19.01.2014 Views

Flow Chemistry for Synthesis

Flow Chemistry for Synthesis

Flow Chemistry for Synthesis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Flow</strong> <strong>Chemistry</strong> <strong>for</strong> <strong>Synthesis</strong><br />

Ian R. Baxendale<br />

UK-SINGAPORE SYMPOSIUM<br />

Contemporary Organic <strong>Synthesis</strong>, Methods and Techniques<br />

27 th February 2007<br />

Innovative Technology Centre<br />

Department of <strong>Chemistry</strong>, University of Cambridge<br />

Lensfield Road, Cambridge. CB2 1EW, UK<br />

e-mail: irb21@cam.ac.uk


Benefits of <strong>Flow</strong> <strong>Synthesis</strong> – a few comments<br />

– Its ‘new’ and very few people know what it is.<br />

Will it solve the problem? What is the problem?<br />

– Increased reaction rates relative to batch chemistry?<br />

Diffusion, convection, mass transport – size does matter!<br />

– Ability to use superheated, pressurised solvents.<br />

Access to new chemical domains, rapid heat/cool. Analogous to MW?<br />

– Generation and use of unstable/hazardous reaction intermediates.<br />

Safety aspect to the small active volumes used.<br />

– Automation – 24/7 working?<br />

What's the chemists time then used <strong>for</strong>?<br />

– Possible in-line analysis, optimisation and purification.<br />

Faster concept to product translation.<br />

– Several steps may be carried out in sequence.<br />

Steps are no longer the classical conversion of A to B.


Solid Supported Reagents : <strong>Synthesis</strong> of Sildenafil<br />

11 steps (8 longest linear)<br />

8 immobilised reagents<br />

58% overall yield<br />

no aqueous workup<br />

no column chromatography<br />

analytically pure<br />

I.R. Baxendale, S.V. Ley et al. Bioorg. Med. Chem. Lett. 2000, 10, 1983.


Basic <strong>Flow</strong> Reactor Configuration<br />

Solvent<br />

wash<br />

Loading<br />

sequence<br />

Loading step<br />

Solvent<br />

Reactant<br />

wash<br />

R<br />

R<br />

Reaction Loading Loaded<br />

Loading sequence step<br />

Product to waste<br />

>90 yield (>95% purity)


<strong>Flow</strong> <strong>Synthesis</strong> of Dipeptides<br />

Loading step<br />

Waste<br />

Isolated yields: 50-250 mg of product<br />

Boc–Ala–Phe–OEt<br />

Boc–Ala–Gly–OEt<br />

Boc–Ala–Val–OMe<br />

Boc–Ala–Pro–OMe<br />

80%<br />

81%<br />

83%<br />

66%<br />

Cbz–Ala–Val–OMe<br />

Cbz–Ala–Gly–OEt<br />

Cbz–Ala–Phe–OEt<br />

Cbz–Ala–Gly–OEt<br />

Cbz–Ala–Pro–OMe<br />

79%<br />

76%<br />

75%<br />

78%<br />

61%


<strong>Flow</strong> <strong>Synthesis</strong> of Peptides<br />

<strong>Flow</strong> stream 1 <strong>Flow</strong> stream 2<br />

H-Cube<br />

Waste<br />

Waste<br />

<strong>Flow</strong> Cbz deprotection<br />

10% Pd/C, 60 o C, 1 mL/min<br />

Cbz–Phe–Ala–Gly–OEt<br />

59% isolated yield<br />

I.R. Baxendale, S.V. Ley et al. Chem. Commun. 2006, 4835.


Hydrogenation in <strong>Flow</strong><br />

System pressure<br />

sensor<br />

‘Bubble’ sensor<br />

T-piece mixer<br />

OUT<br />

IN<br />

H 2 O<br />

R 3<br />

N<br />

R 1 R 2<br />

electrolysis<br />

H 2 (g)<br />

R 3<br />

HN<br />

R 1 R 2<br />

Yield (Purity)<br />

Backpressure<br />

regulator<br />

Cartridge holder<br />

Heater unit<br />

H 2<br />

inlet from<br />

electrolytic cell<br />

Inlet pressure<br />

sensor<br />

Quant. (95%)<br />

Quant. (90%)<br />

99% (>95%)<br />

Quant. (>95%)<br />

Quant. (84%)<br />

Quant. (>95%)<br />

Quant. (90%)<br />

99% (>95%)<br />

96% (85%)<br />

Quant. (90%)<br />

84% (88%)<br />

Quant. (92%)<br />

Quant. (95%)<br />

Quant. (95%)<br />

S.V. Ley et al. Chem. Commun. 2005, 2909 & Synlett 2006, 6, 889 & Adv. Synth. Catal. 2007, 349, 535.


<strong>Synthesis</strong> of Riboflavin analogues and Benzimidazoles<br />

H<br />

Starting materials<br />

90% 89%<br />

88% 84%<br />

>85% isolated yield


loading step<br />

<strong>Synthesis</strong> of Grossamide<br />

Second input stream<br />

H 2 O 2 –urea complex<br />

Acetone / H 2 O (10:1)<br />

DMF THF<br />

Enzyme<br />

Grossamide<br />

Column<br />

Container<br />

1 PS-HOBt 1 Ferulic acid<br />

2 PS-HOBt 2 PyBrOP, DIPEA<br />

3 PS-SO 3<br />

H 3 Amine solution<br />

4 Enzyme 4 Washings<br />

5 H 2<br />

O 2<br />

urea complex Buffer pH 4.5<br />

I.R. Baxendale, S.V. Ley et al. Synlett 2006, 427.


<strong>Flow</strong> <strong>Synthesis</strong> of Oxomaritidine<br />

MeCN:THF (1:1)<br />

70 o C<br />

55 rt o C<br />

To waste<br />

THF<br />

rt<br />

<strong>Flow</strong><br />

Hydrogenation<br />

10% Pd/C, THF<br />

H-Cube<br />

80 o C<br />

DCM<br />

MeOH:H 2<br />

O (4:1)<br />

DCM<br />

35 o C<br />

I.R. Baxendale, S.V. Ley et al. Chem. Comm. 2006, 2566.


<strong>Flow</strong> Synthesizer Equipment


<strong>Synthesis</strong> of Oxazoles in <strong>Flow</strong><br />

9 Oxazole 36 Oxazoles preparations structures scaled prepared to >10g<br />

I.R. Baxendale, S.V. Ley et al. Org. Lett. 2006, 8, 5231


<strong>Flow</strong> <strong>Synthesis</strong> of Thiazoles<br />

Using DCM<br />

as the solvent<br />

R= NO 2<br />

90%<br />

2-OMe 89%<br />

4-OMe 96%<br />

3-F 68%<br />

4-Cl 48%<br />

4-Br 53%<br />

90%<br />

25-55 o C<br />

MeCN<br />

Scaled up to 12 g<br />

50-96%<br />

20-50%<br />

85%<br />

88%<br />

84%<br />

90%<br />

89% 85%<br />

12:5 89% 4:5 94% 2:1 86%<br />

Cu TC complex<br />

I.R. Baxendale, S.V. Ley et al. unpublished results


Azide coupling in <strong>Flow</strong><br />

QP-TU<br />

Purities greater than 95%<br />

89%<br />

95%<br />

91%<br />

90%<br />

98%<br />

82%<br />

91%<br />

89%<br />

96%<br />

94%<br />

93%<br />

85%<br />

81%<br />

87%<br />

88%<br />

88%<br />

70%<br />

93%<br />

85%<br />

I.R. Baxendale, S.V. Ley et al. Org. Biomol. Chem. 2007, 5, 1559.


Curtius-Rearrangements in <strong>Flow</strong><br />

1.1 equiv.<br />

1.25-5 equiv.<br />

3 equiv.<br />

1-2 mmol scale<br />

30-60 min reaction time<br />

Elute to waste<br />

1.0 equiv.<br />

Catch product<br />

NH 3<br />

/MeOH<br />

Vapourtec R4/R2+<br />

I.R. Baxendale, S.V. Ley et al. Org. Biomol. Chem. 2008, Special Issue.


Polymeric Monoliths<br />

• 15 ×100 mm Omnifit column<br />

• 0.5 mmol<br />

• ×6 regeneration<br />

• Loading >5 mmol<br />

VBC DVB 1-Dodecanol Toluene AIBN Temperature<br />

35% 20% 40% 5% 1% 80 o C


Curtius-Rearrangements in <strong>Flow</strong> Using Azide Monoliths<br />

150 mm<br />

15 mm<br />

I.R. Baxendale, S.V. Ley et al. Org. Biomol. Chem. 2008, Special Issue.<br />

15-18 mmol N 3


Tagged Substrates in <strong>Flow</strong><br />

<strong>Chemistry</strong><br />

Tag Sub + Regt<br />

Tag Prod + Regt<br />

Selective<br />

sequestration<br />

Regt<br />

Wash to waste<br />

Tag<br />

Prod<br />

Release<br />

Tag<br />

Prod<br />

0 o C<br />

THF<br />

plus by-products<br />

Wash by-products<br />

to waste<br />

64% 70% 72%<br />

I.R. Baxendale, S.V. Ley et al. Org. Biomol. Chem. 2005, 3, 3140.


Sub<br />

+<br />

Tag<br />

Regt<br />

<strong>Chemistry</strong><br />

Prod<br />

+<br />

Tag<br />

Regt<br />

Selective<br />

sequestration<br />

Prod<br />

Tagged Reagents in <strong>Flow</strong><br />

Tag<br />

Regt<br />

Crude<br />

Product<br />

Pure product<br />

81% 59% 85%<br />

90% 88% 90%<br />

77% 79% 82% 1 mmol 10 min<br />

I.R. Baxendale and S.V. Ley et al. unpublished results.


Tagged Reagents in <strong>Flow</strong><br />

1 equiv. 0.5 equiv.<br />

MeCN 110 o C<br />

0.85 equiv.<br />

Vapourtec V10<br />

SiO 2<br />

1) Evaporate<br />

2) TFA/TMS-H DCM<br />

3) Evaporate<br />

4) DCM/MeOH<br />

73%<br />

R = 4-Br 85%<br />

3,4-Cl 84%<br />

2-OMe 73%<br />

4-OMe 82%<br />

84%<br />

59%<br />

77%<br />

79%<br />

65%<br />

78%<br />

75%<br />

81%<br />

74%<br />

83%<br />

I.R. Baxendale, S.V. Ley et al. Org. Biomol. Chem. 2007, 5, 1562.


Intramolecular Cycloaddition Reaction<br />

15 hours<br />

62% isolated<br />

15 hours<br />

1 hour<br />

39% isolated<br />

81% isolated<br />

6 hours<br />

1 hour<br />

87% isolated<br />

48% isolated<br />

1 hour<br />

1 hour<br />

80% isolated<br />

78% isolated<br />

28 hours<br />

1 hour<br />

78% isolated<br />

53% isolated<br />

I.R. Baxendale, S.V. Ley et al. Org. Biomol. Chem. 2005, 3, 3365.<br />

0.2 -<br />

0.5 ml<br />

0.5 -<br />

2 ml<br />

2 -<br />

5 ml<br />

10-20 ml


Catalyst<br />

Pd EnCat<br />

<strong>Flow</strong> Suzuki Reactions using Pd EnCat<br />

Pd = Pd(OAc) 2<br />

Pd<br />

Pd<br />

Pd<br />

Microwaved<br />

region<br />

Pd<br />

Pd<br />

Pd<br />

Pd<br />

Inert packing<br />

material<br />

Starting<br />

materials<br />

Scavenging<br />

cartridge<br />

Product out


Sequential <strong>Flow</strong> Microwave Heating<br />

Rxn<br />

No.<br />

Boronic acid<br />

Halide<br />

Purity (Yield)<br />

Batch <strong>Flow</strong><br />

1<br />

88% (>98) 90% (>98)<br />

<strong>Flow</strong><br />

Purity (Yield)<br />

>98(87)<br />

Batch<br />

Purity (Yield)<br />

>98(92)<br />

2<br />

3<br />

84% (82) 87% (>98)<br />

94% (64) 94% (>98)<br />

>98(92)<br />

>98(89)<br />

4<br />

94% (54) 92% (92)<br />

5<br />

77% (40) 88% (94)<br />

>98(88)<br />

>98(91)<br />

6<br />

99% (30) 97% (91)<br />

>98(81)<br />

>98(72)<br />

7<br />

72% (26) 76% (>98)<br />

2 equiv. Bu 4<br />

NOAc, EtOH, 0.07 M, 0.1 ml/min,<br />

pulsed heating (30s @ 50W, 15s Cooling)<br />

Residence time ~ 2 min<br />

8<br />

9<br />

82% (23) 89% (>98)<br />

92% (19) 94% (91)<br />

10<br />

81% (


<strong>Flow</strong> Microwave Heating<br />

172 mg Catalyst = 0.069 mmol<br />

0.1 M solution flowed at 0.2 ml/min<br />

Heating at 50W with compressed air cooling<br />

28 hours of reaction.<br />

33.6 mmol product (7.53 g) Ξ 0.2 mol% cat<br />

182 mg Catalyst = 0.073 mmol<br />

0.1 M solution flowed at 0.2 ml/min<br />

Heating at 50W with compressed air cooling<br />

34 hours of reaction.<br />

40.8 mmol product (9.34 g) Ξ 0.2 mol% cat<br />

I.R. Baxendale, S.V. Ley et al. Chem. Eur. J. 2006, 12, 4407.


<strong>Synthesis</strong> of Pyrazoles Dimers<br />

MeOH<br />

Activated<br />

Carbon<br />

25 mol%<br />

t<br />

BuOK<br />

MW 165 o C<br />

toluene, 1-2 hr<br />

MW 100 o C<br />

2-10 min<br />

Vapourtec V-10<br />

88-95%<br />

isolated yield<br />

Activated<br />

carbon<br />

Amine<br />

scavenger<br />

I.R. Baxendale, S.V. Ley et al. Org. Biomol. Chem. 2007, 5, 2758.<br />

50-65% isolated yield


Microcapillary Reactor<br />

The films possess<br />

useful optical and<br />

thermal properties<br />

I.R. Baxendale, S.V. Ley et al. OPRD 2007, 11, 399.


Microcapillary Reactor<br />

55 o C<br />

32 o C<br />

25 cm<br />

single spiral<br />

double spiral<br />

I.R. Baxendale, S.V. Ley et al. OPRD 2007, 11, 399.


MFD Reactor<br />

98% isolated yield; 4 ml/min<br />

output 0.37 g/min or 0.526 kg/day<br />

93 % conversion (98% isolated yields)<br />

6 ml/min; output of 2.73 g/min or 3.93 kg/day<br />

I.R. Baxendale, S.V. Ley et al. OPRD 2007, 11, 399.


Scale-up <strong>Synthesis</strong> in <strong>Flow</strong><br />

60 L 56.63 moles<br />

1.2 equiv. Conc: 0.94 M<br />

30 L 47.19 moles<br />

Conc: 1.57 M<br />

NaS 2<br />

O 3<br />

/NaOH 1.5 M<br />

30 L 51.91 moles<br />

1.1 equiv. Conc: 1.73 M<br />

Exotherm<br />

Regulated


Scale-up <strong>Synthesis</strong> in <strong>Flow</strong><br />

<strong>Flow</strong> Rate 3 0.5 mL/min<br />

mL/min<br />

<strong>Flow</strong> Rate 0.25 3.25 1.5 mL/min<br />

60 L 56.63 moles<br />

1.2 equiv. Conc: 0.94 M<br />

<strong>Flow</strong> Rate 1.5 mL/min<br />

30 L 47.19 moles<br />

Conc: 1.43 M<br />

10% NaS 2<br />

O 3<br />

/NaOH 1.5 M.<br />

30 L 51.91 moles<br />

1.1 equiv. Conc: 1.57 M<br />

<strong>Flow</strong> Rate 3.25 mL/min<br />

<strong>Flow</strong> Rate 0.25 1.5 mL/min<br />

Exotherm<br />

Regulated


Scale-out <strong>Synthesis</strong> in <strong>Flow</strong><br />

NaS 2<br />

O 3<br />

/NaOH 1M<br />

3 mL/min per channel<br />

1.5 mL/min<br />

waste<br />

Aqueous<br />

Organic<br />

30 L 51.91 moles<br />

1.1 equiv. Conc: 1.73 M<br />

30 L 47.19 moles<br />

Conc: 1.57 M<br />

Max 2.5 mL/min<br />

12 mL/min flow rate<br />

Increase residence time<br />

60 L 56.63 moles<br />

1.2 equiv. Conc: 0.94 M<br />

2 mL/min per channel<br />

3 channels<br />

Need to split<br />

12 ways<br />

6.9 days processing<br />

120 L of reaction solution<br />

11.5 kg 95%


Innovative Technology Centre<br />

Department of <strong>Chemistry</strong><br />

University of Cambridge<br />

irb21@cam.ac.uk<br />

http://leyitc.ch.cam.ac.uk<br />

Special thanks to<br />

Prof. Steven V. Ley and the ITC Team<br />

Prof. Malcolm Mackley (Chem. Eng.)<br />

We also thank the following organizations <strong>for</strong> their support and financial assistance:<br />

Advion, AstraZeneca, Biotage, CEM, EPSRC, Genapta, GlaxoSmithKline, Novartis,<br />

Pfizer, Reaxa, Syngenta, Vapourtec, Uniqsis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!