16.01.2014 Views

Analyses of Hydrogen Storage Materials and On-Board Systems

Analyses of Hydrogen Storage Materials and On-Board Systems

Analyses of Hydrogen Storage Materials and On-Board Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Analyses</strong> <strong>of</strong> <strong>Hydrogen</strong><br />

<strong>Storage</strong> <strong>Materials</strong> <strong>and</strong> <strong>On</strong>-<br />

<strong>Board</strong> <strong>Systems</strong><br />

Project ID #<br />

ST19<br />

DOE Merit Review<br />

May 25, 2005<br />

Stephen Lasher<br />

lasher.stephen@tiaxllc.com<br />

TIAX LLC<br />

15 Acorn Park<br />

Cambridge, MA<br />

02140-2390<br />

Tel. 617- 498-5000<br />

Fax 617-498-7200<br />

www.TIAXLLC.com<br />

Reference: D0268<br />

© 2005 TIAX LLC<br />

This presentation does not contain any proprietary or confidential information


Overview<br />

Timeline<br />

Start date: June 2004<br />

End date: Sept 2009<br />

14% Complete<br />

Budget<br />

Total project funding<br />

‣DOE share = $1.5M<br />

‣No cost share<br />

FY04 = $112k<br />

FY05 = $200k<br />

Barriers addressed<br />

‣A. Cost<br />

‣C. Efficiency<br />

Barriers<br />

‣G. Life Cycle <strong>and</strong> Efficiency<br />

<strong>Analyses</strong><br />

Partners<br />

Team: GTI, Pr<strong>of</strong>. Robert<br />

Crabtree (Yale), Pr<strong>of</strong>. Daniel<br />

Resasco (U. <strong>of</strong> Oklahoma)<br />

Feedback: National Labs,<br />

Developers, Stakeholders<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

1


Objectives<br />

Overall: Help guide DOE <strong>and</strong> developers toward promising<br />

R&D <strong>and</strong> commercialization pathways by evaluating the<br />

various on-board hydrogen storage technologies on a<br />

consistent basis<br />

Past Year: Develop system-level designs <strong>and</strong> estimate the<br />

cost, weight, <strong>and</strong> volume for a base case metal<br />

hydride/alanate hydrogen storage system<br />

‣ Selected sodium alanate as the base case<br />

‣ Developed results <strong>and</strong> compared to DOE targets <strong>and</strong><br />

results for compressed hydrogen storage<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

2


Approach<br />

Overview<br />

Our on-board cost <strong>and</strong> performance estimates are based on detailed<br />

technology assessment <strong>and</strong> bottom-up cost modeling.<br />

Performance/<br />

Tech Assessment<br />

•Literature Search<br />

•Outline Assumptions<br />

•System Design <strong>and</strong><br />

Configurations<br />

•Process Models<br />

Cost Modeling<br />

•Document BOM<br />

•Determine Material<br />

Costs<br />

•Identify Processes <strong>and</strong><br />

Mnf. Equipment<br />

•Sensitivity <strong>Analyses</strong><br />

Overall Model<br />

Refinement<br />

•Developer <strong>and</strong><br />

Industry Feedback<br />

•Revise Assumptions<br />

<strong>and</strong> Model Inputs<br />

Interconnect<br />

Forming<br />

<strong>of</strong><br />

Interconnect<br />

Shear<br />

Interconnect<br />

Paint Braze<br />

onto<br />

Interconnect<br />

Braze<br />

$14<br />

$12<br />

Assembly &<br />

Inspection<br />

BOP<br />

Anode<br />

Anode<br />

Powder Prep<br />

Tape Cast<br />

Slip Cast<br />

Electrolyte<br />

Electrolyte<br />

Small Powder<br />

Prep<br />

Vacuum<br />

Plasma<br />

Spray<br />

Screen<br />

Print<br />

Fabrication<br />

Blanking /<br />

Slicing<br />

Sinter in Air<br />

1400C<br />

QC Leak<br />

Check<br />

Cathode<br />

Cathode<br />

Small Powder<br />

Prep<br />

Screen<br />

Print<br />

Vacuum<br />

Plasma<br />

Spray<br />

Sinter in Air<br />

Finish Edges<br />

System Cost, $/kWh<br />

$10<br />

$8<br />

$6<br />

$4<br />

Dehydriding Subsystem<br />

Tank<br />

Media<br />

Slurry Spray<br />

Slurry<br />

Spray<br />

Stack Assembly<br />

$2<br />

Note: Alternative production processes appear in gray to the<br />

bottom <strong>of</strong> actual production processes assumed<br />

$0<br />

TIAX Base Case 5,000 psi 10,000 psi<br />

BOM = Bill <strong>of</strong> <strong>Materials</strong><br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

3


Progress<br />

Design Assumptions<br />

We made design assumptions for the NaAlH 4 system based on literature<br />

review, developer feedback <strong>and</strong> TIAX experience.<br />

Design Parameter<br />

Value<br />

Basis<br />

H 2<br />

<strong>Storage</strong> Capacity<br />

5.6 kg<br />

ANL drive-cycle modeling<br />

NaAlH 4<br />

H 2<br />

Capacity<br />

4 wt%<br />

UTRC (Anton, Merit Review, May 04)<br />

Media<br />

Catalyst<br />

TiCl 3<br />

Bogdanovic & Schwickardi, JAC 97<br />

Catalyst Concentration<br />

4 mol%<br />

Bogdanovic & S<strong>and</strong>rock, MRS 02<br />

Thermal<br />

Powder Packing Density<br />

Heat <strong>of</strong> Decomposition<br />

0.6<br />

41 kJ/mol H 2<br />

UTRC (Anton, Merit Review, May 04)<br />

Reaction thermodynamics<br />

Min. Temperature 100 o C SNL (Wang, Merit Review, May 04)<br />

Max. Temperature<br />

Media Conductivity<br />

186 o C<br />

< 1 W/m K<br />

SNL (Gross, JAC 02)<br />

SNL (Wang, Merit Review, May 04)<br />

Media (hydrided) Specific Heat 1,418 J/kg K SNL (Dedrick, JAC 04 - draft)<br />

Al Foam Conductivity ~52 W/m K Metal Foams ~ k eff<br />

=0.28k Al@473K<br />

Al Specific Heat<br />

Max. Pressure<br />

~912 J/kg K<br />

100 bar (1470 psi)<br />

Aluminum alloy 2024 @473K<br />

UTRC (Anton, Merit Review, May 04)<br />

Mechanical<br />

Pressure Safety Factor 2.25 Industry st<strong>and</strong>ard<br />

Liner Thickness<br />

2 mm (14 ga)<br />

Estimate required for integrity<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

4


Progress<br />

Material H 2<br />

Capacity Assumption<br />

We assume NaAlH 4 decomposes in a reversible two step reaction to<br />

achieve 4 wt% H 2 under practical conditions.<br />

Theoretical = 5.6 wt%<br />

“Demonstrated” ~ 4 wt%<br />

(absorption/desorption)<br />

‣ P ~ 100 / 2 bar<br />

‣ T ~ 100 / 120 ˚C<br />

TiCl 3 + NaAlH 4 = 3.2 wt%<br />

‣ 4 mol% Ti-precursor added<br />

to catalyze reaction<br />

‣ Ti + NaAlH 4 = 3.8 wt%<br />

High pressure output (e.g. 8<br />

atm) would limit to 1st Step<br />

8 bar<br />

Reference: Gross, K. (SNL) presentation at DOE <strong>Hydrogen</strong> <strong>and</strong> Fuel Cells Annual<br />

Merit Review, May 2003<br />

1 st Step: NaAlH 4<br />

1/3 Na 3<br />

AlH 6<br />

+ 2/3 Al + H 2<br />

(g) H 2<br />

wt%=3.7<br />

2 nd Step: Na 3<br />

AlH 6<br />

3 NaH + Al + 3/2 H 2<br />

(g) H 2<br />

wt%=1.9<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

5


Progress<br />

Tank Conceptual Design<br />

We developed a conceptual design for a tank to accommodate rapid<br />

heat exchange <strong>and</strong> high adsorption pressure conditions (100 bar).<br />

TIAX Base Case Design (5.6 kg H 2<br />

): Carbon Fiber Composite Tank<br />

1.5m<br />

HTF<br />

HTF Manifold<br />

Insulation<br />

4% Al foam<br />

GF<br />

3” diameter size<br />

CF<br />

Liner<br />

Sintered SS Filters<br />

Legend<br />

0.5m<br />

H 2<br />

Metal Foam<br />

Al = Aluminum<br />

GF = Glass Fiber<br />

CF = Carbon Fiber<br />

HTF = Heat Transfer Fluid<br />

HX = Heat Exchanger<br />

SS = Stainless Steel<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

6


Progress<br />

Tank Manufacturing<br />

We assumed a tank manufacturing process that loads the alanate in<br />

several automated steps under an inert atmosphere.<br />

Shape Al<br />

Foam<br />

Fill in NaAlH4<br />

<strong>and</strong> Binder<br />

into Al Foam<br />

Sintering Pack<br />

Into Solid<br />

Status<br />

Machining<br />

End Plates<br />

Extrusion<br />

Cylinder<br />

Spin Seal<br />

Ends To<br />

Form Cylinder<br />

Brazing<br />

Optional Process:<br />

Shape Al<br />

Foam<br />

Form<br />

Al /SS 316<br />

Can<br />

Assembly Al<br />

Form into Can<br />

Fill in Hydrides<br />

Size SS 316<br />

Tubes<br />

Tubes <strong>and</strong><br />

<strong>On</strong>e End Plate<br />

Stamp<br />

Semi-Sphere<br />

Cap<br />

Machining<br />

Two Bosses<br />

*Super Binder needs to be discovered.<br />

Insert Al Foam<br />

Packs <strong>and</strong><br />

Separators<br />

Laser Brazing<br />

HE End Plate<br />

Bend<br />

Tubes<br />

Fabricate Fluid<br />

End plates<br />

Brazing<br />

Fluid<br />

End Plates<br />

With Two<br />

Tubes<br />

Laser<br />

Brazing<br />

End<br />

Plates<br />

With Fluid<br />

Plates<br />

Insert Hydride<br />

And Heat<br />

Exchanger<br />

Into Liner<br />

Laser<br />

Brazing<br />

Liner<br />

End Cap<br />

Heat Exchange<br />

Fluid In-Out Side<br />

Alternative processes, such as loading the alanate in molten form after<br />

CF curing, may be necessary for high volume manufacture.<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

7


Progress<br />

System Conceptual Design<br />

The complete system requires significant balance <strong>of</strong> plant (BOP)<br />

components for overall thermal management <strong>and</strong> flow control.<br />

Fill Station<br />

Interface<br />

Refueling<br />

Interface<br />

<strong>Hydrogen</strong><br />

H 2<br />

100 bar<br />

HTF<br />

~100˚C<br />

HTF<br />

~125˚C<br />

Check Valve<br />

in Fill Port<br />

HTF** In<br />

HTF Out<br />

Pressure<br />

Relief<br />

Valve<br />

<strong>Storage</strong> Tank<br />

Sodium Alanate Pressure<br />

Vessel w/ In-tank Heat<br />

Exchanger<br />

Temperature<br />

Transducer<br />

Pressure<br />

Transducer<br />

Thermal<br />

Relief<br />

Device<br />

Pressure<br />

Relief<br />

Valve<br />

Temperature<br />

Transducer<br />

Check<br />

Valve<br />

Dehydriding System<br />

Combustion Air<br />

Blower<br />

Heat Exchanger w/<br />

Low NO x H 2 Combustor<br />

Motor<br />

M<br />

Pump<br />

Ball Valve<br />

Solenoid Valve<br />

(Normally Closed)<br />

Primary<br />

Pressure Regulator<br />

<strong>Hydrogen</strong> Line<br />

Heat Transfer Line<br />

Data & Comm. Line<br />

In-Tank Regulator<br />

Fill<br />

System<br />

Control<br />

Module<br />

Data & Comm. Line<br />

to Fuel Control<br />

Solenoid Valve<br />

(Normally Closed)<br />

Check Valve<br />

<strong>Hydrogen</strong> Line<br />

to Fuel Cell<br />

*Note: Schematic is representative only.<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

8


Progress<br />

Dehydriding Subsystem<br />

We sized a compact, fin <strong>and</strong> tube design for the heat transfer fluid (HTF)<br />

heat exchanger.<br />

Thermal integration with the stack was not considered at this time.<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

9


Progress<br />

Other Design Issues<br />

We have identified a number <strong>of</strong> system-level issues that must be<br />

addressed by the on-going R&D.<br />

Issues<br />

Start-up<br />

Material<br />

Life<br />

Safety<br />

Thermal<br />

Integration<br />

Refueling<br />

Comments<br />

•33 MJ (5% <strong>of</strong> 5.6 kg H 2 ) required to heat media from 0˚C<br />

•Is secondary H 2 storage (or battery/electric heater) needed<br />

for start-up?<br />

•Limited cycling data<br />

•Powder <strong>and</strong> catalyst can segregate <strong>and</strong> lose effectiveness<br />

•Powder is highly explosive, reacts with water or air<br />

•Is an inert atmosphere needed for vehicle refueling <strong>and</strong><br />

tank manufacturing?<br />

•24% H 2 required for dehydriding heat<br />

•Is waste heat from power unit sufficient <strong>and</strong> coincident?<br />

•Two-fluid dispensing (H 2 gas <strong>and</strong> HTF) is required<br />

•Long refueling times (minutes or hours?)<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

10


Results<br />

Weight Comparison<br />

Sodium alanate will not meet the DOE weight target. <strong>Materials</strong> with<br />

greater than 7 wt% may be required to meet even the ’05 target.<br />

400<br />

350<br />

Sodium<br />

Alanate<br />

Wt% = 1.7%<br />

Compressed <strong>Hydrogen</strong><br />

<strong>Storage</strong><br />

BOP<br />

Dehydriding Subsystem<br />

Balance <strong>of</strong> Tank<br />

System Weight, kg<br />

300<br />

250<br />

200<br />

150<br />

100<br />

6.7% 6.3%<br />

Packed Media / H2<br />

Stored<br />

Carbon Fiber<br />

2007 Target<br />

= 4.5 wt%<br />

50<br />

0<br />

TIAX Base Case 5,000 psi 10,000 psi<br />

Note:<br />

5,000 <strong>and</strong> 10,000 psia Cases<br />

based on: Carlson, E., et al.<br />

(TIAX), “Cost <strong>Analyses</strong> <strong>of</strong> Fuel<br />

Cell Stacks/<strong>Systems</strong>”, Merit<br />

Review, Philadelphia, PA, May<br />

24-27, 2004.<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

11


Results<br />

Volume Comparison<br />

The sodium alanate system will likely be about 40% larger than the<br />

10,000 psi compressed hydrogen storage system.<br />

350<br />

300<br />

Sodium<br />

Alanate<br />

Compressed <strong>Hydrogen</strong><br />

<strong>Storage</strong><br />

BOP<br />

Dehydriding Subsystem<br />

Balance <strong>of</strong> Tank<br />

System Volume, L<br />

250<br />

200<br />

150<br />

100<br />

Packed Media / H2<br />

Stored<br />

Carbon Fiber<br />

2007 Target<br />

= 1.2 kWh/L<br />

50<br />

0<br />

TIAX Base Case 5,000 psi 10,000 psi<br />

Note:<br />

5,000 <strong>and</strong> 10,000 psia Cases<br />

based on: Carlson, E., et al.<br />

(TIAX), “Cost <strong>Analyses</strong> <strong>of</strong> Fuel<br />

Cell Stacks/<strong>Systems</strong>”, Merit<br />

Review, Philadelphia, PA, May<br />

24-27, 2004.<br />

Note: Volume results do not include void spaces between components (i.e., 100% packing factor was applied).<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

12


Results<br />

Factory Cost Comparison<br />

Our assessment indicates the manufactured cost <strong>of</strong> a sodium alanate<br />

system will be on-par with 10,000 psi compressed gas.<br />

System Cost, $/kWh<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Sodium Alanate<br />

Compressed <strong>Hydrogen</strong><br />

<strong>Storage</strong><br />

Assembly &<br />

Inspection<br />

BOP<br />

Dehydriding Subsystem<br />

Balance <strong>of</strong> Tank<br />

Packed Media / H2<br />

Stored<br />

Carbon Fiber<br />

2007 Target<br />

= $6 /kWh<br />

2<br />

0<br />

TIAX Base Case 5,000 psi 10,000 psi<br />

Note:<br />

5,000 <strong>and</strong> 10,000 psia Cases<br />

based on: Carlson, E., et al.<br />

(TIAX), “Cost <strong>Analyses</strong> <strong>of</strong> Fuel<br />

Cell Stacks/<strong>Systems</strong>”, Merit<br />

Review, Philadelphia, PA, May<br />

24-27, 2004.<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

13


Results<br />

Example <strong>of</strong> Sensitivity Analysis<br />

Assuming a very optimistic media cost <strong>of</strong> $3/kg reduces the overall cost<br />

<strong>of</strong> the system by less than 15%.<br />

Sensitivity Analysis - Factory Cost ($/kWh)<br />

10 12 14 16 18<br />

Media Cost<br />

NaAlH4 H2 Capacity<br />

Powder Packing Density<br />

Base<br />

Case =<br />

$13/kWh<br />

Factors<br />

Catalyzed Media Cost ($/kg)<br />

NaAlH 4 H 2 Capacity<br />

Powder Packing Density<br />

Baseline<br />

5.2<br />

4%<br />

0.6<br />

TIAX Base Case<br />

Min<br />

3<br />

3.7%<br />

0.6<br />

Max<br />

10<br />

5.6%<br />

0.9<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

14


Conclusions<br />

Media hydrogen capacity<br />

‣Some alanates could have<br />

higher reversible wt%<br />

‣But more challenging<br />

thermal requirements<br />

‣May need >13 wt% to<br />

achieve 9 wt% target<br />

Other material issues<br />

‣Kinetics are slow—refueling<br />

<strong>and</strong> transient response<br />

‣Life is unknown—cycling<br />

<strong>and</strong> poisoning<br />

Tank <strong>and</strong> BOP<br />

‣~60% <strong>of</strong> system cost <strong>and</strong><br />

~50% <strong>of</strong> system weight<br />

‣Containment <strong>and</strong><br />

contamination<br />

System integration<br />

‣Thermal integration with<br />

power unit is critical<br />

‣1.24X larger if H 2 needed<br />

for dehydriding reaction is<br />

included<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

15


Future Work Categories <strong>of</strong> <strong>Storage</strong><br />

We are in the process <strong>of</strong> evaluating the base case for chemical hydrides<br />

<strong>and</strong> will begin the assessment <strong>of</strong> high surface area sorbents in 2006.<br />

<strong>Storage</strong><br />

Technology<br />

Status<br />

Base<br />

Case<br />

Tech<br />

Status<br />

<strong>Storage</strong><br />

State<br />

H 2<br />

Release<br />

Refuel-<br />

ing<br />

Compressed <strong>and</strong><br />

Liquid <strong>Hydrogen</strong><br />

Done<br />

2003 *<br />

5,000<br />

psi<br />

Mature<br />

Gas<br />

Pressure<br />

regulator<br />

H 2<br />

gas<br />

Reversible <strong>On</strong>board:<br />

Alanates<br />

Done<br />

2005<br />

Sodium<br />

Alanate<br />

Early<br />

prototype<br />

Solid<br />

Endothermic<br />

desorption<br />

H 2<br />

gas<br />

<strong>and</strong> HTF<br />

loop<br />

Regenerable Offboard:<br />

Chemical<br />

WIP<br />

2005<br />

Sodium<br />

Borohydride<br />

Prototype<br />

Aqueous<br />

solution<br />

Exothermic<br />

hydrolysis<br />

Aqueous<br />

solution<br />

in/out<br />

High Surface<br />

Area Sorbents:<br />

Carbon<br />

2006<br />

TBD<br />

R&D<br />

Solid<br />

(low T?)<br />

Endothermic<br />

desorption<br />

H 2<br />

gas<br />

(low T?)<br />

1 HTF = Heat Transfer Fluid<br />

* Compressed hydrogen was evaluated under a separate DOE contract.<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

16


Future Work Well-to-Wheels Analysis<br />

In future work, we will evaluate overall WTW performance <strong>and</strong> lifecycle<br />

cost for all the hydrogen storage options.<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

17


Publications <strong>and</strong> Presentations<br />

Presentations under the title: “<strong>Analyses</strong> <strong>of</strong> <strong>Hydrogen</strong> <strong>Storage</strong> <strong>Materials</strong><br />

<strong>and</strong> <strong>On</strong>-<strong>Board</strong> <strong>Systems</strong>”; Lasher et al<br />

‣ <strong>Hydrogen</strong> <strong>Storage</strong> Tech Team Meeting; April 21, 2005; Detroit MI<br />

‣ <strong>Storage</strong> System Analysis Meeting; March 29, 2005; Washington DC<br />

‣ <strong>Hydrogen</strong> <strong>Storage</strong> Tech Team Meeting; August 19, 2004; Detroit MI<br />

Presentations under the title: “Comparison <strong>of</strong> <strong>Hydrogen</strong> <strong>Storage</strong><br />

Options”; Lasher et al<br />

‣ NHA Annual <strong>Hydrogen</strong> Conference; March 30, 2005; Washington DC<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

18


<strong>Hydrogen</strong> Safety<br />

The most significant hydrogen hazard associated with this project is:<br />

‣ None<br />

‣ This is an analysis project with no on-going or proposed h<strong>and</strong>s-on<br />

laboratory or hardware development work<br />

Our approach to deal with this hazard is:<br />

‣ None required<br />

SL/042905/D0268 ST19_Lasher_H2 <strong>Storage</strong>_final1.ppt<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!