20.01.2014 Views

Integration of epitaxial SiGe(C) layers in advanced CMOS devices ...

Integration of epitaxial SiGe(C) layers in advanced CMOS devices ...

Integration of epitaxial SiGe(C) layers in advanced CMOS devices ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Integration</strong> <strong>of</strong> <strong>epitaxial</strong> <strong>SiGe</strong>(C) <strong>layers</strong><br />

<strong>in</strong> <strong>advanced</strong> <strong>CMOS</strong> <strong>devices</strong><br />

Doctoral thesis presentation <strong>in</strong><br />

solid state electronics<br />

by:<br />

Julius Hållstedt<br />

1 1


Outl<strong>in</strong>e<br />

• Introduction to MOSFET <strong>devices</strong><br />

• <strong>SiGe</strong>(C) as mobility booster<br />

• Epitaxial growth <strong>of</strong> <strong>SiGe</strong>(C)<br />

• Temperature stabilty and silicide issues with<br />

<strong>SiGe</strong>(C)<br />

• <strong>Integration</strong> <strong>of</strong> <strong>SiGe</strong>C <strong>layers</strong> <strong>in</strong> pMOSFETs<br />

• <strong>Integration</strong> <strong>of</strong> sSi and relaxed <strong>SiGe</strong> <strong>in</strong><br />

nMOSFETs<br />

2 2


Introduction to MOSFET <strong>devices</strong><br />

Cleanroom<br />

• Transistors key element <strong>in</strong><br />

most electronic circuits<br />

e.g. microprocessors, memories,<br />

communication components,<br />

mobile phones, cars, medical<br />

equipments<br />

Waferlevel<br />

Die (Playstation 3)<br />

Processor (Pentium)<br />

3 3


Downscal<strong>in</strong>g <strong>of</strong> MOSFETs<br />

IC <strong>in</strong>vented<br />

8086 486<br />

Pentium D<br />

No. <strong>of</strong> transisors on chip<br />

1.E+09<br />

10 9 10 -1<br />

10 6<br />

1.E+06<br />

10 3<br />

1.E+03<br />

1.E-01<br />

10 -4<br />

1.E-04<br />

Cost per transitor (US $)<br />

1<br />

1.E+00<br />

1950 1960 1970 1980 1990 2000 2010<br />

Year<br />

10 -7<br />

1.E-07<br />

4 4


MOSFET operation<br />

Digital applications: MOSFET used as a switch<br />

G<br />

OFF<br />

V S<br />

S<br />

p+<br />

G<br />

V G<br />

Metal/heavily<br />

doped Si<br />

Gate Oxide<br />

D<br />

t ox<br />

L G<br />

(gate length)<br />

-0.5 0 0.5 1 1.5 2<br />

Si n-type p+<br />

V D<br />

Dra<strong>in</strong> current (A)<br />

10 -4<br />

10 -6<br />

10 -7<br />

10 -8<br />

10 -9<br />

10 -10<br />

10 -11<br />

S<br />

G<br />

S<br />

Subthreshold<br />

SS -1<br />

L<strong>in</strong>ear region<br />

I D<br />

D<br />

ON<br />

D<br />

10 -5 0<br />

20<br />

15<br />

10<br />

5<br />

Dra<strong>in</strong> current (µA)<br />

10 -12<br />

-0.5 0 0.5 1 1.5 2<br />

V T<br />

Gate Voltage(V)<br />

5 5


Introduction to MOSFET <strong>devices</strong><br />

Concepts for improved MOSFET performance<br />

• Enhanced mobility<br />

• High-k gate-dielectric<br />

• Metal gate<br />

• Ultra th<strong>in</strong> body SOI<br />

• Multiple gate e.g. F<strong>in</strong>fets<br />

Induce stra<strong>in</strong> by<br />

us<strong>in</strong>g <strong>SiGe</strong> and<br />

<strong>SiGe</strong>C<br />

6 6


Mobility boosters<br />

Substrate-based<br />

Process-based<br />

Biaxial<br />

Stra<strong>in</strong><br />

Crystal<br />

orientation<br />

L<strong>in</strong>ers<br />

S/D<br />

STI<br />

SACVD<br />

Embedded<br />

<strong>SiGe</strong><br />

Bulk SOI<br />

In plane<br />

device<br />

rotation<br />

Crystallographic<br />

rotation<br />

CESL<br />

Tensile/<br />

compressive<br />

SMT<br />

Tensile<br />

<strong>SiGe</strong><br />

compressive<br />

SiC<br />

Tensile<br />

Tensile<br />

biaxial<br />

Tensile<br />

Relaxed<br />

<strong>SiGe</strong><br />

Tensile/<br />

compressive<br />

Stra<strong>in</strong>ed<br />

<strong>SiGe</strong><br />

SGOI<br />

compressive<br />

sSOI<br />

Tensile/<br />

compressive<br />

Tensile<br />

Natural mobility boost<br />

HOT<br />

nMOS<br />

and<br />

pMOS<br />

Normally uniaxial stra<strong>in</strong><br />

7 7


<strong>SiGe</strong> or <strong>SiGe</strong>C <strong>in</strong> MOSFETs<br />

Ni silicide<br />

pMOSFETs<br />

n +<br />

Si<br />

Si cap<br />

Stra<strong>in</strong>ed <strong>SiGe</strong>C<br />

Si<br />

Ni silicide<br />

nMOSFETs<br />

Buried Oxide<br />

Ni silicide<br />

<strong>SiGe</strong><br />

Si substrate<br />

p +<br />

Si<br />

Stra<strong>in</strong>ed<br />

Si<br />

<strong>SiGe</strong><br />

n +<br />

Si<br />

sSi<br />

Relaxed <strong>SiGe</strong><br />

Si substrate<br />

Si substrate<br />

8 8


Outl<strong>in</strong>e<br />

• Introduction to MOSFET <strong>devices</strong><br />

• <strong>SiGe</strong>(C) as a material system<br />

• Epitaxial growth <strong>of</strong> <strong>SiGe</strong>(C)<br />

• Temperature stabilty and silicide issues with<br />

<strong>SiGe</strong>(C)<br />

• <strong>Integration</strong> <strong>of</strong> <strong>SiGe</strong>C <strong>layers</strong> <strong>in</strong> pMOSFETs<br />

• <strong>Integration</strong> <strong>of</strong> sSi and relaxed <strong>SiGe</strong> <strong>in</strong><br />

nMOSFETs<br />

9 9


<strong>SiGe</strong>(C) as mobility booster<br />

Stra<strong>in</strong> <strong>in</strong>duces splitt<strong>in</strong>g <strong>of</strong> the degenerated bandstructure <strong>in</strong> Si<br />

Compressively stra<strong>in</strong>ed Si:<br />

Energy<br />

∆2<br />

Valence band splitt<strong>in</strong>g and <strong>in</strong>version<br />

<strong>of</strong> the hh and lh band<br />

Conduction band splitt<strong>in</strong>g with ∆4<br />

valleys def<strong>in</strong><strong>in</strong>g the band edge<br />

E g<br />

Si<br />

∆6<br />

lh+hh<br />

∆4<br />

hh<br />

lh<br />

lh<br />

hh<br />

E g<br />

<strong>SiGe</strong><br />

Type II<br />

Tensile stra<strong>in</strong>ed Si (or SiC):<br />

Energy<br />

Conduction band splitt<strong>in</strong>g with ∆2<br />

valleys def<strong>in</strong><strong>in</strong>g the band edge<br />

Valence band splitt<strong>in</strong>g with lh and hh<br />

band<br />

E g<br />

Si<br />

∆6<br />

lh+hh<br />

∆4<br />

∆2<br />

lh<br />

hh<br />

E g<br />

SiC<br />

Type I<br />

1010


<strong>SiGe</strong>(C) as mobility booster<br />

• The difference <strong>in</strong> atomic radius<br />

<strong>in</strong>duce stra<strong>in</strong> <strong>in</strong> the <strong>epitaxial</strong> <strong>layers</strong><br />

Si/Si 1-x Ge x<br />

a sub. a layer<br />

Si/<strong>SiGe</strong><br />

Compressive stra<strong>in</strong><br />

Si/Si:C<br />

Tenslie stra<strong>in</strong><br />

Si/<strong>SiGe</strong>C Stra<strong>in</strong> compensation<br />

Biaxial compressive stra<strong>in</strong><br />

Biaxial tensile stra<strong>in</strong><br />

Unstra<strong>in</strong>ed<br />

<strong>epitaxial</strong> layer<br />

Si<br />

Ge<br />

C<br />

1 11


Outl<strong>in</strong>e<br />

• Introduction to MOSFET <strong>devices</strong><br />

• <strong>SiGe</strong>(C) as a material system<br />

• Epitaxial growth <strong>of</strong> <strong>SiGe</strong>(C)<br />

• Temperature stabilty and silicide issues with<br />

<strong>SiGe</strong>(C)<br />

• <strong>Integration</strong> <strong>of</strong> <strong>SiGe</strong>C <strong>layers</strong> <strong>in</strong> pMOSFETs<br />

• <strong>Integration</strong> <strong>of</strong> sSi and relaxed <strong>SiGe</strong> <strong>in</strong><br />

nMOSFETs<br />

1212


CVD reactor<br />

ASM Epsilon 2000<br />

Industrially used cold wall s<strong>in</strong>gle wafer system<br />

1313


CVD reactor<br />

1<br />

Growth temperature: 550-1050°C<br />

Pressure: 15-760 torr<br />

Vapors move to wafer and<br />

chemical reaction beg<strong>in</strong>s.<br />

By-products,to gas<br />

exhaust treatment<br />

2 Adsorption 5<br />

Desorption <strong>of</strong><br />

by-products<br />

Deposition, surface processes<br />

4<br />

SiH 4<br />

, SiH 2<br />

Cl 2<br />

Silicon sources<br />

GeH 4<br />

Germanium source<br />

SiH 3<br />

CH 3<br />

Carbon source<br />

B 2<br />

H 6<br />

, AsH 3<br />

, PH 3<br />

Dopant sources<br />

HCl Etchant<br />

H 2<br />

Carrier gas<br />

N 2<br />

Purge gas<br />

Film<br />

Substrate<br />

3<br />

1414


Chemical reactions<br />

• Silane-based<br />

• SiH4(g) + _ ⇔ H2 + SiH2 ⇔ Si(film)+ _ + 2H2<br />

• (GeH4 has analogue reactions)<br />

• Dichlorsilane-based epitaxy<br />

• SiH2Cl2(g) + _ ⇔ Si(film) + 2HCl(g) + _<br />

•<br />

• SiH2Cl2(g) ⇔ SiCl2 +H2(g)<br />

• SiCl2 + 3_ ⇔ Si(film) +2Cl + _<br />

• Carbon <strong>in</strong>corporation:<br />

• Silane-based:<br />

• SiH2 + SiH3CH3(g) ⇔ SiH4(g) + SiCH4<br />

• Dichlorsilane-based:<br />

• SiCl2 + SiH3CH3(g) ⇔ SiH2Cl2(g) + SiCH4<br />

_ denotes a lattice <strong>in</strong>corporation site<br />

1515


Growth optimisation<br />

HRRLMs have been used to optimize the growth<br />

parameters <strong>of</strong> <strong>SiGe</strong>C <strong>layers</strong>.<br />

Si 0.78 Ge 0.21 C 0.01<br />

Si 0.73 Ge 0.26 C 0.01<br />

[100]<br />

a) b) c)<br />

Si sub.<br />

k ⊥<br />

<strong>SiGe</strong>C layer<br />

∆k ⊥=0.02 Å -1<br />

Si 0.82 Ge 0.17 C 0.01<br />

ω<br />

Enable stra<strong>in</strong>, defect and quality optimization<br />

∆k // =0.02 Å -1<br />

ω/2θ<br />

k //<br />

[110]<br />

1616


As a result <strong>of</strong> all optimization <strong>of</strong><br />

the growth parameters a 3-D<br />

process w<strong>in</strong>dow is obta<strong>in</strong>ed.<br />

The volume above the grey<br />

surface represents high quality<br />

<strong>layers</strong><br />

The limitations <strong>of</strong> the MFCs<br />

are def<strong>in</strong><strong>in</strong>g the box.<br />

T=625°C up to 0.8% C<br />

T=575°C up to 1.1% C<br />

T=625° C P=20 torr<br />

Used for <strong>in</strong>-house HF<br />

HBTs (~80GHz)<br />

Used for <strong>SiGe</strong> MOSFET<br />

Paper 6-7<br />

Us<strong>in</strong>g chlor<strong>in</strong>ated chemistry results <strong>in</strong> much higher C<br />

concentrations (up to 2%) due to the etch<strong>in</strong>g <strong>of</strong> Si.<br />

1717


By apply<strong>in</strong>g the optimum growth<br />

parameters:<br />

P-doped Si and Si:C <strong>layers</strong> (10 18<br />

cm -3 ) were <strong>in</strong>vestigated by<br />

temperature dependent Hall<br />

measurements<br />

Si ref. mobility values are <strong>in</strong> good<br />

agreement with previous results at<br />

this dop<strong>in</strong>g level<br />

Mobility [cm 2 /Vs]<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Si ref.<br />

0.2% C<br />

0.5% C<br />

50<br />

Mobility values decreases with<br />

<strong>in</strong>creas<strong>in</strong>g carbon concentration.<br />

Scatter<strong>in</strong>g due to the generated<br />

defects (ma<strong>in</strong>ly <strong>in</strong>terstitial carbon).<br />

0<br />

50 150 250 350<br />

Temperature [K]<br />

1818


Selective growth <strong>of</strong> boron doped<br />

<strong>SiGe</strong><br />

• <strong>SiGe</strong> Source/Dra<strong>in</strong><br />

• <strong>SiGe</strong> channel<br />

• HBT applications<br />

• Future <strong>devices</strong>, opto etc...<br />

• Selective growth on patterned wafers<br />

– All <strong>in</strong>fluenced by pattern dependency or<br />

load<strong>in</strong>g effect<br />

1919


Pattern dependency<br />

(A)<br />

[µm]<br />

(B)<br />

Test Pattern<br />

160<br />

80<br />

1<br />

40<br />

2<br />

Si<br />

20<br />

4<br />

10<br />

8<br />

Isolated Chips<br />

Si<br />

Si<br />

Si<br />

Open<strong>in</strong>g sizes from 1<br />

1-160 160 µm 2<br />

Si coverages from<br />

0.01-37 %<br />

Si<br />

2020


Pattern dependency<br />

21<br />

80<br />

Large growth rate<br />

and Ge amount<br />

variation when<br />

chang<strong>in</strong>g amount <strong>of</strong><br />

open Si (Si coverage)<br />

Ge [%]<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Growth rate [Å/m<strong>in</strong>]<br />

14<br />

0.10 1.00 10.00 100.00<br />

Si Coverage [%]<br />

20<br />

2121


Orig<strong>in</strong> <strong>of</strong> pattern dependency<br />

Lam<strong>in</strong>ar<br />

gas flow<br />

δ (x)=A(µx/U) 1/2<br />

Stationary (low velocity)<br />

boundary layer<br />

Wafer<br />

2 22


Orig<strong>in</strong> <strong>of</strong> pattern dependency<br />

Diffusion <strong>of</strong> growth species<br />

throug stationary layer<br />

towards open<strong>in</strong>g<br />

boundary layer<br />

Creates gas<br />

depletion<br />

around open<strong>in</strong>g<br />

Oxide Mask<br />

Wafer<br />

2323


Range <strong>of</strong> gas depletion<br />

Gas flow<br />

Growth rate [µm/m<strong>in</strong>]<br />

[Å/m<strong>in</strong>]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Angle <strong>in</strong> degrees from<br />

gas flow direction<br />

0<br />

0<br />

90<br />

90<br />

270<br />

-90<br />

360<br />

180<br />

SES<br />

SEE<br />

SE<br />

W<br />

SEN<br />

0 5000 10000 15000 20000<br />

Distance from big open<strong>in</strong>g [µm]<br />

Distance from big open<strong>in</strong>g [µm]<br />

90<br />

180<br />

-90<br />

0<br />

Growth without rotation<br />

Similar growth behavior <strong>in</strong> all<br />

directions<br />

Big open<strong>in</strong>g depletes gas <strong>in</strong> a<br />

radius <strong>of</strong> 1-1.5 cm<br />

The small open<strong>in</strong>gs close to<br />

the big open<strong>in</strong>g display<br />

simialr growth behavior<br />

2424


Effect <strong>of</strong> surface migration<br />

species<br />

Make poly Si stripes around<br />

the open<strong>in</strong>gs<br />

By putt<strong>in</strong>g these closer to<br />

the open<strong>in</strong>g less adsorbed<br />

specis can diffuse to the<br />

open<strong>in</strong>g<br />

Growth or pile up around<br />

the edge should decrease?!<br />

2525


Effect <strong>of</strong> surface migration<br />

species<br />

Growth rate [Å/m<strong>in</strong>]<br />

150<br />

100<br />

50<br />

a)<br />

P Ge [mtorr]<br />

1.0<br />

0.7<br />

0.5<br />

Result – opposite:<br />

Aga<strong>in</strong> the reason<br />

for the decrease is<br />

the <strong>in</strong>creased area<br />

<strong>of</strong> exposed Si when<br />

the poly stripes are<br />

longer.<br />

0<br />

0 10 20 30<br />

Distance [µm]<br />

2626


Effect <strong>of</strong> surface migration<br />

species<br />

90<br />

0.5 µm<br />

45<br />

0<br />

90<br />

1 2 3 [µm]<br />

No difference <strong>in</strong> pile up<br />

for the different poly<br />

stripe distances<br />

Stepheight [nm]<br />

45<br />

0<br />

90<br />

10 µm<br />

1 2 3<br />

[µm]<br />

45<br />

30 µm<br />

0<br />

1 2 3 [µm]<br />

Scan direction<br />

2727


Methods to reduce gas depletion<br />

effects<br />

• Growth parameters:<br />

– Decreased pressure: faster diffusion<br />

– Increased gas flow: th<strong>in</strong>ner boundary layer<br />

– Increased HCl partial pressure<br />

• Wafer pattern:<br />

– Uniform repetitive pattern with similar<br />

structures<br />

– Inser dummy features to compensate for<br />

<strong>in</strong>-uniform gas consumption<br />

2828


Outl<strong>in</strong>e<br />

• Introduction to MOSFET <strong>devices</strong><br />

• <strong>SiGe</strong>(C) as a material system<br />

• Epitaxial growth <strong>of</strong> <strong>SiGe</strong>(C)<br />

• Temperature stabilty and silicide issues<br />

with <strong>SiGe</strong>(C)<br />

• <strong>Integration</strong> <strong>of</strong> <strong>SiGe</strong>C <strong>layers</strong> <strong>in</strong> pMOSFETs<br />

• <strong>Integration</strong> <strong>of</strong> sSi and relaxed <strong>SiGe</strong> <strong>in</strong><br />

nMOSFETs<br />

2929


3030


Outl<strong>in</strong>e<br />

• Introduction to MOSFET <strong>devices</strong><br />

• <strong>SiGe</strong>(C) as a material system<br />

• Epitaxial growth <strong>of</strong> <strong>SiGe</strong>(C)<br />

• Temperature stabilty and silicide issues with<br />

<strong>SiGe</strong>(C)<br />

• <strong>Integration</strong> <strong>of</strong> <strong>SiGe</strong>C <strong>layers</strong> <strong>in</strong> pMOSFETs<br />

• <strong>Integration</strong> <strong>of</strong> sSi and relaxed <strong>SiGe</strong> <strong>in</strong><br />

nMOSFETs<br />

3131


<strong>SiGe</strong>(C) channel pMOSFETs on<br />

UTB SOI<br />

NiSi<br />

Lg=100 nm – 200µm<br />

Poly-Si<br />

<strong>SiGe</strong><br />

Si<br />

SiO 2<br />

80 nm<br />


Long channel electrical<br />

characteristics<br />

0.06<br />

1.00E-01<br />

10 -1<br />

Dra<strong>in</strong> current (µA/µm)<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

SIMOX Substrates<br />

0<br />

10 1.00E-08<br />

-2.5 -1.5 -0.5 0.5 1.5 2.5<br />

Gate voltage (V)<br />

Si<br />

<strong>SiGe</strong>C<br />

<strong>SiGe</strong><br />

1.00E-02<br />

10 -2<br />

Dra<strong>in</strong> current (µA/µm)<br />

1.00E-03<br />

10 -3<br />

10 -4<br />

1.00E-04<br />

1.00E-05<br />

10 -5<br />

1.00E-06<br />

10 -6<br />

1.00E-07<br />

10 -7<br />

3 33


Mobility Si, <strong>SiGe</strong> and <strong>SiGe</strong>C<br />

channels<br />

Effective electric field (MV/cm)<br />

200<br />

175<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Si universal<br />

Mobility (cm 2 /Vs)<br />

150<br />

125<br />

100<br />

75<br />

50<br />

<strong>SiGe</strong><br />

<strong>SiGe</strong>C<br />

Si<br />

25<br />

0<br />

SIMOX Substrates<br />

0 2 4 6 8 10<br />

x10 12<br />

Inversion charge density (cm -2 )<br />

3434


Bulk vs UTB SOI<br />

160<br />

<strong>SiGe</strong><br />

140<br />

FD SOI<br />

Mobility [cm 2 /Vs]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

Bulk<br />

Si<br />

<strong>SiGe</strong><br />

Si<br />

20<br />

0<br />

0 2 4 6 8 10 12<br />

Inversion charge density [cm -2 ]<br />

10 12<br />

3535


Outl<strong>in</strong>e<br />

• Introduction to MOSFET <strong>devices</strong><br />

• <strong>SiGe</strong>(C) as a material system<br />

• Epitaxial growth <strong>of</strong> <strong>SiGe</strong>(C)<br />

• Temperature stabilty and silicide issues with<br />

<strong>SiGe</strong>(C)<br />

• <strong>Integration</strong> <strong>of</strong> <strong>SiGe</strong>C <strong>layers</strong> <strong>in</strong> pMOSFETs<br />

• <strong>Integration</strong> <strong>of</strong> sSi and relaxed <strong>SiGe</strong> <strong>in</strong><br />

nMOSFETs<br />

3636


Introduction<br />

• Bandgap narrow<strong>in</strong>g<br />

• Implantation damage difficult to aneal<br />

Misfit dislocations:<br />

-Source to dra<strong>in</strong> leakage<br />

• Thread<strong>in</strong>g dislocations:<br />

-Substrate leakage<br />

• VS-Increased self heat<strong>in</strong>g -not considered <strong>in</strong><br />

this study<br />

3737


Experimental - Devices<br />

• Th<strong>in</strong> and supercritical<br />

sSi<br />

S<br />

D<br />

NiSi<br />

sSi<br />

• Supercritical sSi ~1 Gpa<br />

<strong>SiGe</strong> VS<br />

• Th<strong>in</strong> sSi up to 3.2 GPa<br />

Si substrate<br />

• Wells and retrograde<br />

n+ poly Si<br />

channel dop<strong>in</strong>g:<br />

G<br />

-<strong>in</strong> situ<br />

-implantation<br />

S<br />

D<br />

sSi<br />

• Channel peak dop<strong>in</strong>g<br />

conc:<br />

Si 0.7 Ge sSi<br />

0.3<br />

80 nm<br />

-310 18 cm -3<br />

<strong>SiGe</strong> VS<br />

-710 18 cm -3<br />

G<br />

Si substrate<br />

3838


Experimental - Stress Measurement<br />

[100]<br />

a) b)<br />

sSi Stress sSi and mismatch measurement<br />

<strong>of</strong> substrates after device process<strong>in</strong>g<br />

Si<br />

sub.<br />

Si<br />

sub.<br />

HRXRD<br />

•Highly relaxed <strong>SiGe</strong> VS (90-100%)<br />

∆k - =0.02Å-1<br />

Relaxed <strong>SiGe</strong><br />

(thick graded) ω<br />

∆k // =0.02Å -1<br />

•Highly stra<strong>in</strong>ed Si (


Mobility Enhancement (Long Channels)<br />

Electron mobility (cm 2 /Vs)<br />

400<br />

300<br />

200<br />

100<br />

Si ref.<br />

1.8 Gpa<br />

0<br />

0.5 1 1.5 2 2.5<br />

Effective field (MV/cm)<br />

1.3 Gpa<br />

1.0 Gpa<br />

Mobility enhancement<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

This study<br />

Rim Literature et al. [1] values<br />

0 0.5 1 1.5 2<br />

Stress [GPa]<br />

4040


Device Performance (L G =80 nm)<br />

Dra<strong>in</strong> Current (A/µm)<br />

450<br />

2<br />

10 -2 V DS 0.1 V<br />

10 -4<br />

1.0V<br />

400<br />

1.8 GPa<br />

10 -6<br />

350 1.3 GPa<br />

10 -8<br />

Si ref.<br />

1.0 GPa<br />

10 -10<br />

300<br />

10 -12<br />

SS~80mV/Dec.<br />

250<br />

10 -14<br />

Gate Voltage Stress [GPa]<br />

(V)<br />

Transconductance [µS/µm]<br />

V D =1 V<br />

0 0.5 1 1.5 2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

-0.5 0 0.5 1 1.5 2 2.5<br />

Transconductance enhancment<br />

4141


Substrate Junction Leakage<br />

Comparison between <strong>in</strong>-situ and implanted <strong>devices</strong>:<br />

1x10 -3<br />

Current (A)<br />

I <strong>of</strong>f<br />

<strong>in</strong>-situ<br />

1x10 -5<br />

1x10 -7<br />

1x10 -9<br />

I <strong>of</strong>f implanted<br />

I D<br />

I Sub<br />

10 -11<br />

-0.5 0.0 0.5 1.0 1.5 2.0<br />

Gate Voltage (V)<br />

4242


Substrate Junction Leakage<br />

Comparison between <strong>in</strong>-situ and implanted <strong>devices</strong>:<br />

10 -9 Wafer<br />

Dra<strong>in</strong>-substrate current (A/ µm)<br />

10 -10<br />

10 -11<br />

10 -12<br />

10 -13<br />

Implanted<br />

1.3 GPa<br />

Si Ref.<br />

Implanted<br />

and <strong>in</strong>-situ<br />

In-situ<br />

1.3 Gpa<br />

4343


Substrate Junction Leakage<br />

Effect <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g the Ge amount <strong>in</strong> the substrate:<br />

Dra<strong>in</strong>-substrate Current (A/µm<br />

Dra<strong>in</strong>-substrate current (A/µm)<br />

10 -5 Dra<strong>in</strong>-Substrate diodes<br />

Increas<strong>in</strong>g<br />

10 -10<br />

Ge %<br />

1.8<br />

1.3 GPa 2.2<br />

3.2<br />

GPa<br />

1.0<br />

GPa<br />

GPa<br />

Si ref. GPa<br />

10-1.5 -15<br />

-1 -0.5<br />

Wafer<br />

0 0.5 1 1.5<br />

10 -5<br />

10 -10<br />

10 -15<br />

Dra<strong>in</strong>-substrate Voltage (V)<br />

4 44


Substrate Junction Leakage<br />

Effect <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g the Ge amount <strong>in</strong> the substrate:<br />

1000000<br />

6<br />

100000<br />

5<br />

Th<strong>in</strong> VS TDD ~ 1*10 9 cm -2 [5]<br />

Th<strong>in</strong> VS TDD ~ 1*10 7 cm -2 [5]<br />

[5] Eneman et al.<br />

APL 2005<br />

10 6 Leakage from<br />

Leakage Factor<br />

10000<br />

4<br />

1000<br />

3<br />

100<br />

2<br />

10<br />

1<br />

Comercial graded<br />

TDD ~3*10 5 cm -2 [5]<br />

Implanted<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Si Stress [Gpa]<br />

In-situ<br />

bandgap narrow<strong>in</strong>g<br />

4545


Source to Dra<strong>in</strong> Leakage L G =80 nm<br />

Current (A/µm)<br />

10 -4 10 -6<br />

I S, I D<br />

10 -8<br />

10 -10<br />

I D<br />

10 -12<br />

I S<br />

10 -14<br />

Gate Voltage (V)<br />

Attributed to enhanced As<br />

diffusion through misfit<br />

dislocations between source and<br />

dra<strong>in</strong><br />

-0.5 0 0.5 1 1.5 2 2.5<br />

Only visible at short gate lengths<br />

4646


Source to Dra<strong>in</strong> Leakage L G =80 nm<br />

Counts<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Dop<strong>in</strong>g 3 x 10 18 cm -3<br />

Dop<strong>in</strong>g 7 x 10 18 cm -3<br />

0<br />

-16 -14 -12 -10 -8 -6 -4 -2<br />

Log Source Current @ V GS<br />

= -0.5 V<br />

• Leakage effectively<br />

reduced for<br />

<strong>in</strong>creased channel<br />

dop<strong>in</strong>g<br />

• Manifest theory <strong>of</strong><br />

enhanced As<br />

diffusion along<br />

misfit dislocations<br />

4747


Source to Dra<strong>in</strong> Leakage L G =80 nm<br />

Channel Direction<br />

S<br />

D<br />

Misfit dislocations<br />

caus<strong>in</strong>g enhanced<br />

As diffusion<br />

G<br />

Rotation <strong>of</strong> Devices!<br />

4848


Source to Dra<strong>in</strong> Leakage L G =80 nm<br />

Direction<br />

Diffusion distance<br />

along dislocation<br />

~1.4 times longer.<br />

S<br />

Can we see this <strong>in</strong> the<br />

80 nm <strong>devices</strong>?<br />

D<br />

Misfit dislocations<br />

G<br />

4949


Source to Dra<strong>in</strong> Leakage L G =80 nm<br />

Counts<br />

8<br />

6<br />

4<br />

0 degrees<br />

50 degrees<br />

• Channel rotation<br />

can be used to<br />

reduce S/D leakage.<br />

2<br />

0<br />

-12 -10 -8 -6 -4<br />

Log Source Current @ V GS<br />

= -0.5 V<br />

5050


Conclusions<br />

• 1.8X sSi mobility enhancement.<br />

• sSi nMOSFETs 1.5X performance enhancement<br />

at 80 nm gate length.<br />

• Substrate leakage current was reduced by<br />

<strong>in</strong>-situ doped substrates.<br />

• Increased channel dop<strong>in</strong>g masked the enhanced<br />

As diffusion along the misfit dislocation<br />

l<strong>in</strong>es which reduced S/D leakage.<br />

• Rotation <strong>of</strong> the channel orientation was also<br />

shown to reduce the source to dra<strong>in</strong> leakage at<br />

L G =80 nm.<br />

5151


Aknowlegdements<br />

Jun Luo, Valur Guðmundsson Yong-B<strong>in</strong> Wang and Christian Ridder<br />

are gratefully acknowledged for assistance <strong>in</strong> device process<strong>in</strong>g.<br />

Jun Lu at Ångström Laboratory is accredited for provid<strong>in</strong>g the TEM<br />

image.<br />

The Ion Technology Center (ITC) at Uppsala University is<br />

acknowledged for ion implantation.<br />

This work was <strong>in</strong> part f<strong>in</strong>ancially supported by Swedish Foundation<br />

for Strategic Research (SSF) through the NEMO program and EU<br />

through the “SiNANO Network <strong>of</strong> Excellence”.<br />

5252

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!