29.10.2012 Views

Manifolds in composite specifically designed for radiant ... - Caleffi

Manifolds in composite specifically designed for radiant ... - Caleffi

Manifolds in composite specifically designed for radiant ... - Caleffi

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hydraulic characteristics<br />

∆P (mm w.g.)<br />

1000<br />

500<br />

200<br />

100<br />

900<br />

800<br />

700<br />

600<br />

450<br />

400<br />

350<br />

300<br />

180<br />

160<br />

140<br />

120<br />

90<br />

80<br />

70<br />

60<br />

50<br />

250<br />

45<br />

40<br />

35<br />

30<br />

20<br />

10<br />

25<br />

18<br />

16<br />

14<br />

12<br />

20<br />

25<br />

30<br />

Example of calculation of total loss of head<br />

Suppos<strong>in</strong>g we need to calculate the loss of head of a manifold with three outlets with the follow<strong>in</strong>g characteristics:<br />

Total manifold flow rate: 350 l/h<br />

The pipes of the three loops have the follow<strong>in</strong>g characteristics of flow rate and loss of head:<br />

Circuit 1 Circuit 2 Circuit 3<br />

∆P1 = 10 kPa ∆P2 = 15 kPa ∆P3 = 7 kPa (1.2)<br />

G1 = 120 l/h G2 = 150 l/h G3 = 80 l/h<br />

We calculate each term of the <strong>for</strong>mula (1.1), us<strong>in</strong>g the relationship:<br />

∆P = G 2 /Kv 0.01 2<br />

35<br />

40<br />

45<br />

50<br />

60<br />

70<br />

80<br />

90<br />

· G = flow rate <strong>in</strong> l/h<br />

· ∆P = loss of head <strong>in</strong> kPa (1 kPa =100 mm w.g.)<br />

· Kv 0,01 = flow rate <strong>in</strong> l/h through the device, which corresponds to a head loss of 1 kPa<br />

It should be stressed that the calculation of ∆PTot. must be made tak<strong>in</strong>g account of the circuit <strong>in</strong> which there are the greatest head losses<br />

distributed along the entire loop of the panel pip<strong>in</strong>g.<br />

In the case we are exam<strong>in</strong><strong>in</strong>g, the relevant circuit is No. 2.<br />

It follows that:<br />

∆PBV = 1502 /1002 = 2,25 kPa<br />

∆PLoop = 15 kPa<br />

∆PSV = 1502 /2402 = 0,39 kPa<br />

∆PF Man. = 3502 /16002 = 0,05 kPa } Values obta<strong>in</strong>ed by disregard<strong>in</strong>g variations due to flow rate to each branch circuit<br />

∆PR Man. = 3502 /16002 = 0,05 kPa<br />

∆PBall V = 3502 /16502 = 0,04 kPa<br />

By means of (1.1) add<strong>in</strong>g up all the calculated terms, we have:<br />

∆PTot.= 2,25 + 15 + 0,39 + 0,05 + 0,05 + 0,04 = 17,64 kPa<br />

100<br />

Flow rate balanc<strong>in</strong>g valve fully open<br />

Shut-off valve<br />

120<br />

140<br />

160<br />

180<br />

- Kv = flow rate <strong>in</strong> m 3 /h <strong>for</strong> a loss of head of 1 bar<br />

- Kv 0,01 = flow rate <strong>in</strong> l/h <strong>for</strong> a loss of head of 1 kPa<br />

200<br />

250<br />

300<br />

350<br />

400<br />

450<br />

Kv<br />

1,00<br />

2,40<br />

500<br />

G (l/h)<br />

∆P (kPa)<br />

Note:<br />

Because of the low head losses <strong>for</strong> the ball valves and the manifolds, the three terms relat<strong>in</strong>g to them can be neglected.<br />

In general, the total head loss is reasonably approximate to that of the branched circuit of the panel.<br />

9<br />

8<br />

7<br />

6<br />

2,5<br />

10<br />

5<br />

4,5<br />

4<br />

3,5<br />

3<br />

2<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,25<br />

0,5<br />

0,45<br />

0,4<br />

0,35<br />

0,3<br />

0,2<br />

0,18<br />

0,16<br />

0,14<br />

0,12<br />

0,1<br />

Kv 0,01<br />

100<br />

240<br />

∆P (mm w.g.)<br />

1000<br />

500<br />

200<br />

100<br />

900<br />

800<br />

700<br />

600<br />

450<br />

400<br />

350<br />

300<br />

180<br />

160<br />

140<br />

120<br />

90<br />

80<br />

70<br />

60<br />

50<br />

20<br />

10<br />

250<br />

45<br />

40<br />

35<br />

30<br />

25<br />

18<br />

16<br />

14<br />

12<br />

500<br />

600<br />

Flow or return manifold 3÷6 outlets<br />

Flow or return manifold 7÷10 outlets<br />

Ball valve<br />

* Average value<br />

700<br />

800<br />

900<br />

1000<br />

1200<br />

1400<br />

1600<br />

1800<br />

2000<br />

2500<br />

3000<br />

Kv<br />

16,0*<br />

12,0*<br />

16,5*<br />

3500<br />

G (l/h)<br />

∆P (kPa)<br />

4000<br />

9<br />

8<br />

7<br />

6<br />

2,5<br />

10<br />

5<br />

4,5<br />

4<br />

3,5<br />

3<br />

2<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,25<br />

0,5<br />

0,45<br />

0,4<br />

0,35<br />

0,3<br />

0,2<br />

0,18<br />

0,16<br />

0,14<br />

0,12<br />

0,1<br />

Kv0,01 1600*<br />

1200*<br />

1650*

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!