06.02.2014 Views

Title : Alternate Mixed Method: Old Wine in a New Bottle - IRCC

Title : Alternate Mixed Method: Old Wine in a New Bottle - IRCC

Title : Alternate Mixed Method: Old Wine in a New Bottle - IRCC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>: <strong>Old</strong> <strong>W<strong>in</strong>e</strong> <strong>in</strong> a <strong>New</strong><br />

<strong>Bottle</strong><br />

Amiya Kumar Pani 1<br />

akp@math.iitb.ac.<strong>in</strong><br />

Industrial Mathematics Group<br />

Department of Mathematics<br />

IIT Bombay, Powai<br />

Mumbai-400 076<br />

August 17, 2011<br />

1 Collaborators: G. Fairweather, R.K.S<strong>in</strong>ha, Arul Veda Manickam ,Kannan<br />

Moudgalya, M.A. Ali and A.K. Otta<br />

1 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Sketch of the Talk<br />

On Computational Mathematics<br />

A new way of look<strong>in</strong>g at Mathematics<br />

Broad Focus<br />

Why <strong>Mixed</strong> <strong>Method</strong><br />

An Example <strong>in</strong> Enhanced Oil Recovery<br />

To illustrate with simpler Problem<br />

Classical <strong>Mixed</strong> <strong>Method</strong> (p, u)<br />

Formulation: What we have ga<strong>in</strong>ed & What we have lost<br />

LBB Consistency Condition<br />

Order of Convergence<br />

Disadvantages<br />

2 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Sketch of the Talk (contd.)<br />

Proposed <strong>Mixed</strong> <strong>Method</strong><br />

Basic Idea: symmetrization<br />

<strong>Old</strong> w<strong>in</strong>e <strong>in</strong> a new bottle : justification<br />

Order of convergence<br />

Comparision<br />

Modified <strong>Method</strong><br />

Non-conformity<br />

Improved rate of convergence<br />

Summary and Extension<br />

3 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics<br />

☞ When a given problem is approximated us<strong>in</strong>g a f<strong>in</strong>ite<br />

mach<strong>in</strong>e ( mach<strong>in</strong>e with a f<strong>in</strong>ite precession), we commit<br />

round off errors or truncation errors at every stage of<br />

computation.<br />

☞ It is, therefore, essential to have a control on these errors.<br />

☞ To illustrate the effect of round off or truncation error,<br />

consider solv<strong>in</strong>g<br />

AX = b, (1)<br />

where b is a given vector and A is a Hilbert matrix, which<br />

is given by<br />

1<br />

A ij =<br />

i + j − 1 .<br />

4 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics<br />

☞ When a given problem is approximated us<strong>in</strong>g a f<strong>in</strong>ite<br />

mach<strong>in</strong>e ( mach<strong>in</strong>e with a f<strong>in</strong>ite precession), we commit<br />

round off errors or truncation errors at every stage of<br />

computation.<br />

☞ It is, therefore, essential to have a control on these errors.<br />

☞ To illustrate the effect of round off or truncation error,<br />

consider solv<strong>in</strong>g<br />

AX = b, (1)<br />

where b is a given vector and A is a Hilbert matrix, which<br />

is given by<br />

1<br />

A ij =<br />

i + j − 1 .<br />

4 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics (contd.)<br />

In other words<br />

⎡<br />

A n×n =<br />

⎢<br />

⎣<br />

1<br />

1<br />

3<br />

· · ·<br />

n<br />

1<br />

1<br />

4<br />

· · ·<br />

n+1<br />

1<br />

1<br />

5<br />

· · ·<br />

n+2<br />

· · · · · · · · · · · · · · ·<br />

1 1 1<br />

1<br />

n n+1 n+2<br />

· · ·<br />

2n−1<br />

1<br />

1<br />

2<br />

1 1<br />

2 3<br />

1 1<br />

3 4<br />

⎤<br />

⎥<br />

⎦<br />

5 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics (contd.)<br />

☞ It is easy check that<br />

det A ≠ 0,<br />

and hence, the matrix A is nons<strong>in</strong>gular.<br />

☞ Therefore, (1) yields<br />

X := A −1 b. (2)<br />

☞ When you compute with f<strong>in</strong>ite mach<strong>in</strong>e: a small change <strong>in</strong><br />

b gives rise to a drastic change <strong>in</strong> the solution.<br />

☞ For example, consider<br />

b ′ = (1, 0, 0, · · · , 0) 1×50<br />

and a slight perturbation of b:<br />

˜b ′ = (1 + 10 −3 , 0, 0, · · · , 0) 1×50 .<br />

6 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics (contd.)<br />

☞ It is easy check that<br />

det A ≠ 0,<br />

and hence, the matrix A is nons<strong>in</strong>gular.<br />

☞ Therefore, (1) yields<br />

X := A −1 b. (2)<br />

☞ When you compute with f<strong>in</strong>ite mach<strong>in</strong>e: a small change <strong>in</strong><br />

b gives rise to a drastic change <strong>in</strong> the solution.<br />

☞ For example, consider<br />

b ′ = (1, 0, 0, · · · , 0) 1×50<br />

and a slight perturbation of b:<br />

˜b ′ = (1 + 10 −3 , 0, 0, · · · , 0) 1×50 .<br />

6 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics (contd.)<br />

☞ Now,<br />

‖b − ˜b‖ max := max<br />

1≤i≤50 |b i − ˜b i | ≤ 10 −3 .<br />

For comput<strong>in</strong>g solution of<br />

AX = b, and A˜X = ˜b,<br />

us<strong>in</strong>g a f<strong>in</strong>ite mach<strong>in</strong>e, we observe that<br />

‖X − ˜X‖ max = max<br />

1≤i≤50 |X i − ˜X i | ≤ 2.9329 × 10 6 .<br />

small chage <strong>in</strong> b gives rise to drastic change <strong>in</strong> the<br />

solution.<br />

☞ Therefore, if we use low end mach<strong>in</strong>e and then high end<br />

mach<strong>in</strong>e, there will be be a drastic change <strong>in</strong> the solution<br />

and it is not acceptable as an approximate solution.<br />

7 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics (contd.)<br />

☞ Now,<br />

‖b − ˜b‖ max := max<br />

1≤i≤50 |b i − ˜b i | ≤ 10 −3 .<br />

For comput<strong>in</strong>g solution of<br />

AX = b, and A˜X = ˜b,<br />

us<strong>in</strong>g a f<strong>in</strong>ite mach<strong>in</strong>e, we observe that<br />

‖X − ˜X‖ max = max<br />

1≤i≤50 |X i − ˜X i | ≤ 2.9329 × 10 6 .<br />

small chage <strong>in</strong> b gives rise to drastic change <strong>in</strong> the<br />

solution.<br />

☞ Therefore, if we use low end mach<strong>in</strong>e and then high end<br />

mach<strong>in</strong>e, there will be be a drastic change <strong>in</strong> the solution<br />

and it is not acceptable as an approximate solution.<br />

7 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


On Computational Mathematics (contd.)<br />

☞ To probe a bit: it is the effect of round off error.<br />

Therefore, a new way of look<strong>in</strong>g at Mathematics<br />

has emerged <strong>in</strong> the last fifty or sixty<br />

years. A part from Pure and Applied Mathematics,<br />

now a new branch called ‘Computational<br />

Mathematics’ has developed.<br />

☞ In this talk, we concentrate on ’Computational PDEs’.<br />

8 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Computational PDEs<br />

Broad Focus:<br />

To provide mathematical justifications <strong>in</strong> terms of<br />

stability and convergence to widely used numerical<br />

schemes for computational PDEs.<br />

To design and develop reliable and efficient algorithms<br />

for numerical solutions to PDEs.<br />

By reliability, we mean that for a given tolerance and<br />

measurement, the computed solution stays near to the<br />

exact unknown solution that too with<strong>in</strong> the prescribed<br />

tolerance with respect to the given measurement.<br />

By efficient, we understand that this can be achieved with<br />

m<strong>in</strong>imal computational effort.<br />

Theme of this talk: propose a new method with proper<br />

mathematical justifications.<br />

9 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Computational PDEs<br />

Broad Focus:<br />

To provide mathematical justifications <strong>in</strong> terms of<br />

stability and convergence to widely used numerical<br />

schemes for computational PDEs.<br />

To design and develop reliable and efficient algorithms<br />

for numerical solutions to PDEs.<br />

By reliability, we mean that for a given tolerance and<br />

measurement, the computed solution stays near to the<br />

exact unknown solution that too with<strong>in</strong> the prescribed<br />

tolerance with respect to the given measurement.<br />

By efficient, we understand that this can be achieved with<br />

m<strong>in</strong>imal computational effort.<br />

Theme of this talk: propose a new method with proper<br />

mathematical justifications.<br />

9 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


To motivate through an example from Enhanced Oil<br />

Recovery<br />

In tertiary oil recovery an <strong>in</strong>expensible fluid is <strong>in</strong>jected <strong>in</strong>to the<br />

reservoir to mix with the hydrocarbon (Oil) and then push the<br />

mixture towards the production wells.<br />

10 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Enhanced Oil Recovery (contd.)<br />

Assum<strong>in</strong>g that there is no volume change due to mix<strong>in</strong>g and the<br />

fluid is slightly compressible , the mathematical model gives<br />

rise to the follow<strong>in</strong>g system of PDEs:<br />

For a given T > 0, f<strong>in</strong>d a pair (p,c) such that<br />

✓<br />

d(c) ∂p<br />

∂t<br />

− ∇.(a(c)∇p) = q, (x, t) ∈ Ω × J<br />

φc t + b(c) ∂p<br />

✒<br />

∂t<br />

+ u.∇c − ∇.(D(u)∇c) = g(c)<br />

with no flow boundary conditions and <strong>in</strong>itial condition<br />

✏<br />

✑<br />

p(x, 0) = p 0 (x), c(x, 0) = c 0 (x), x ∈ I.<br />

11 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Enhanced Oil Recovery (contd.)<br />

• Ω is a bounded doma<strong>in</strong> <strong>in</strong> IR 2 , J = (0, T ).<br />

• u is the Darcy velocity,<br />

u = −(a(c)∇p).<br />

• a(c) = k(x)<br />

µ(c)<br />

, k(x)- the permeability, µ(c) - viscosity.<br />

• φ -the porosity<br />

• q is the total external flow.<br />

• D = D(x, u) is diffusion coefficient.<br />

• ˜c is a function specified at <strong>in</strong>jection po<strong>in</strong>t and equals to c at<br />

production po<strong>in</strong>t, c = c 1 = 1 − c 2 , where c 1 and c 2 is the<br />

concentrations of the two fluid components, 0 ≤ c ≤ 1.<br />

• g(c) = (c − ˜c)q,<br />

• c 0 (x) is a function must be specified.<br />

12 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Quantity of Interest<br />

Quantity of Interest: Concentration c<br />

(as more accurate evaluation of c is related<br />

to ‘How much oil (hydrocarbon) can<br />

be extracted from the Reservoir’)<br />

☞ For accurate evaluation of concentration c, we need more<br />

accurate evaluation of u as u not p appears <strong>in</strong> the<br />

concentration equation.<br />

Rule of the game: consider both p and u as primary<br />

variables,that is, comute both simultaneously.<br />

13 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Quantity of Interest<br />

Quantity of Interest: Concentration c<br />

(as more accurate evaluation of c is related<br />

to ‘How much oil (hydrocarbon) can<br />

be extracted from the Reservoir’)<br />

☞ For accurate evaluation of concentration c, we need more<br />

accurate evaluation of u as u not p appears <strong>in</strong> the<br />

concentration equation.<br />

Rule of the game: consider both p and u as primary<br />

variables,that is, comute both simultaneously.<br />

13 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


To illustrate with Simpler Problem<br />

F<strong>in</strong>d p on Ω × (0, T ] such that p satisfies<br />

✗<br />

✔<br />

p t − ∇ · (a(x)∇p) = f (x, t), (x, t) ∈ Ω × J, (3)<br />

✖<br />

p = 0, (x, t) ∈ ∂Ω × J,<br />

p(x, 0) = p 0 , x ∈ Ω.<br />

Ω be a bounded doma<strong>in</strong> <strong>in</strong> R d , d = 2, 3 with smooth<br />

boundary ∂Ω.<br />

a ≥ a 0 > 0<br />

p t = ∂p<br />

∂t<br />

and J = (0, T ] with T < ∞.<br />

✕<br />

14 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Why <strong>Mixed</strong> <strong>Method</strong>s ?<br />

☞ To approximate p (temperature distribution) and its flux<br />

(heat flux) u = −a ▽ p through standard numerical<br />

procedures (FDM or FEM):<br />

Compute an approximation to p that is say p h .<br />

Post-process it to obta<strong>in</strong> an approximation to u that is<br />

u h = a ▽ p h .<br />

☞ Outcome: Inaccurate approximation to u.<br />

(due to numerical differentiation or/and multiplication by<br />

rough coefficient a).<br />

15 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Why <strong>Mixed</strong> <strong>Method</strong>s ?<br />

☞ To approximate p (temperature distribution) and its flux<br />

(heat flux) u = −a ▽ p through standard numerical<br />

procedures (FDM or FEM):<br />

Compute an approximation to p that is say p h .<br />

Post-process it to obta<strong>in</strong> an approximation to u that is<br />

u h = a ▽ p h .<br />

☞ Outcome: Inaccurate approximation to u.<br />

(due to numerical differentiation or/and multiplication by<br />

rough coefficient a).<br />

15 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Objective of <strong>Mixed</strong> <strong>Method</strong>s.<br />

☞ Reformulate the problem with both p and u as primary<br />

variables.<br />

☞ Split (3) as a system ✓<br />

✒<br />

with p(x, 0) = p 0 .<br />

αu = ∇p, α = 1 a ,<br />

∂p<br />

∂t<br />

− ∇ · u = f .<br />

✏<br />

✑<br />

☞ Weak Formulation. Let V = L 2 (Ω) : space of squre<br />

<strong>in</strong>tegrable functions, and<br />

{<br />

}<br />

W = H(div, Ω) = w : w ∈ (L 2 (Ω)) d , ∇ · w ∈ L 2 (Ω)<br />

with norm<br />

‖w‖ H(div,Ω) = (‖w‖ 2 + ‖∇ · w‖ 2 ) 1/2 .<br />

16 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Weak Formulation<br />

F<strong>in</strong>d (p, u) : (0, T ] ↦→ V × W such that<br />

(αu, w) + (∇ · w, p) = 0, w ∈ W,<br />

( ∂p<br />

∂t<br />

, v) − (∇ · u, v) = (f , v), v ∈ V . (2b)<br />

(2a)<br />

Galerk<strong>in</strong> Procedure. Choose the f<strong>in</strong>ite element spaces V h of<br />

V and W h of W . Seek a pair (p h , u h ) : (0, T ] ↦→ V h × W h such<br />

that<br />

(αu h , w h ) + (∇ · w h , p h ) = 0, w h ∈ W h ,<br />

( ∂p h<br />

∂t<br />

, v h ) − (∇ · u h , v h ) = (f , v h ), v h ∈ V h .<br />

17 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Error Analysis.<br />

☞ LBB Consistency Condition: to compensate nonsymmetric<br />

(v h ,∇·w h )<br />

sup<br />

‖w h ‖<br />

≥ β‖v<br />

H(div;Ω)<br />

h ‖ V , v ∈ V h .<br />

w h ∈ W h /{0}<br />

☞ Restriction on the construction of f<strong>in</strong>ite dimensional<br />

subspaces V h and W h .<br />

∇ · W h = V h<br />

18 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Raviart-Thomas-Nedelec Spaces.<br />

T h : quasi-uniform triangulation of Ω (assum<strong>in</strong>g Ω is a polygon)<br />

by triangles K of diameter at most h.<br />

19 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Raviart-Thomas-Nedelec Spaces.<br />

☞ Now V h = {v h ∈ V : v h | K ∈ P r−1 (K ), K ∈ T h }.<br />

☞ P j - a polynomial of degree at most j.<br />

☞ Approximation property: <strong>in</strong>f vh ∈V h<br />

‖v − v h ‖ ≤ Ch r ‖v‖ r .<br />

☞ For W h , set Q(K ) = [P r−1 ] 2 ⊕ Span(xP r−1 (K ))<br />

(space of <strong>in</strong>complete polynomials ly<strong>in</strong>g <strong>in</strong> between P r and<br />

P r−1 ) and def<strong>in</strong>e<br />

W h = {w h ∈ H(div, Ω) : w h | K ∈ Q(K ), K ∈ T h }.<br />

☞ Approximation property: <strong>in</strong>f wh ∈W h<br />

‖w − w h ‖ ≤ Ch r ‖w‖ r .<br />

☞ This construction preserves the relation<br />

∇ · W h = V h .<br />

20 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Convergence.<br />

For example: when r = 1<br />

V h = {v ∈ L 2 : v| K ∈ P 0 (K ), K ∈ T h }.<br />

and<br />

W h = {w ∈ H(div; Ω) : w| K = (a 1,K +b K x 1 , a 2,K +b K x 2 ) K ∈ T h }.<br />

(Johnson & Thomeé , RAIRO 1981)<br />

‖(p h − p)(t)‖ ≤ Ch r {‖p(t)‖ r + ∫ t<br />

0 ‖p t(τ)‖ r dτ}<br />

‖(u h − u)(t)‖ ≤ Ch r {‖p(t)‖ r+1 + ∫ t<br />

0 ‖p t(τ)‖ r dτ}<br />

For r = 1: Order of Convergence is One<br />

21 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Disadvantages.<br />

❶ Due to quasi-uniformity condition, there is difficulty <strong>in</strong><br />

apply<strong>in</strong>g adaptive methods.<br />

❷ LBB consistency condition must be satisfied, and this<br />

imposes severe restriction on the construction of f<strong>in</strong>ite<br />

element spaces<br />

❸ Computationally more simple and attractive C 0 -piecewise<br />

l<strong>in</strong>ear spaces to approximate both of p and u can not be<br />

used.<br />

22 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


<strong>Alternate</strong> <strong>Method</strong>.<br />

☞ Attempts <strong>in</strong> the Past. (Specially for Elliptic Problems)<br />

Use of some short of stabilizers (computationally more<br />

complex and time consum<strong>in</strong>g). In fact, LBB-condition can<br />

be thought of as a stabilizer.<br />

☞ Ma<strong>in</strong> Culprit. Non-symmetric form of<br />

(∇ · w h , p h ), (∇ · u h , v h ).<br />

☞ Possible Remedy: Try to symmetrize.<br />

To provide an answer to the 14th open problem cited <strong>in</strong> a<br />

workshop on Free and Mov<strong>in</strong>g Boundary Problems held <strong>in</strong><br />

Berl<strong>in</strong> (1977), a k<strong>in</strong>d of symmetrization technique is used<br />

by us for one phase unidimensional Stefan problem (Pani<br />

and Das, IMA J. Numer. Anal. 1989, 1991,...)<br />

Spurt of Activities around 1993 for elliptic problems us<strong>in</strong>g<br />

Least Square <strong>Method</strong>.<br />

23 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Proposed Scheme<br />

☞ Split (3) as two first order system<br />

☞ Try to symmetrize.<br />

u = a∇p,<br />

p t − ∇·u = f .<br />

(4a)<br />

(4b)<br />

☞ Mulptiply (4a) by ∇v and (4b) by ∇ · w. Then <strong>in</strong>tegrate over<br />

Ω. Write (p t , ∇ · w) = −(∇p t , w) = −(αu t , w), where<br />

α = 1/a.<br />

☞ Weak Formulation. F<strong>in</strong>d a pair {p, u} : J ↦→ H 1 0 × W<br />

satisfy<strong>in</strong>g for w ∈ W<br />

(a∇p, ∇v) = (u, ∇v) , v ∈ H 1 0 , (5a)<br />

(αu t , w) + (∇·u, ∇·w) = − (f , ∇·w) .(5b)<br />

24 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Galerk<strong>in</strong> Approximation.<br />

☞ For all K ∈ T h<br />

V h = { v h ∈ C 0 (Ω) : v h | K ∈ P k (K ), v h = 0 on ∂Ω }<br />

W h = {q h ∈ W : (q h ) i | K ∈ P r (K ), i = 1, · · · , d}<br />

☞ Approximation property:<br />

<strong>in</strong>f vh ∈V h<br />

‖v − v h ‖ + h‖∇(v − v h )‖ ≤ Ch k+1 ‖v‖ k+1 .<br />

<strong>in</strong>f wh ∈W h<br />

‖w − w h ‖ + h‖∇(w − w h )‖ ≤ Ch r+1 ‖v‖ r+1 .<br />

☞ Determ<strong>in</strong>e a pair {p h , u h } : J ↦→ V h × W h satisfy<strong>in</strong>g for<br />

w h ∈ W h<br />

(a∇p h , ∇v h ) = (u h , ∇v h ) , v h ∈ V h , (6a)<br />

(αu ht , w h ) + (∇·u h , ∇·w h ) = − (f , ∇·w h ) (6b)<br />

25 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Semidiscrete Error Estimates.<br />

with appropriately chosen <strong>in</strong>itial pair {p h (0), u h (0)} to be<br />

def<strong>in</strong>ed later.<br />

Theorem<br />

With u 0 = a∇p 0 , assume that<br />

‖u 0 − u 0h ‖ H(div,Ω) ≤ Ch r ‖u 0 ‖ r+1 .<br />

Then there is a constant C <strong>in</strong>dependent of h such that<br />

‖∇(p − p h )(t)‖ + ‖∇ · (u − u h )(t)‖ ≤ C(u, p) h m<strong>in</strong>(r,k) ,<br />

‖(p − p h )(t)‖ + ‖(u − u h )(t)‖ ≤ C(u, p) h m<strong>in</strong>(r,k+1) .<br />

26 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Remark.<br />

✍ For k = r, the error estimate ‖∇ · (u − u h )(t)‖ is optimal.<br />

However, the rate of convergence <strong>in</strong> L 2 -norm is not<br />

optimal. This is due to the presence of ∇ · ρ term <strong>in</strong> the<br />

right hand side of (8b). It is possible to choose the auxiliary<br />

projection ũ I through<br />

(∇ · (u − ũ I ), ∇ · w h ) = 0, w h ∈ W h ,<br />

so that the term conta<strong>in</strong><strong>in</strong>g ∇ · ρ is zero. But it is not<br />

possible to obta<strong>in</strong> optimal L 2 -estimate for ρ t term.<br />

27 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


☞ Note that Aub<strong>in</strong>-Nitsche duality argument requires the<br />

follow<strong>in</strong>g regularity result<br />

‖Φ‖ 2 ≤ C‖g‖<br />

(∗)<br />

for the associated operator equation<br />

☞ This may not be true. But for<br />

∇(∇ · Φ) = g.<br />

−∆Φ = ∇ × ∇ × Φ − ∇(∇ · Φ)<br />

the regularity condition (*) holds.<br />

Question:<br />

‘Is it possible to modify the formulation<br />

so that an additional term ∇ × ∇ × Φ<br />

is <strong>in</strong>troduced?’<br />

28 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


☞ Note that Aub<strong>in</strong>-Nitsche duality argument requires the<br />

follow<strong>in</strong>g regularity result<br />

‖Φ‖ 2 ≤ C‖g‖<br />

(∗)<br />

for the associated operator equation<br />

☞ This may not be true. But for<br />

∇(∇ · Φ) = g.<br />

−∆Φ = ∇ × ∇ × Φ − ∇(∇ · Φ)<br />

the regularity condition (*) holds.<br />

Question:<br />

‘Is it possible to modify the formulation<br />

so that an additional term ∇ × ∇ × Φ<br />

is <strong>in</strong>troduced?’<br />

28 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Modified <strong>Method</strong><br />

☞ Observe that ∇ × (∇φ) = 0.<br />

☞ Rewrite (1) as<br />

p t − ∇·u = f , (x, t) ∈ Ω × J,<br />

∇ × (αu) = 0, (x, t) ∈ Ω × J, (αu = ∇p),<br />

(n ∧ αu) = 0, (x, t) ∈ ∂Ω × J, p(0) = p 0 ,<br />

n - the outward normal<br />

∧ - exterior product.<br />

☞ Weak Formulation: Let<br />

W = {w ∈ (H 1 ) d : n ∧ w = 0 on ∂Ω, d = 2, 3}.<br />

Seek a pair {p, u} : J −→ H0 1 × W such that<br />

(∇p, ∇v) = (αu, ∇v), v ∈ H0 1,<br />

(8a)<br />

(αu t , w) + A(u, w) = −(f , ∇ · w), w ∈ (H 1 ) d , (8b)<br />

where<br />

A(φ, w) = (∇ · φ, ∇ · w) + (∇ × αφ, ∇ × αw).<br />

29 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Galerk<strong>in</strong> Formulation.<br />

☞ A(·, ·) satisfies the coercivity condition<br />

A(φ, φ ≥ µ 0 ‖φ‖ 2 1 ,<br />

for some positive constant µ 0 , [refer to Naittaanmäki and<br />

Saranen (1981)].<br />

☞ Galerk<strong>in</strong> Formulation. V h is def<strong>in</strong>ed earlier.<br />

W h = {w h ∈ C(¯Ω) d : (w h ) i | K ∈ P r (K ), i = 1, · · · , d,<br />

(n ∧ αw h ) = 0, at the nodes on ∂Ω}.<br />

S<strong>in</strong>ce (n ∧ αw h ) = 0 only at the boundary nodes,<br />

W h ⊂ W,(non-conform<strong>in</strong>g method).<br />

☞ Determ<strong>in</strong>e a pair {p h , u h } ∈ V h × W h such that w h ∈ W h ,<br />

(∇p h , ∇v h ) = (αu h , ∇v h ), v ∈ V h ,<br />

(9a)<br />

(αu ht , w h ) + A(u h , w h ) = −(f , ∇ · w h ), (9b)<br />

30 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Error Analysis<br />

Theorem (Theorem 2)<br />

Assume that u h (0) = ũ h (0) with u(0) = a∇p 0 . Then, there<br />

exists a positive constant C <strong>in</strong>dependent of h such that<br />

‖(p − p h )(t)‖ + ‖(u − u h )(t)‖ + h‖(p − p)(t)‖ 1 ≤<br />

‖(u − u h )(t)‖ 1<br />

]<br />

≤<br />

Ch m<strong>in</strong>(k+1,r+1)<br />

Ch<br />

r<br />

31 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Remarks.<br />

1 With k = r we have<br />

‖p − p h ‖ L ∞ (L 2 ) + ‖u − u h ‖ L ∞ ((L 2 ) d ) = O(hr+1 ).<br />

2 Compared to Johnson and Thomeé [1981] the present<br />

analysis yields better results for L 2 -estimate of u − u h with<br />

higher regularity assumption on the exact solution. Further,<br />

‖u − u h ‖ = O(h r+1 ) even if k ≠ r with k < r.<br />

3 When d = 2 that is Ω ⊂ R 2 and u h (0) = ũ h (0), then us<strong>in</strong>g<br />

Sobolev imbedd<strong>in</strong>g theorem and superconvergence<br />

estimates for the ∇ζ and ∇ξ, we have the follow<strong>in</strong>g<br />

maximum norm estimates<br />

‖(p − p h )(t)‖ L ∞ ≤ C(log 1 h )hm<strong>in</strong>(k+1,r+1)<br />

provided we assume quasi-uniform condition on the f<strong>in</strong>ite<br />

element mesh.<br />

32 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Summary & Conclud<strong>in</strong>g Remarks<br />

✌ The Galerk<strong>in</strong> approximation has the same rate of<br />

convergence as <strong>in</strong> the case of classical mixed f<strong>in</strong>ite<br />

element method, but without LBB consistency condition<br />

and also without quasiuniform assumption on the f<strong>in</strong>ite<br />

element mesh.<br />

✌ S<strong>in</strong>ce the estimate for ‖u − u h ‖ is not optimal <strong>in</strong> two- and<br />

three space dimensions, a modification is proposed and<br />

analyzed to derive sharper estimate <strong>in</strong> L 2 -norm.<br />

33 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Contd.<br />

✌ Compared to classical classical mixed method, the present<br />

method allows to use two different f<strong>in</strong>ite element spaces for<br />

approximat<strong>in</strong>g p and its flux u. In particular, use of<br />

piecewise l<strong>in</strong>ear polynomial spaces yields O(h 2 ) order of<br />

convergence <strong>in</strong> both p − p h and u − u h <strong>in</strong> L 2 − norm.<br />

Although higher regularity on the solution is assumed, but<br />

better convergence results are proved specially for the flux.<br />

34 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Contd.<br />

Our major results:<br />

✍ Amiya K. Pani (1998),Parabolic equation with non-self<br />

adjo<strong>in</strong>t elliptic part, SIAM J. Numer. Anal. 35, pp.712–727.<br />

✍ Amiya K. Pani and Gareme Fairweather (2002),<br />

H 1 -Galerk<strong>in</strong> mixed f<strong>in</strong>ite element methods for parabolic<br />

<strong>in</strong>tegro-differential equations, IMA J. Numer. Anal. 22, pp.<br />

231–252.<br />

✍ Amiya K. Pani and Graeme Fairweather (2002), An<br />

H 1 -Galerk<strong>in</strong> mixed f<strong>in</strong>ite element method for an evolution<br />

equation with a positive type memory term, SIAM J.<br />

Numer. Anal. 40, pp. 1475–1490.<br />

35 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


Contd.<br />

✎ Rajen K. S<strong>in</strong>ha, Ajay K. Otta and Amiya K. Pani (2004), An<br />

H 1 -Galerk<strong>in</strong> mixed method for second order hyperbolic<br />

equations, International J. Numer. Anal and Model<strong>in</strong>g, 1,<br />

pp. 111-130.<br />

✎ S. Arul Veda Manickam, Kannan M. Moudgalya and A. K.<br />

Pani (2004), Higher order fully discrete scheme comb<strong>in</strong>ed<br />

with H 1 -Galerk<strong>in</strong> mixed f<strong>in</strong>ite element method for<br />

semil<strong>in</strong>ear reaction-diffusion equations, J. Applied<br />

Mathematics and Comput<strong>in</strong>g, 15, pp. 1-28.<br />

✎ M. A. Mohamed Ali, Ph.D. dissertation on ‘Numerical<br />

<strong>Method</strong>s for Enhanced Oil Recovery <strong>in</strong> Reservoir Studies’,<br />

August ’97.<br />

36 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>


THANK YOU<br />

37 / 37 <strong>IRCC</strong>, IITB <strong>Alternate</strong> <strong>Mixed</strong> <strong>Method</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!