!