09.02.2014 Views

Absorption fluids data survey: final report on worldwide data

Absorption fluids data survey: final report on worldwide data

Absorption fluids data survey: final report on worldwide data

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Printed in the United States of America. Available from<br />

Nati<strong>on</strong>al Technical Informati<strong>on</strong> Service<br />

US. Department of Commerce<br />

5285 Port Royal Road, Springfield, Virginia 221 61<br />

NTlS price codes - Printed Copy: A13 Microfiche A01<br />

This repor; was prepared as an account of work sp<strong>on</strong>sored by an agency of the<br />

United States Government. Neitherthe United States Government nor any agency<br />

thereof, nor any of their employees, makes any warranty. express or implied, or<br />

assumes any legal liability or resp<strong>on</strong>sibility for the accuracy, completeness, or<br />

usefulness of any informati<strong>on</strong>, apparatus, produc:, or process disclosed, or<br />

represents that its use would not infringe privately owned rights. peference herein<br />

to any specific commercial product, process, or service by trade name, trademark,<br />

manufacturer, or otherwise, does not necessarily c<strong>on</strong>stitute or imply its endorsement,<br />

recommendati<strong>on</strong>, or favoring by the United States Government or any<br />

agency thereof. The views and opinior?s of authors expressed herein do not<br />

necessarily state or reflect those of the llnited States Government or any agency<br />

thereof.


ORNL/Sub/84-47989/3<br />

ABSORPTION FLUIDS DATA SURVEY:<br />

FINAL REPORT ON WORLDWIDE DATA<br />

R. A. Macriss<br />

J. M. Gutraj<br />

T. S. Zawacki<br />

Date Published-February 1988<br />

Prepared by<br />

INSTITUTE OF GAS TECHNOLOGY<br />

Chicago, Illinois 606 16<br />

under<br />

Subc<strong>on</strong>tract 8 6X-4798 9 C<br />

for the<br />

ENERGY DIVISION<br />

OAK RIDGE NATIONAL LABORATORY<br />

Oak Ridge, Tennessee 37831<br />

operated by<br />

MARTIN MARIETTA ENERGY SYSTEMS, INC.<br />

for the<br />

U.S. DEPARTMENT OF ENERGY<br />

under c<strong>on</strong>tract DE-AC05-840R2 1400<br />

3 Y45b 031554? b


TABLE OF CONTENTS<br />

Page<br />

LIST OF FIGURES<br />

LIST OF TABLES<br />

SUMMARY OF RESULTS<br />

ABSTRACT<br />

V<br />

vi i<br />

i X<br />

xiii<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

INTRODUCTION<br />

METHOD AND SCOPE<br />

2.1. FLUID PROPERTIES AND DATA<br />

2.2. COARSE SCREENING OF LITERATURE DATA<br />

DETAILED PRESENTATIONS AND TABULATIONS<br />

3.1 . REFRIGERANTS AND ABSORBENTS<br />

3.2. FLUIDS, PROPERTIES, AND NUMBER OF REFERENCES WITH DATA<br />

3.3. COARSE SCREENING OF DATA FOR SELECTED FLUIDS<br />

3.4. FINE SCREENING OF NH3-BzO DATA<br />

3.5. GAPS IN THE DATA OF KEY FLUIDS<br />

ACKNOWLEDGEMENTS<br />

RE FE RENCE S<br />

APPENDIX. FLUIDS, PROPERTIES, DATA, AND KANGE OF CONDITIONS<br />

1<br />

2<br />

2<br />

3<br />

4<br />

4<br />

17<br />

41<br />

60<br />

71<br />

89<br />

90<br />

A- 1<br />

iii


LIST OF FIGURES<br />

Figure<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

Number of references for vapor-liquid equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for crystallizati<strong>on</strong> temperature <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for corrosi<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for heat of mixing <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for liquid-phase density <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for vapor and liquid-phase enthalpy<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for specific heat <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for stability <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for viscosity <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for mass and heat transfer, thermal<br />

c<strong>on</strong>ductivity, and refractive index <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Number of references for flammability, toxicity, entropy,<br />

and surface tensi<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of NH3 + H20 vapor pressure-c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of measured and predicted vapor compositi<strong>on</strong><br />

of the NH3 + H20 pair at 60°C<br />

Comparis<strong>on</strong> of amm<strong>on</strong>ia-water enthalpy <str<strong>on</strong>g>data</str<strong>on</strong>g> at 60°C<br />

Comparis<strong>on</strong> of H20 + LiBr vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of CH30H + LiBr vapor pressure-c<strong>on</strong>centrat i<strong>on</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of CH3.0H + LiBr viscosity <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of CH30H + ZnBr2 vapor pressure-c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Page<br />

18<br />

26<br />

28<br />

29<br />

31<br />

33<br />

35<br />

36<br />

37<br />

39<br />

40<br />

43<br />

45<br />

47<br />

49<br />

51<br />

53<br />

54<br />

19<br />

Comparis<strong>on</strong> of methanol + LiBr:<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g><br />

ZnBr2 (2:l) vapor pressure<br />

55<br />

20<br />

21<br />

Comparis<strong>on</strong> of R22 + DMETEG vapor pressure-c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of R21 + DMETEG vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

V<br />

58<br />

59


LIST OF FIGURES, Cant.<br />

Figure<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

4@<br />

41<br />

42<br />

43<br />

44<br />

Comparis<strong>on</strong> of R22 + DMA vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of R25 + DkfH and 1322 + DNPI vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of methylamine + sodium thiocyanate vapor<br />

pressure <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Comparis<strong>on</strong> of total pressure <str<strong>on</strong>g>data</str<strong>on</strong>g> at 80°C<br />

Comparis<strong>on</strong> of total pressure <str<strong>on</strong>g>data</str<strong>on</strong>g> at 133°C<br />

Comparis<strong>on</strong> of predicted and measured relative volatilities<br />

Comparis<strong>on</strong> of measured and projected pressure at 133°C<br />

Comparis<strong>on</strong> of projected and measured relative volatilities<br />

Cornparis<strong>on</strong> of projected and measured relative volatilities<br />

Comparis<strong>on</strong> of projected and measured relative volatilities<br />

Gaps in vapor-liquid equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in crystallizati<strong>on</strong> temperature <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in corrosi<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in toxicity <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in heat and mass transfer <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in viscosity <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in vapor- and liquid-phase enthalpy <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in thermal c<strong>on</strong>ductivity <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in specific heat <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in density <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in stability <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gap6 in heat transfer additive <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Gaps in corrosi<strong>on</strong> inhibitor <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Page<br />

61<br />

62<br />

63<br />

65<br />

67<br />

69<br />

70<br />

72<br />

73<br />

74<br />

76<br />

77<br />

98<br />

79<br />

80<br />

81<br />

82<br />

a3<br />

84<br />

85<br />

86<br />

87<br />

88<br />

vi


LIST OF TABLES<br />

-- Table No.<br />

1 Refrigerants<br />

2 Absorbents (inorganic)<br />

3 Absorbents (organic)<br />

4 Absorbents (mult€comp<strong>on</strong>ent) ’<br />

5 List of arbitrary abbreviati<strong>on</strong>s for organic compounds<br />

6 Deviati<strong>on</strong> of solubility <str<strong>on</strong>g>data</str<strong>on</strong>g> from various sources<br />

from the <str<strong>on</strong>g>final</str<strong>on</strong>g> smoothed values for R22-DMETEG<br />

Page<br />

5<br />

7<br />

9<br />

13<br />

14<br />

57<br />

vi i


OF RESULTS<br />

Over 500 different <strong>worldwide</strong> publicati<strong>on</strong>s c<strong>on</strong>taining <str<strong>on</strong>g>data</str<strong>on</strong>g> relating to<br />

properties of binary, ternary, and multicomp<strong>on</strong>ent absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g> were<br />

identified. Of these, over 150 manuscripts include applicati<strong>on</strong>s of absorpti<strong>on</strong><br />

fluid properties <str<strong>on</strong>g>data</str<strong>on</strong>g> toward evaluati<strong>on</strong>, assessment, or design of chillers or<br />

heat pumps but do not include actual fluid properties <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

Of the remaining<br />

350 manuscripts, <str<strong>on</strong>g>data</str<strong>on</strong>g> have been extracted and catalogued from 278 manuscripts<br />

with relevant primary source <str<strong>on</strong>g>data</str<strong>on</strong>g>. The publicati<strong>on</strong>s date as far back as 1901,<br />

but nearly 90% of the documents were published between 1960 and 1987.<br />

texts of the 278 manuscripts are i n English, German, Japanese, Russian, or<br />

French.<br />

The absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g> covered in the 278 documents are combinati<strong>on</strong>s of 38<br />

different "refrigerant" compounds and 131 single, 42 binary and 14 ternary<br />

"absorbent" compounds.<br />

following categories of chemical compounds:<br />

The<br />

Generally, the 38 refrigerants are divided am<strong>on</strong>g the<br />

Refrigerants I-<br />

Inorganic<br />

Organic<br />

e<br />

@<br />

Amines<br />

Alcohols<br />

Halogenated<br />

Nydroearb<strong>on</strong>s<br />

3<br />

35<br />

4<br />

5<br />

25<br />

1<br />

The single absorbent compounds are generally subdivided as follows:<br />

Absorbents<br />

Inorganic<br />

Organic<br />

e<br />

0<br />

0<br />

0<br />

0<br />

0<br />

e<br />

e<br />

0<br />

0<br />

@<br />

Alcohols<br />

Ethers<br />

Alcohol-ethers<br />

Amides<br />

Amines<br />

Atnine-alcohols<br />

Esters<br />

Ket<strong>on</strong>es<br />

Acids<br />

Aldehydes<br />

Others<br />

48<br />

83<br />

10<br />

5<br />

3<br />

9<br />

4<br />

1<br />

21<br />

5<br />

4<br />

1<br />

20<br />

ix


The binary and ternary absorbents are various mixtures of two or more single<br />

absorbent compounds.<br />

In terms oE absorpti<strong>on</strong> fluid properties, for which <str<strong>on</strong>g>data</str<strong>on</strong>g> are available in<br />

the 278 primary documents, the list below reveals that vapor-liquid<br />

equilibrium is the predominant property, <str<strong>on</strong>g>report</str<strong>on</strong>g>ed in almost 60% of the<br />

documents.<br />

in <strong>on</strong>ly two documents.<br />

Toxicity or flammability of <str<strong>on</strong>g>fluids</str<strong>on</strong>g>, <strong>on</strong> the other hand, is <str<strong>on</strong>g>report</str<strong>on</strong>g>ed<br />

Thermodynamic, transport, and other <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

*<br />

Fluid property -<br />

Number of references<br />

Vapor-liquid equilibrium 180<br />

Enthalpy 74<br />

Specific heat 54<br />

Viscos i-ty 47<br />

Heat of mixing 52<br />

Density 53<br />

Crystallizati<strong>on</strong> 52<br />

Surf ace tensi<strong>on</strong><br />

Corrosi<strong>on</strong> (and inhibitors)<br />

Thermal c<strong>on</strong>ductivity<br />

Entropy<br />

Stability<br />

Re€ ractive index<br />

Heat transfer<br />

Mass transfer<br />

Toxicity<br />

Flammabil i ty<br />

A list of several key absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g> currently of interest to<br />

researchers of advanced absorpti<strong>on</strong> heat pumps is also shown below:<br />

Key <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

(see Table3 for abbreviati<strong>on</strong>s)<br />

18<br />

25<br />

10<br />

16<br />

9<br />

7<br />

5<br />

10<br />

1<br />

1<br />

CW30H-LiBr-ZnBr2<br />

TF E- NMP<br />

TFE-DMEDEG<br />

* A given document may c<strong>on</strong>tain <str<strong>on</strong>g>data</str<strong>on</strong>g> relating to more than <strong>on</strong>e property;<br />

therefore, the sum of the references is larger than 199.<br />

X


NH3-NaSCN<br />

H20-Li Br<br />

H2O-LiBr-LiCl<br />

H20-EiBr-LiSCN<br />

M20-LiBr-ZnBr2<br />

TFE-DHETEG<br />

CH3NH2-R20-Li<br />

RZP-DMETEG<br />

R22-DPIEDEG<br />

R22-DHETEG<br />

Br<br />

for<br />

the<br />

0<br />

0<br />

9<br />

e<br />

@<br />

Coarse screening and evaluati<strong>on</strong>s were carried out as part of this study<br />

selected or key absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g>. Several approaches were c<strong>on</strong>sidered for<br />

review and coarse screening of <str<strong>on</strong>g>data</str<strong>on</strong>g> from multiple sources. These include<br />

C<strong>on</strong>siderati<strong>on</strong> of the author's statements c<strong>on</strong>cerning <str<strong>on</strong>g>data</str<strong>on</strong>g> quality;<br />

Assessment of the measurement technique and apparatus used to develop the<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g>;<br />

C<strong>on</strong>siderati<strong>on</strong> of a given author's reputati<strong>on</strong> for measuring <str<strong>on</strong>g>data</str<strong>on</strong>g>, where<br />

<strong>on</strong>ly <strong>on</strong>e author's <str<strong>on</strong>g>data</str<strong>on</strong>g> were available for a fluid;<br />

Comparis<strong>on</strong> of <str<strong>on</strong>g>data</str<strong>on</strong>g> plots for a given fluid using <str<strong>on</strong>g>data</str<strong>on</strong>g> scatter and internal<br />

c<strong>on</strong>sistency criteria to judge <str<strong>on</strong>g>data</str<strong>on</strong>g> quality and multiple-author <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

agreement; and<br />

C<strong>on</strong>siderati<strong>on</strong> of general trends of the plotted <str<strong>on</strong>g>data</str<strong>on</strong>g> as inferred from <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

for similar or homologous series <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.<br />

The coarse screening addressed <str<strong>on</strong>g>data</str<strong>on</strong>g> from multiple SOUKC~S for several<br />

different fluid systems (PIW3-R209 NZO-LiBr, CH30H-ZnBr2, C1130W-LiBr, R22-<br />

DMETEC), covering several propertiesa The number of alternate <str<strong>on</strong>g>data</str<strong>on</strong>g> sources<br />

varied from 2 to 4, and the 5 <str<strong>on</strong>g>fluids</str<strong>on</strong>g> shown in parenthesis are the <strong>on</strong>ly <strong>on</strong>es<br />

with <str<strong>on</strong>g>data</str<strong>on</strong>g> from nultiple sources abstracted to date.<br />

Data gaps for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g> have been summarized- Unresolved or potential<br />

c<strong>on</strong>flicts in the <str<strong>on</strong>g>data</str<strong>on</strong>g>, lack of <str<strong>on</strong>g>data</str<strong>on</strong>g> for known key <str<strong>on</strong>g>fluids</str<strong>on</strong>g> at c<strong>on</strong>diti<strong>on</strong>s bey<strong>on</strong>d<br />

the limits of present <str<strong>on</strong>g>data</str<strong>on</strong>g>, and new <str<strong>on</strong>g>fluids</str<strong>on</strong>g> without property <str<strong>on</strong>g>data</str<strong>on</strong>g> c<strong>on</strong>stitute<br />

these summaries. A prioritized system to fill such gaps <strong>on</strong> a fluid-by-fluid<br />

and property-by-property basis was devised €or quick reference.<br />

With very few excepti<strong>on</strong>s, and with emphasis <strong>on</strong> current development activities<br />

dealing with advanced absorpti<strong>on</strong> heat pump c<strong>on</strong>cepts, almost all<br />

candidate <str<strong>on</strong>g>fluids</str<strong>on</strong>g> have <str<strong>on</strong>g>data</str<strong>on</strong>g> gaps that need to be addressed in the near future.<br />

Xi


ABSTRACT<br />

Over 500 different <strong>worldwide</strong> publicatt<strong>on</strong>s c<strong>on</strong>taining <str<strong>on</strong>g>data</str<strong>on</strong>g> that relate to<br />

properties of<br />

nary, ternary, and mmlt Lcomp<strong>on</strong>ent. absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g> have been<br />

identified; from tkeae publicati<strong>on</strong>s<br />

278 were selected as primary sources of<br />

relevant <str<strong>on</strong>g>data</str<strong>on</strong>g>, Fluids covered include combinati<strong>on</strong>s oi 38 different<br />

refrigerant compounds, as weill as of 131 single, 42 binary, and 14 ternary<br />

absorbent compounds, Generally, t h ~ 38 refrigerants are divided am<strong>on</strong>g the<br />

fall owlng categories of chemai cal compounds E inorganic 3; organic, 35<br />

(amtnes, 4; alcohols, 5; halogenated, 25; and hydrocarb<strong>on</strong>s, 1). The single<br />

absorbent compounds generally are subdivided as follows: inorganic, 48;<br />

organic, 83 (alcohols, 10; ethers, 5; alcohol-ethers, 3; amides, 9; amines, 4;<br />

amine-alcohols, 1; eaters, 21; ket<strong>on</strong>es, 5; acids, 4; aldehydes, 1; and others,<br />

20). The binary and ternary absorbents are variow mixtures of two or more<br />

single absorbent compounds e<br />

performed.<br />

in <str<strong>on</strong>g>data</str<strong>on</strong>g> are not:ed.<br />

Coarse screening and evaluati<strong>on</strong>s were<br />

Data gaps for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g> are summarized and unresolved c<strong>on</strong>flicts<br />

Results S~QW that, with very few excepti<strong>on</strong>s, all candidate<br />

<str<strong>on</strong>g>fluids</str<strong>on</strong>g> for development activities dealing with advanced absorpti<strong>on</strong> heat pump<br />

c<strong>on</strong>cepts have <str<strong>on</strong>g>data</str<strong>on</strong>g> gaps that: must be addressed in the near future.<br />

xiii


Over the past 86 years9 a wealth of physical. and thermodynamic property<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> has been developed for fluid systems that: are potentially applicable to<br />

the absorpti<strong>on</strong> ref rigerati<strong>on</strong>lheat pump eycl.e,<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> is available in the literature, some <str<strong>on</strong>g>data</str<strong>on</strong>g> remain c<strong>on</strong>fined to in-house<br />

files for various reas<strong>on</strong>s, and other <str<strong>on</strong>g>data</str<strong>on</strong>g> are proprietary but could be made<br />

available under certain c<strong>on</strong>diti<strong>on</strong>e or terms.<br />

A si nificant porti<strong>on</strong> of the<br />

Generally, published <str<strong>on</strong>g>data</str<strong>on</strong>g> have been generated in areas of temperature,<br />

pressure, and compositi<strong>on</strong> of Interest to designers of absorpti<strong>on</strong> chillers or<br />

coolers.<br />

ti<strong>on</strong>s, using multieffect or multistage c<strong>on</strong>cepts ~<br />

cooling.<br />

for both space heating and<br />

These new designs operate at temgera%urcs and pressures signifi-<br />

cantly higher than those encountered in the c<strong>on</strong>ventisnal absorpti<strong>on</strong> caolitig<br />

cycle.<br />

Recent research has focused <strong>on</strong> developing efficient cycle c<strong>on</strong>figura-<br />

Other new c<strong>on</strong>cepts are based an the additi<strong>on</strong> of a third comp<strong>on</strong>ent to<br />

the binary s~liitle~ns normally used in the c<strong>on</strong>venti<strong>on</strong>al cyc1.e.<br />

11% an effort to define the availability and quality of existing <str<strong>on</strong>g>data</str<strong>on</strong>g> and<br />

thereby ta assist in the determinati<strong>on</strong> sf needs for new <str<strong>on</strong>g>data</str<strong>on</strong>g> useful to<br />

advanced c<strong>on</strong>cepts, the Institute of Gas Technology (Tell> has performed an<br />

extensive literature search and a coarse screening of ,?xisting U.S. and<br />

foreign literature <str<strong>on</strong>g>data</str<strong>on</strong>g> to identify potential c<strong>on</strong>flicts or gaps in the <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

for eertaln key fluid systems.<br />

IGT ' 8 findings<br />

This <str<strong>on</strong>g>report</str<strong>on</strong>g> provides a detailed account of<br />

The informati<strong>on</strong> and <str<strong>on</strong>g>data</str<strong>on</strong>g> rnntakned in this <str<strong>on</strong>g>report</str<strong>on</strong>g> are presented in a<br />

format utilized in two earlier <str<strong>on</strong>g>report</str<strong>on</strong>g>s (ORNL/SUB/84-4798/1<br />

and ORNL/SUB/84-<br />

4798/2) that covered, in past, similar <str<strong>on</strong>g>data</str<strong>on</strong>g> developed in the United States and<br />

abroad over the past 86 yearsc<br />

1.


2. METHOD AND SCOPE<br />

Literature searches and site visits were undertaken to identify and<br />

obtain available publicati<strong>on</strong>s - several dating back to 1981 - <strong>on</strong> pertinent<br />

physical, thermodynamic, and transport properties of absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g>. The<br />

bulk of references identified c<strong>on</strong>tain <str<strong>on</strong>g>data</str<strong>on</strong>g> developed mainly in the United<br />

States, West Germany, France, Britain, Japan, and the USSR. Cross-checks of<br />

literature searches were also made, using available published bibliographies<br />

and literature review articles, to eliminate sec<strong>on</strong>dary sources €or the <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

and thus include <strong>on</strong>ly original sources and manuscripts.<br />

2 "1. FLUID PROPERTIES AND DATA<br />

The properties of these <str<strong>on</strong>g>fluids</str<strong>on</strong>g> relate to the liquid and/or vapor state<br />

encountered in normal operati<strong>on</strong> of absorpti<strong>on</strong> equipment employing such <str<strong>on</strong>g>fluids</str<strong>on</strong>g>,<br />

and to the crystallizati<strong>on</strong> boundary of the liquid phase, where applicable.<br />

The actual <str<strong>on</strong>g>data</str<strong>on</strong>g> were systematically classified according to type of fluid and<br />

property as well as to temperature, pressure, and c<strong>on</strong>centrati<strong>on</strong> ranges over<br />

which <str<strong>on</strong>g>data</str<strong>on</strong>g> were available. Data were sought for at least 17 different<br />

properties, as follows:<br />

Mixture properties-<br />

1. Vapor-liquid equilibria 18. Mass transfer rate<br />

2. Crystallizati<strong>on</strong> temperature 11. Heat transfer rate<br />

3. Corrosi<strong>on</strong> characteristics 12. Thermal c<strong>on</strong>ductivity<br />

4. Heat of mixing 13 e Refractive index<br />

5. Liquid-phase densities 14. Entropy<br />

6. Vapor-liquid-phase enthalpies 15. Surface tensi<strong>on</strong><br />

7. Specific heat 16. Toxicity<br />

8. Stability 17. Flammability<br />

9. Viscosity<br />

The type of available <str<strong>on</strong>g>data</str<strong>on</strong>g> was of importance, with raw experimental <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

c<strong>on</strong>sidered to be highly desirable for use in actual process and equipment<br />

design and sizing and €or process design correlati<strong>on</strong> development. For this<br />

reas<strong>on</strong>, raw tabulated experimental <str<strong>on</strong>g>data</str<strong>on</strong>g> were given the highest possible ranking,<br />

with other forms of <str<strong>on</strong>g>data</str<strong>on</strong>g> following in importance, as shown below:<br />

2


Raw expe r i mental.<br />

e<br />

e<br />

Tabular<br />

Graphical<br />

Smoothed experIra1ental<br />

9 Tabular<br />

@ Graphical<br />

Empirical polynuroial<br />

Equati<strong>on</strong>s of etate<br />

Empirical polynomiaP relati<strong>on</strong>ships haseel <strong>on</strong> raw or swothad experimental<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> are often rep~~ted. Such correlati<strong>on</strong>s are at beat as good as the experi-<br />

mental <str<strong>on</strong>g>data</str<strong>on</strong>g> and can help factlitate the use of the <str<strong>on</strong>g>data</str<strong>on</strong>g> in performance and<br />

design calculati<strong>on</strong>s through automati<strong>on</strong> (coilaputer software and terminals 1.<br />

the absence of <str<strong>on</strong>g>data</str<strong>on</strong>g>, t-eEiablc methods 0f predicti<strong>on</strong> have been sought (equa-<br />

ti<strong>on</strong>s of state, generalized eorrelatf<strong>on</strong>s) but are expected to possess greater<br />

uncertainties than the previous forms sf <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

2.2. COARSE SCREENING OF LITERATURE DATA<br />

Several approaches have been used In carrying out quality review and<br />

coarse screening of <str<strong>on</strong>g>data</str<strong>on</strong>g> from multiple sources fof each of several key or<br />

highest-priority binary <str<strong>on</strong>g>fluids</str<strong>on</strong>g>. These alternative approaches include<br />

* C<strong>on</strong>siderati<strong>on</strong> of the author's statements c<strong>on</strong>cerning <str<strong>on</strong>g>data</str<strong>on</strong>g> quality;<br />

In<br />

@<br />

Assessment of the rneasuretnent tachniqiie and apparatus used in obtaining<br />

the <str<strong>on</strong>g>data</str<strong>on</strong>g>; and.<br />

C<strong>on</strong>siderati<strong>on</strong> of a given aiitkl~r's reputatt<strong>on</strong> for measuring dath, where<br />

<strong>on</strong>ly <strong>on</strong>e author's <str<strong>on</strong>g>data</str<strong>on</strong>g> were ava.PlabLe for a fluid.<br />

A more reliable method used Lo compare dam from various sourcc6 fat- a<br />

given fluid and property has been the plotting ai <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> a comm<strong>on</strong> basis.<br />

Such plots have also served to reveal the amarxnt of scatter or internal. c<strong>on</strong>-<br />

sistency of a given author's <str<strong>on</strong>g>data</str<strong>on</strong>g> and, therefore, its quality.<br />

Another ap-<br />

proach was based <strong>on</strong> c<strong>on</strong>siderati<strong>on</strong> of general. trends of the plotted <str<strong>on</strong>g>data</str<strong>on</strong>g>, as<br />

inferred from <str<strong>on</strong>g>data</str<strong>on</strong>g> for similar OF homol.ogaus series <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.<br />

3


3. DETAILED PRESENTATIONS AND TABULATIONS<br />

As previously implied, this <str<strong>on</strong>g>report</str<strong>on</strong>g> was organized to cover the various<br />

work elements of this study in their natural sequence.<br />

This porti<strong>on</strong> of the<br />

<str<strong>on</strong>g>report</str<strong>on</strong>g> c<strong>on</strong>tains a listing of the refrigerants and absorbents of the absorpti<strong>on</strong><br />

<str<strong>on</strong>g>fluids</str<strong>on</strong>g> of this study, the results of the coarse and fine screening of <str<strong>on</strong>g>data</str<strong>on</strong>g> for<br />

key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>, a list of gaps in the <str<strong>on</strong>g>data</str<strong>on</strong>g> of the key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>, and the reference<br />

material accumulated.<br />

The details of the range of c<strong>on</strong>diti<strong>on</strong>s over which<br />

property <str<strong>on</strong>g>data</str<strong>on</strong>g> exist for each fluid are 'given in the Appendix.<br />

____I<br />

3.1. REFRIGERANTS AND ABSORBENTS -<br />

Table 1 lists the 38 refrigerants grouped into 5 distinct chemical compound<br />

categories:<br />

hydrocarb<strong>on</strong>s.<br />

inorganics, amines, alcohols, halogenated organics, and<br />

For each refrigerant, Table 1 c<strong>on</strong>tains a compound number, chem-<br />

ical formula and name, molecular weight, and normal boiling point (in dual<br />

units).<br />

Table 2 lists 48 single inorganic absorbents and a number, chemical<br />

formula, name, and molecular weight for each.<br />

Table 3 lists 83 single organic<br />

absorbents grouped into 9 distinct chemical compound categories:<br />

alcohols,<br />

ethers, alcohot-ethers, amides, amines, amine-alcohols, esters, ket<strong>on</strong>es, acids,<br />

aldehydes, and an undefined catch-all category.<br />

For each organic absorbent,<br />

Table 3 c<strong>on</strong>tains a compound number, an arbitrary abbreviati<strong>on</strong> of c<strong>on</strong>venience,<br />

chemical formula and name, molecular weight, and normal boiling point (indi-<br />

vidual units).<br />

Table 4 lists 56 multicomp<strong>on</strong>ent (binary and ternary) absorbents with access<br />

number and chemical formula.<br />

Table 5 is an alphabetical listing of'the<br />

arbitrary abbreviati<strong>on</strong>s keyed to the chemical name of the organic compounds,<br />

4


Table 1.<br />

Ref rigetants<br />

Number<br />

Ino raanics<br />

Chemical<br />

formula<br />

Name<br />

NBP NBP<br />

MW (OF) ("C)<br />

--<br />

Amines<br />

Alcohols<br />

8<br />

9<br />

10<br />

11<br />

12<br />

Halogenated organics<br />

N-3<br />

H2O<br />

so2<br />

CH30H<br />

C2H50H<br />

C3H7 OH<br />

C F 3 C82 OH<br />

(CF~)~CHOH<br />

Amm<strong>on</strong>ia 17.0 -28 -33.3<br />

Water 18.0 212 100.0<br />

Sulfur dioxide 64.1 14 -10.0<br />

Me t hyl ami ne 31.1 21 -6.1<br />

Ethylamine 45.1 62 16.6<br />

Dlme thyl amine 45.1 45 7.4<br />

T rime thyl ami ne 59.1 38 3.5<br />

Met hana 1 32.0 149 65.0<br />

Ethanol 46.1 173 78.3<br />

n-Pr opanol 60.1 207 97.2<br />

Tr i f luo roe thanol 100.0 164 73.6<br />

Hexafluoroisopropanol 168.0 138 59.0<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

CHFC1.2<br />

CHF2C1<br />

CHZC12<br />

CH2ClF<br />

CF3CHC12<br />

CHC1FCC1F2<br />

CHC 1F CF<br />

CHF2CC1 F2<br />

CHC 1 ZCHC 1F<br />

CHF2CHClF<br />

Refrigerant 11<br />

Refrigerant 12<br />

Refrigerant 13<br />

Re E rig e rant 21<br />

Refrigerant 22<br />

Refrigerant 30<br />

Refrigerant 31<br />

Refrigerant 123<br />

Refrigerant 123a<br />

Refrigerant 124<br />

Refrigerant 124a<br />

Refrtgerant 131a<br />

Refrigerant 133a<br />

137.4<br />

120.9<br />

104, S<br />

102.9<br />

86.5<br />

84.9<br />

68.5<br />

152.9<br />

152.9<br />

136.5<br />

136.5<br />

151.4<br />

118.5<br />

75<br />

-21<br />

-8 1<br />

48<br />

-41<br />

104<br />

16<br />

82<br />

85<br />

10<br />

15<br />

185<br />

42<br />

23.9<br />

-29.4<br />

-113.8<br />

8.9<br />

-40.6<br />

40.0<br />

-8.9<br />

27.8<br />

29.4<br />

-1 2.1<br />

-9.4<br />

85.0<br />

5.6<br />

5


Table 1.<br />

(c<strong>on</strong>t.)<br />

Number<br />

Chemical<br />

formula<br />

Name<br />

NBP<br />

MI4 (OF)<br />

--<br />

NBP<br />

("C)<br />

26<br />

27<br />

CHF 2CHF 2<br />

CC1~NCC1W2<br />

Refrigerant 134<br />

Refrigerant 140a<br />

102.0<br />

133.4<br />

49<br />

235<br />

94.0<br />

112.8<br />

28<br />

29<br />

30<br />

31<br />

CH3CF3<br />

CH2FCH2F<br />

CHClCHCl<br />

CClPCClF<br />

Re f'r i ge r an t 14 3 a<br />

Refrigerant 152<br />

Refrigerant 1130<br />

Refrigerant 1112a<br />

84.0<br />

66.0<br />

96.9<br />

132.4<br />

-5 3<br />

86<br />

138<br />

66<br />

-47.0<br />

30.0<br />

58.9<br />

18.9<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

CC12CClH<br />

C2F3H<br />

C2F3C1<br />

C3F6<br />

CH3CF2Cl<br />

C3HF58<br />

Refrigerant 1120<br />

Refrigerant 1123<br />

Refrigerant 1 113<br />

Refrigerant 216<br />

Refrigerant 142<br />

Pentafluoropropi<strong>on</strong>ic<br />

acid<br />

131.4<br />

82.0<br />

116.5<br />

150.0<br />

100.6<br />

164.0<br />

180<br />

ND<br />

-18<br />

-2 1<br />

ND<br />

232<br />

82.2<br />

ND<br />

-27.9<br />

-29.4<br />

ND<br />

97.0<br />

Hvd r ocarb<strong>on</strong>s<br />

38 Bexane 86.0 154<br />

68.0<br />

ND - Not determined.<br />

6


Table 2.<br />

Absorbents (inorganic)<br />

Number -<br />

Chemical<br />

formula<br />

Name<br />

-c<br />

- Mw<br />

1<br />

NH4 R r<br />

Amm<strong>on</strong>ium bromide<br />

98.0<br />

2<br />

NH4I<br />

Amm<strong>on</strong>ium iodide<br />

144.9<br />

3<br />

CaBr2<br />

Calcium bromide<br />

199.9<br />

4<br />

CaC 12<br />

Calcium chloride<br />

111.0<br />

5<br />

CsC2H302<br />

Cesium acetate<br />

192.0<br />

6<br />

CsBr<br />

Cesium bromide<br />

212.8<br />

7<br />

CSCl<br />

Cesium chloride<br />

168.4<br />

8<br />

C8F<br />

Cesium fluoride<br />

151.9<br />

9<br />

CsOH<br />

Cesium hydroxide<br />

149.9<br />

10<br />

CO ( SCN ) 2<br />

Cobalt thiocyanate<br />

175.1<br />

11<br />

CU ( SCN ) 2<br />

Cupric thiocyanate<br />

179.7<br />

12<br />

CuSCN<br />

Cuprous thiocyanate<br />

121.6<br />

13<br />

LiC2H302<br />

Lithium acetate<br />

66.0<br />

14<br />

LiBr<br />

Lithium bromide<br />

86.8<br />

15<br />

LIC103<br />

Lithium chlorate<br />

90.4<br />

16<br />

LiC 1<br />

Lithium chloride<br />

42.4<br />

17<br />

LiH2PO-3<br />

Lithium hydrogen phosphite<br />

96.1<br />

18<br />

LiI<br />

Lithium iodide<br />

133.8<br />

19<br />

UNO3<br />

Lithium nitrate<br />

68.9<br />

20<br />

LiN02<br />

Lithium nitrite<br />

52.9<br />

21<br />

Lias04<br />

Lithium sulfate<br />

109.9<br />

22<br />

LiRF4<br />

Lithium tetrafluoroborate<br />

93.7<br />

23<br />

LiScN<br />

Lithium thiocyanate<br />

, 65.0<br />

24<br />

LiCC13CO*<br />

Lithium trichloroacetate<br />

169.3<br />

25<br />

LiCP3 co2<br />

Lithium trif luoroacetate<br />

112.0<br />

26<br />

Ni (SCN),<br />

Nickel thiocyanate<br />

rJr)<br />

27<br />

KRr<br />

Potassium bromide<br />

119 .O<br />

28<br />

KC1<br />

Potassium chloride<br />

74.6<br />

29<br />

KF<br />

Potassium fluoride<br />

58.1<br />

30<br />

ROH<br />

Potassium hydroxide<br />

56.1<br />

31<br />

KNO3<br />

Potassium nitrate<br />

101 . 1<br />

7


Table 2.<br />

(c<strong>on</strong>t.)<br />

Chemical<br />

Number formula Name<br />

___I<br />

Mw<br />

_c_<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

RbBr<br />

RbCl<br />

RbF<br />

Rb I<br />

NaBr<br />

NaC 1<br />

NaOH<br />

NaT<br />

NaN03<br />

Na2S04<br />

NaSCN<br />

H2 SO4<br />

H20<br />

ZnR r<br />

ZnC12<br />

Zn(N03 12<br />

Zn( S CN ) 2<br />

Rubidium bromide<br />

Rubidium chloride<br />

Rub id ium f luo r ide<br />

Rubidium iodide<br />

Sodium bromide<br />

Sodium chloride<br />

Sodium hydroxide<br />

Sodium iodide<br />

Sodium nitrate<br />

Sodium sulfate<br />

Sodium thiocyanate<br />

Sulfuric acid<br />

Water<br />

Zinc bromide<br />

Zinc chloride<br />

Zinc nitrate<br />

Zinc thiocyanate<br />

165.4<br />

120.9<br />

104.5<br />

212.4<br />

102.9<br />

58.4<br />

40.c)<br />

149.9<br />

85.0<br />

142,O<br />

81.1<br />

98.0<br />

18.0<br />

225.2<br />

136.3<br />

127.4<br />

181.5<br />

8


Table 3.<br />

Absorbents (organic)<br />

_I No. Abbrev. Chemical formula Name<br />

Alcohols<br />

49 1,4 BDL HOC4HsOH 1, 4-Butanediol<br />

50 2,3 BDL CH3CHOHCHOHCH3 2, 3-Butanediol<br />

51 EG HOC2H4OH Ethylene glycol<br />

52 DEG (HOCHzCH2)20 Diethylene glycol<br />

53 TEG H( oc2H4) 40H Tetraethylene glycol<br />

54 n-HA n-C7H15OII n-Ileptyl alcohol<br />

55 BA CgHgCH20H Benzyl alcohol<br />

56 GYL CH2 OHCHOH CH2 OH Glycerol<br />

57 PD HOCHz(CH2) 3CH2OH Pent anedi 01<br />

58 HDL HOCH2(CH2)4CH2OH Hexanediol<br />

NBP NBI<br />

MW (OF) ("C)<br />

-__I-<br />

90.1 455 235.<br />

90.1 358 181,<br />

62.1 388 197.<br />

194.2 622 327.1<br />

116.2 349 176.:<br />

108.2 402 205.(<br />

92.1 554 290.C<br />

104.2 463 239.4<br />

118.2 482 250.0<br />

Ethers<br />

59 DMEDEG CH3(OCzH4) 2OCH3 Dimethylether diethylene glycol 134.2 324 162.2<br />

60 DMETrEG CH3(OC2H4)30CB3 Dimethylether triethylene glycol 178.2 421 216.1<br />

61 DMETEG CH3(OC2H4)40CH3 Dimethylether tetraethylene glycol 222.3 528 275.6<br />

62 ETFE (C4H70)CH,OC2Hs Ethyl tetrahydro furfuryl ether 130.2 316 157.8<br />

63 DBC C4Hg(OC2Hq) 20C4Hg Dibutyl carbitol 218.3 ND ND<br />

A1 co hol-e thers<br />

64 MBEDEG HOfCH2)20(CH2)20CqHg M<strong>on</strong>obutylether diethylene glycol \ 162.2 448 231.0<br />

65 MEDEG H(OC~H,J+)~OC~H~ M<strong>on</strong>oethylether diethylene glycol 134.2 383 195.0<br />

66 METrPG C~HS(OC~H~)~OH M<strong>on</strong>omethylether of tripropylene 220.3 ND ND<br />

glycol<br />

Amides<br />

67 DMF CHON( CH3) 2 N, N - Dimethyl formamide 73.1 302 150.0<br />

68 DMA CH-jCON( CH3) 2 N, N - Dimethyl acetamide 87.1 329 165.0<br />

69 DMH C~H~ICON(CH~)~ N, N - Dimethyl hexanamlde 143.2 428 220.0<br />

70 DMD CiiH23CON(CH3)2 N, N - Dimethyl dodecanamide 217.3 ND ND<br />

71 DEF CHON(C~H~) N, N - Diethyl formamide 101.2 351 172.2<br />

72 TMM [(CH3)2NCOCH2CONCOH3]2 N, N, N, N - Tetramethylmal<strong>on</strong>amide 158.2 ND ND<br />

9


30. Abbrev. Chemical formula Name<br />

I_<br />

NBP NBP<br />

MW (OF) ("C)<br />

--_I_.<br />

73 TMS (CH3) 2NCOCH2 I 2 N, N, N, N - Tetramethylsuccinamide 172.2 ND ND<br />

74 DMAN CgHgN (CH3 2 N, N - Dimethyl aniline 121.2 381 193.9<br />

75 HMPT [ (CH-3) 2N] 3PO Hexamethylphosphoric acid triamide 179.2 NO ND<br />

Amines<br />

76 QUN C9H7N<br />

77 MCAN Cg H5CLNH2<br />

78 AN 'gHgNH2<br />

79 OCA C8Hl 7NH2<br />

Ami ne-a 1 coho1<br />

80 MEA H2NCH2CH20H<br />

Quinoline<br />

M-Chloro aniline<br />

Ani 1 ine<br />

Octylamine<br />

129.2 465 240.5<br />

127.6 446 230.0<br />

93.1 363 183.9<br />

129.3 359 181.7<br />

Et ha ti0 1 amine 61.1 338 170.0<br />

Esters<br />

81 PBA<br />

82 DMPH<br />

83 DET<br />

84 DBP<br />

85 DOP<br />

86 DDP<br />

87 DCP<br />

88 DBS<br />

89 DOS<br />

90 TAN<br />

91 ETL<br />

92 DE0<br />

93 DEAP<br />

94 DEM<br />

95 MB<br />

96 EB<br />

97 PB<br />

98 n-BB<br />

Isobutyl acetate<br />

Dimethyl phthalate<br />

Diethyl phthalate<br />

Dibutyl phthalate<br />

Dioctyl phthalate<br />

Didecyl phthalate<br />

Dicapryl phthalate<br />

Dibutyl sebacate<br />

Dioetyl sebacate<br />

Triacetin<br />

Ethyl laurate<br />

Diethyl oxalate<br />

Diethyl adipate<br />

Diethyl mal<strong>on</strong>ate<br />

Methyl benzoate<br />

Ethyl benzoate<br />

Propyl benzoate<br />

n-Butyl benzoate<br />

116.1 244<br />

194.2 540<br />

222.2 576<br />

278.3 644<br />

390.4 ND<br />

446.3 ND<br />

334.3 ND<br />

314.4 651<br />

426.7 ND<br />

218.2 498<br />

222.4 523<br />

146.1 366<br />

202.2 473<br />

160.2 391<br />

136.1 384<br />

150.2 415<br />

164.2 448<br />

178.2 483<br />

118.0<br />

282 .O<br />

302.0<br />

340.0<br />

ND<br />

ND<br />

ND<br />

344.0<br />

ND<br />

258.9<br />

27 2.8<br />

185.6<br />

245 e 0<br />

199 4<br />

195.5<br />

212.8<br />

195.5<br />

250.6<br />

10


~ 198.4<br />

Table 3.<br />

(c<strong>on</strong>t.)<br />

- No. Abbrev, Chemical formula Name<br />

-- Mw<br />

99 TBP (C4Hg0) 3po Tri-butyl phosphate 266.3<br />

100 MSA C6H4(0H)C02CH3 Methyl salicylate 152.2<br />

101 BZA CgHg (CH2C02CH3) Benzyl acetate 150.2<br />

Ket<strong>on</strong>es<br />

552 28<br />

452 23<br />

420 21<br />

102 4, BLN (CH2)3CO2 4-Butyrolact<strong>on</strong>e<br />

103 NMP CtjHgNO N-Methyl-2-pyrrolid<strong>on</strong>e<br />

104 2-(OCN) CaH160 2-Oc tan<strong>on</strong>e<br />

105 2,4 PON CH3COCHZCOCH3 2-4 pentanedi<strong>on</strong>e<br />

106 APN C6115COCH3 Ace t o p h e no ne<br />

Acids<br />

86.1<br />

99.1<br />

128.2<br />

100.1<br />

120.2<br />

403 20t<br />

394 201<br />

343 172<br />

282 13E<br />

396 202<br />

107 PPA<br />

108 LLA<br />

109 OA<br />

110 VA<br />

A1 de hyde s<br />

CH3CH2COOH<br />

Propi<strong>on</strong>ic acid<br />

C18H3202<br />

Linoleic acid<br />

‘1 8’34’2 Oleic acid<br />

‘gH1002<br />

Valeric acid<br />

74.1 287 141<br />

280.5 ND ND<br />

282.5 689 365<br />

102.1 367 186<br />

111 BAD<br />

C7H60<br />

Ben z a Id e hyde<br />

106.1 353 178,<br />

Others<br />

I-<br />

112 TDK<br />

113 DWA<br />

114 BZL<br />

115 DMMP<br />

116 DMSO<br />

117 NB<br />

118 PDS<br />

119 oc<br />

120 MM<br />

121 LBS<br />

122 UTN<br />

Tet radecane<br />

Dowtherm A<br />

Benzothiazole<br />

Dimethyl methyl phosph<strong>on</strong>ate<br />

Dimethyl sulfoxide<br />

Nitrobenzene<br />

Polyd ime t hyls iloxane<br />

Octyl cyanide<br />

N-Me thylmorphol ine<br />

Lithium benzenesulf<strong>on</strong>ate<br />

Utropin<br />

170.2<br />

135.2<br />

124.1<br />

78.1<br />

123.1<br />

ND<br />

139.2<br />

101.2<br />

164.1<br />

140.0<br />

252<br />

446<br />

448<br />

175<br />

372<br />

411<br />

ND<br />

436<br />

241<br />

ND<br />

ND<br />

122”<br />

257.<br />

231.<br />

79.<br />

189.<br />

210.<br />

ND<br />

224.<br />

116.<br />

ND<br />

ND<br />

11<br />

... ~<br />

.............................


Table 3.<br />

(c<strong>on</strong>t.)<br />

-<br />

Abbrev.<br />

L DMEU C5w1 ON20<br />

i DMPU '6*l 2N20<br />

5 NMC C7H 13 No<br />

6 NFM 'gHgN02<br />

7 EC C3H403<br />

8 PC C48703<br />

.9 SL 'qHgS02<br />

LO CUM c9f1802<br />

Chemical formula<br />

Name<br />

MW (OF) ("C)<br />

_I_--<br />

1,3 Dimethyl-2-imidazolidin<strong>on</strong>e 114.2 433 223.0<br />

I'D ime t hy 1 et hy 1 enu r ea"<br />

1,3 Dimethyl-3,4,5,6 tetrahydro- 128.2 450 232.0<br />

2 (111)-pyrimidin<strong>on</strong>e<br />

"Dime t hylpropylenurea"<br />

N-Methyl-E-caprolactam 101.1 ND ND<br />

N-Formylmorpholine 115.1 471 244.0<br />

Ethylcarb<strong>on</strong>ate 88.1 460 238.0<br />

Propylenecarb<strong>on</strong>ate 102.1 467 242.7<br />

Sulf olane 120.2 549 287.0<br />

Dihydrocoumarin 148.2 522 272.0<br />

11 DCN '1 9H2602 Dieumylmethane 202,3 ND ND<br />

ND - Not determined.<br />

12


Table 4.<br />

Absorbents (multicomp<strong>on</strong>ent)<br />

Binary<br />

Te rna ry<br />

-<br />

Cherni ea1 Chemical Chemical<br />

No. formula No. formula NO formula<br />

___I<br />

__I<br />

Bi-1 LiBr: LiCl Bi-23 LiI: EG Te-1 LiBr: ZnBr2: DEG<br />

Bi-2 LiBr: LiSCN Bi-24 LiI: ZnBr2 Te-2 LiBs: ZnBr2: EG<br />

Xi-3 LiBr: LiClOg Bi-25 LiSCN: NaSCN Te-3 LiBr: ZnRr2: DMEDEG<br />

Ri-4 LiRt: CsBr Bi-26 LiSCN: DMETEG Te-4 LiRr: ZnBr2: MBEDEG<br />

Bi-5 LiBr: ZnBr2 Bi-27 LiSCN: EG Te-5 LiBr: ZnBr2: PD<br />

Bi-6 LiBr: PEA Bi-25 LiSCN: 1, 4 BDL Te-6 LiBr: LiI: EG<br />

Bi-7 LiBr: EG Bi-29 LiSCN: MEA Te-7 LiBr: ZnBr2: CaBr2<br />

Bi-8 LiBr: H20 Bi-30 LISCN: DMF Te-8 LiBr: CsBt: RbBr<br />

Bi-9 LiBr: 4, BLN Bi-31 NaSCN: NaT Te-9 LiBr: RbF: CsF<br />

Bi-10 LiBr: LiI Bi-32 NaSCN: TEG Te-10 NaSCN: NaI: 1, 4, BDL<br />

Bi-11 TABr: ZnC12 Bi-33 NaSCN: 1, 4 BDL Te-11 LiNO3: NaN03: KNO3<br />

Bi-12 LiC1: LiAcetate Bi-34 NaT: 1, 4 BDL Te-12 LiC1: CaC12: ZZI(NO~)~<br />

Bi-13 LiC1: CSCl Bi-35 NHqI: 1, 4 BDL Te-13 R22: DMETEG: RA<br />

Bi-14 LiC1: ZnBr2 Bi-36 CsF: RbF Te-14 NaOH: KOH: CsOH<br />

Bi-15 LiC1: ZnC12 Bi-37 DMETEG: BA<br />

Bi.-16 LiCl: LiSCN Bi-38 DMETEG: DMF<br />

Bi-17 LiCl: CaC12 Bi-39 R22: DMETEG<br />

Bi-18 LiN03: H20 Bi-40 R22: DMA<br />

Bi-19 LiNO;?: LiC103 Bi-41 H20: CrO3<br />

Bi-20 LiN03: 1,4 BDL Bi-42 NaOH: KOH<br />

Bi-21 LiN03: 1,6 HDL<br />

Bi-22 CaBr2: ZnBr2<br />

13


Table 5.<br />

List of arbitrary abbreviati<strong>on</strong>s €or organic compounds<br />

Abbreviati<strong>on</strong><br />

AN<br />

APN<br />

BA<br />

B AD<br />

1,4 BDL<br />

2,3 BDL<br />

4, BLN<br />

BZA<br />

BZTL<br />

CUM<br />

DBC<br />

D BP<br />

DBS<br />

DCP<br />

D DP<br />

DEAP<br />

DEF<br />

DEG<br />

DEM<br />

DE 0<br />

D ET<br />

D CM<br />

DMA<br />

DMAN<br />

DMD<br />

DMEDEG<br />

DMETEG<br />

DME Tr E G<br />

DMEU<br />

DMF<br />

DMH<br />

DMMP<br />

No.<br />

78<br />

106<br />

55<br />

111<br />

49<br />

50<br />

102<br />

101<br />

114<br />

130<br />

63<br />

84<br />

88<br />

87<br />

86<br />

93<br />

71<br />

52<br />

94<br />

92<br />

83<br />

131<br />

68<br />

74<br />

70<br />

59<br />

61<br />

60<br />

123<br />

67<br />

69<br />

115<br />

Chemical name<br />

Aniline<br />

Ace tophen<strong>on</strong>e<br />

Renzyl alcohol<br />

Benzaldehyde<br />

1, 4-Butanediol<br />

2, 3-Butanediol<br />

4-Butyrolact<strong>on</strong>e<br />

Benzyl acetate<br />

Benzothiazol<br />

Dihydrocoumarin<br />

Dibutyl carbitol<br />

Dibutyl phthalate<br />

Dibutyl sebacate<br />

Dicapryl phthalate<br />

Didecyl phthalate<br />

Diethyl adipate<br />

N, N-Diethyl formamide<br />

Diethylene glycol<br />

Diethyl mal<strong>on</strong>ate<br />

Diethyl oxalate<br />

Diethyl phthalate<br />

Dicumylme thane<br />

N, N-Dimethyl acetamide<br />

N, N-Dimethyl aniline<br />

N, N-Dimethyl dodecanamide<br />

Dimethylether diethylene glycol<br />

Dimethylether tetraethylene glycol<br />

Dimethylether triethylene glycol<br />

Dimethylethylenurea<br />

N, N-Dimethyl formamide<br />

N, N-Dimethyl hexanarni.de<br />

Dimethyl methyl phosph<strong>on</strong>ate<br />

14


Table 5.<br />

(cant.)<br />

Abbreviati<strong>on</strong><br />

DMPH<br />

DMPU<br />

DMSO<br />

DOP<br />

DOS<br />

DSJ A<br />

EB<br />

EC<br />

EG<br />

ETFE<br />

ETL<br />

GLY<br />

mL<br />

HFIP<br />

HMPT<br />

IBA<br />

LBS<br />

LLA<br />

MB<br />

MBEDEG<br />

MCAN<br />

MEA<br />

ME DEG<br />

METrPG<br />

MM<br />

MSA<br />

n-BB<br />

n-HA<br />

NB<br />

NFM<br />

NMC<br />

NMP<br />

No.<br />

82<br />

124<br />

116<br />

85<br />

89<br />

113<br />

96<br />

127<br />

51<br />

62<br />

91<br />

56<br />

58<br />

Refrigerant<br />

75<br />

81<br />

121<br />

108<br />

95<br />

64<br />

77<br />

80<br />

65<br />

66<br />

120<br />

100<br />

98<br />

54<br />

117<br />

126<br />

125<br />

103<br />

Chemical name<br />

Dimethyl phthalate<br />

Dimethylpropylenurea<br />

Dimethyl sulfoxide<br />

Dioctyl phthalate<br />

Dioctyl sebacate<br />

Dowtherrn A<br />

Ethyl benzoate<br />

Ethylenecarb<strong>on</strong>ate<br />

Ethylene glycol<br />

Ethyl tetrahydro furfuryl ether<br />

Ethyl laurate<br />

Glycerol<br />

Hexane di 01<br />

Hexafluoroisopropanol<br />

Hexamethylphosphoric acid triamide<br />

Isobutyl acetate<br />

Li thium benzenesul f <strong>on</strong>a te<br />

Linoleic acid<br />

Methyl benzoate<br />

M<strong>on</strong>obutylether diethylene glycol<br />

M-Chloro aniline<br />

M<strong>on</strong>oe tha nolarni ne<br />

M<strong>on</strong>oethylether diethylene glycol<br />

M<strong>on</strong>omethylether of tripropylene glycol<br />

N-Me thylmorpholine<br />

Methyl salicylate<br />

n-Bu t y 1 be nz oa t e<br />

n-Heptyl alcohol<br />

Nitrobenzene<br />

N-Formylmorpholine<br />

N-Methyl-E-caprolactam<br />

N-Methyl-2-pyrrolid<strong>on</strong>e<br />

15


Table 5.<br />

(c<strong>on</strong>t.)<br />

Abbreviati<strong>on</strong><br />

OA<br />

OC<br />

OCA<br />

2-( OCN)<br />

PB<br />

PC<br />

PD<br />

PDS<br />

PFPA<br />

2, 4 PON<br />

PPA<br />

QUN<br />

SL<br />

TAN<br />

TBP<br />

T 1lK<br />

TEG<br />

T FE<br />

TMM<br />

TMS<br />

UTN<br />

VA<br />

No.<br />

.~<br />

109<br />

119<br />

79<br />

104<br />

97<br />

128<br />

57<br />

118<br />

Refrigerant<br />

105<br />

107<br />

76<br />

129<br />

90<br />

99<br />

112<br />

53<br />

Refrigerant<br />

72<br />

73<br />

122<br />

110<br />

Chemical name<br />

Oleic acid<br />

Octyl cyanide<br />

Octylamine<br />

2 -0 c t a n<strong>on</strong>e<br />

P r o p y 1. hen z o a t e<br />

Propylenecarb<strong>on</strong>ate<br />

Pentanediol<br />

Polydimethylsiloxane<br />

Pentafluoropropi<strong>on</strong>ic acid<br />

2-4 Pentanedi<strong>on</strong>e<br />

Propi<strong>on</strong>ic acid<br />

Quino 1 ine<br />

Sul f olane<br />

Triaeetin<br />

Tri-butyl phosphate<br />

Tetradeeane<br />

Tetraethylene glycol<br />

T r i € luo roe t hano 1<br />

N, N, N, N-Tetramethylmal<strong>on</strong>amide<br />

N, N, N, N-Tetranethylsuccinami~~<br />

Utropin<br />

Valeric acid


3.2. FLUIDS, PROPERTIES, AND NUMBER OF REFERENCES WITH DATA<br />

For each fluid and property addressed in this study, the availability of<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> can be quickly and readily assessed in a series of triangular diagrams. In<br />

each of these figures, the number of references for each fluid and property with<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> available is placed in a grid. Blank grids in these charts represent fluid<br />

and/or properties for which no <str<strong>on</strong>g>data</str<strong>on</strong>g> references have been found. Where a large<br />

number of references are indicated in the grid for a particular fluid and<br />

property of interest, <str<strong>on</strong>g>data</str<strong>on</strong>g> gaps are expected to be less critical. Where a blank<br />

grid appears for a fluid system of high priority, a critical need is suspected.<br />

Fig. 1 lists the <str<strong>on</strong>g>fluids</str<strong>on</strong>g> and the number of references with vapor-liquid<br />

equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g> available for each. Fig. 2 lists the <str<strong>on</strong>g>fluids</str<strong>on</strong>g> and the number of<br />

references for each fluid with <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> crystallizati<strong>on</strong> temperature. Similarly,<br />

Fig. 3 lists the number oE references for <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> corrosi<strong>on</strong>, Fig. 4 for heat of<br />

mixing, Fig. 5 for liquid-phase density, Fig. 6 for vapor- and liquid-phase<br />

enthalpy, Fig. 7 for specific heat, Fig. 8 for stability, Fig. 9 for viscosity,<br />

Fig. 10 for mass and heat transfer rates, thermal c<strong>on</strong>ductivity, and refractive<br />

index, and Fig. 11 for flammability, toxicity, entropy, and surface tensi<strong>on</strong>.<br />

17


td<br />

m<br />

rl<br />

0 m<br />

cl:<br />

N<br />

N<br />

cl:<br />

m<br />

N<br />

l-i<br />

A<br />

ld<br />

4<br />

m<br />

a<br />

N<br />

r-i<br />

dc;<br />

0<br />

m<br />

ri<br />

ri<br />

I<br />

!%<br />

N<br />

8<br />

m<br />

52<br />

N<br />

n<br />

2<br />

U<br />

v<br />

z m<br />

A<br />

2<br />

u<br />

v<br />

1.9


tu<br />

x<br />

..<br />

cl<br />

cl<br />

la<br />

20


REFRIGERANTS<br />

R-133a<br />

R-124a<br />

R-134<br />

R-11<br />

R-30<br />

R-31<br />

R-12<br />

R-21<br />

R-22<br />

R-123<br />

R-131a<br />

R-140a<br />

R-1112 a<br />

R-1120<br />

R-1130<br />

332<br />

CH3NH2<br />

: BA: DMETEG<br />

R-22 : DMA<br />

R-22: DMETEG<br />

DMETEG: DMF<br />

MCAN<br />

NaSCN<br />

nh41<br />

'DL: Nal<br />

Fig. 1.<br />

(c<strong>on</strong>tinued).


Y<br />

P-<br />

op<br />

I--<br />

ZZ


EB<br />

R-133a<br />

R-124a<br />

R-134<br />

R-11<br />

R-30<br />

R-31<br />

R-12<br />

R-21<br />

R-22<br />

R-123<br />

R-131a<br />

R-14Oa<br />

tu<br />

w<br />

REFRIGERANTS<br />

R-1112a<br />

R-1120<br />

ABSORBENTS<br />

R-1130<br />

502<br />

CH3NH2<br />

(CH3)pH<br />

(CH313N<br />

C3B,0H<br />

CH3 OB<br />

C2H501i<br />

H2°<br />

NH3<br />

Fig. 1.<br />

(c<strong>on</strong>tinued).


NNP<br />

R-133a<br />

R-123a<br />

R-134<br />

R-152<br />

R-12 3<br />

R-143<br />

R-12<br />

R-21<br />

h)<br />

+%<br />

REFRIGERANTS<br />

R-22<br />

TFE<br />

AB SORBENTS<br />

: LiBr: EG<br />

Fig. 1.<br />

(c<strong>on</strong>tinued).


n<br />

a aJ<br />

3<br />

c<br />

*rl<br />

U<br />

CJ<br />

W<br />

25


k<br />

0<br />

w<br />

In<br />

a,<br />

2<br />

(11<br />

&<br />

a,<br />

w<br />

(11<br />

I-a<br />

k<br />

a,<br />

P<br />

E!<br />

?<br />

z<br />

26


27<br />

.<br />

N


t\,<br />

a<br />

REFRIGEWTS<br />

R-133a<br />

R-123a<br />

R-13<br />

R-152<br />

R-1123<br />

R-1113<br />

R-143 .<br />

R-12<br />

R-21<br />

R-22<br />

TFE<br />

CH3m2<br />

C2B5NH2<br />

C3H,0H<br />

C2H~OH<br />

CH30H<br />

B20<br />

NH3<br />

HF '1P<br />

Fig. 4.<br />

Number sf references for heat of mixing <str<strong>on</strong>g>data</str<strong>on</strong>g>.


EFTE<br />

R-133a<br />

R-123a<br />

R-134<br />

R-152<br />

R-123b<br />

R-123<br />

R-143<br />

R-124<br />

R-21<br />

w<br />

3<br />

REFRIGERANTS<br />

R-2 2<br />

TFE<br />

AB SORBENTS<br />

CR3NH2<br />

C2H5NH2<br />

C3H,QM<br />

C2H50H<br />

CH30H<br />

H2°<br />

NH3<br />

HF IP<br />

CH3 { CH<br />

Fig. 4.<br />

(c<strong>on</strong>tinued).


al<br />

P<br />

e<br />

1<br />

z<br />

31


32<br />

ln


LiBr: ZnEr2; EG<br />

LiC1: CaC12Zn(N03)2<br />

w<br />

l?-133a<br />

R-123a<br />

R-134<br />

R-152<br />

R-123b<br />

R-123<br />

R-143<br />

R-124<br />

R-21<br />

R-22<br />

TFE<br />

AB SORBENTS<br />

Fig. 6.<br />

Number of references for vapor and liquid-phase enthalpy <str<strong>on</strong>g>data</str<strong>on</strong>g>.


n<br />

.<br />

9<br />

M<br />

.d<br />

F<br />

34


.<br />

Kl<br />

+J<br />

Kl<br />

a<br />

k<br />

0<br />

VI<br />

(D<br />

aJ<br />

u<br />

C<br />

aJ<br />

k<br />

a<br />

w<br />

aJ<br />

k<br />

u-1<br />

0<br />

k<br />

aJ<br />

P<br />

El<br />

9<br />

x<br />

35


.<br />

KJ<br />

U<br />

v)<br />

a,<br />

V<br />

C<br />

al<br />

$-I<br />

a,<br />

w<br />

a,<br />

k<br />

W<br />

0<br />

$4<br />

aJ<br />

a<br />

36


NaSCN<br />

--.<br />

ETFE<br />

TEG<br />

NElp<br />

R-133a<br />

R-123a<br />

R-134<br />

1 1 DMETEG<br />

1 1 DMETrEG<br />

DMF<br />

R-152<br />

R-123b<br />

R-123<br />

R-143<br />

R-124<br />

R-21<br />

W<br />

REFRIGERANTS<br />

R-22<br />

TFE<br />

ABSORBENTS<br />

CH3NH2<br />

C2H5m2<br />

C3H70H<br />

C2H50H<br />

CH30H<br />

CSP : RbF<br />

Fig. 9.<br />

Number of references for viscosity <str<strong>on</strong>g>data</str<strong>on</strong>g>.


LiBr<br />

Mass Transfer Rate<br />

Heat Transfer Rate<br />

Br: Baysil<strong>on</strong>e<br />

r: CsF: RbF<br />

Thermal<br />

C<strong>on</strong>ductivity<br />

Refractive Index<br />

Fig. 10.<br />

Number of references for mass and heat transfer, thermal<br />

c<strong>on</strong>ductivity, and refractive index <str<strong>on</strong>g>data</str<strong>on</strong>g>.


V<br />

8 I<br />

f:<br />

w<br />

r!E<br />

(d<br />

m<br />

r i<br />

!A<br />

h<br />

n<br />

0<br />

k<br />

u G<br />

w<br />

40


I<br />

3.3. COARSE SCREENING OF DATA FOR SELECTED FLUIDS<br />

As menti<strong>on</strong>ed earlier, large amounts of <str<strong>on</strong>g>data</str<strong>on</strong>g> and references for any fluid do<br />

not always guarantee adequate coverage of <str<strong>on</strong>g>data</str<strong>on</strong>g> needs at a required level of<br />

precisi<strong>on</strong>.<br />

In fact, they may <strong>on</strong>ly denote relative importance of a given fluid<br />

for an applicati<strong>on</strong> and/or the existence of c<strong>on</strong>flicts in important property <str<strong>on</strong>g>data</str<strong>on</strong>g>,<br />

which often are difficult to measure.<br />

In such cases, a first-order or coarse<br />

screening and evaluati<strong>on</strong> of <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>, properties, and regimes is of<br />

paramount importance.<br />

Such screening and evaluati<strong>on</strong>s were carried out as part<br />

of this study for selected or key absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.<br />

Several approaches were c<strong>on</strong>sidered for use in carrying out the review and<br />

coarse screening of <str<strong>on</strong>g>data</str<strong>on</strong>g> from multiple sources.<br />

These include<br />

0 C<strong>on</strong>siderati<strong>on</strong> of the author's statements c<strong>on</strong>cerning <str<strong>on</strong>g>data</str<strong>on</strong>g> quality;<br />

0 Assessment of the measurement technique and apparatus used to develop the<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g>;<br />

* C<strong>on</strong>siderati<strong>on</strong> of a given author's reputati<strong>on</strong> for measuring <str<strong>on</strong>g>data</str<strong>on</strong>g>, where <strong>on</strong>ly<br />

<strong>on</strong>e author's <str<strong>on</strong>g>data</str<strong>on</strong>g> were available for a fluid;<br />

0 Comparis<strong>on</strong> of <str<strong>on</strong>g>data</str<strong>on</strong>g> plots for a given fluid using <str<strong>on</strong>g>data</str<strong>on</strong>g> scatter and internal<br />

c<strong>on</strong>sistency criteria to judge <str<strong>on</strong>g>data</str<strong>on</strong>g> quality as well as multiple-author <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

agreement ; and<br />

C<strong>on</strong>siderati<strong>on</strong> of general trends of the plotted <str<strong>on</strong>g>data</str<strong>on</strong>g> as inferred from <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

for similar or homologous series <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.<br />

Particular emphasis was placed <strong>on</strong> screening <str<strong>on</strong>g>data</str<strong>on</strong>g> of <str<strong>on</strong>g>fluids</str<strong>on</strong>g> that were either<br />

already in use in commercial or prototype absorpti<strong>on</strong> cooling equipment or<br />

identified as potentially useful in absorpti<strong>on</strong> systems and subsequently<br />

experimentally investigated.<br />

Examples of such <str<strong>on</strong>g>fluids</str<strong>on</strong>g> are<br />

0 In commercial equipment, NH3-H20, H20-LiBr<br />

0 Identified as potentially useful for heat pumps<br />

- Organic/<str<strong>on</strong>g>fluids</str<strong>on</strong>g>, R21-DMETEG, R22-DMETEG, etc.<br />

Methanol/salt; CH30H-LiBr, CH30H-LiBr or ZnBr2, etc.<br />

In most instances, researchers have first focused <strong>on</strong> the development of<br />

vapor-liquid equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g> for these <str<strong>on</strong>g>fluids</str<strong>on</strong>g> and sec<strong>on</strong>darily <strong>on</strong> other properties<br />

such as enthalpy, viscosity, stability, etc. Therefore, the screening<br />

approach selected to evaluate certain property <str<strong>on</strong>g>data</str<strong>on</strong>g> of the above <str<strong>on</strong>g>fluids</str<strong>on</strong>g> has<br />

41


cnnslstd of the sirlc-by- side CO~I+.AL isoil of vapor ~L-~SSULC (rrxi <str<strong>on</strong>g>data</str<strong>on</strong>g>, qui-<br />

libriuui vapor compositi<strong>on</strong> (PTxy) <str<strong>on</strong>g>data</str<strong>on</strong>g>, eiithalpy <str<strong>on</strong>g>data</str<strong>on</strong>g>, and v;scosity dara of<br />

various <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.<br />

Vapor-Liquid<br />

equilibrim -..-- (Pl-_-<br />

s> -<br />

The amm<strong>on</strong>ia-water absorpti<strong>on</strong> fluid pair has b e c*zrtensively ~ ~ investigated<br />

for many years.<br />

tu 1932.<br />

and Si~rnter~~ (1932) and<br />

significant anouiit of PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

Many expeslmencal studies were c<strong>on</strong>drlcted in Europe some prior<br />

C<strong>on</strong>tributors incliide Mollie: 145 (1908), Wichercr266 (19321, Cli fford<br />

of the published <str<strong>on</strong>g>data</str<strong>on</strong>g> and a side-by-side comparis<strong>on</strong> of the <str<strong>on</strong>g>data</str<strong>on</strong>g> m~asured by<br />

several investigatorb They also presented a S P ~ of iecomrru2kaded PTxy values<br />

based <strong>on</strong> their analysis.<br />

(1959).<br />

Recently, Gillespie et al. ,64 Guillevic<br />

rn the U.S., b J i l s ~ n obtained ~ ~ ~ a<br />

In 1966, Nacriss et al. 1’<br />

presentxi a siirirmary<br />

and Rizvi187 9 lEi8 obtained asad<br />

presented PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> Ltiat spanned a wjder range cf pressure and teapcrature than<br />

previously <str<strong>on</strong>g>report</str<strong>on</strong>g>ed. In additi<strong>on</strong> to experimelital J a? several investigators<br />

have thermodynamically analyzed historical <str<strong>on</strong>g>data</str<strong>on</strong>g> io Se~erininc thelr Lnte~nal<br />

c<strong>on</strong>sistency.<br />

In this secti<strong>on</strong> of the <str<strong>on</strong>g>report</str<strong>on</strong>g> a side--by-side comparis<strong>on</strong> is made of selected<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> sets of total pressure and vapor-liquid equilibrium to determine potcntial<br />

c<strong>on</strong>flicts. Finally, the most recent PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> are rompatred with computed values<br />

in the literature developed by thermodynamic f orrnulatt<strong>on</strong>s .<br />

Total pressure<br />

The cornpariscjn of the total pressurr iw’ .sured by foiir- investi-gatots over<br />

three diszinct %~luLi<strong>on</strong> c<strong>on</strong>scntrnti<strong>on</strong>s (5, 30, and b.c) wt 7: Nli3) is illustraced<br />

in Fig. 12. The <str<strong>on</strong>g>data</str<strong>on</strong>g> sho


10,000<br />

1,000<br />

100<br />

3) (50) (100)<br />

10 I I I II I 11<br />

3.7<br />

3.5 3.3 3.1 2.9 2.7 2.5<br />

Tewperature, Of1 lo3 (OC)<br />

Fig. 12. Comparis<strong>on</strong> of NH3 + H20 vapor<br />

pressure-c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

43


several directed experimental tests, in the amm<strong>on</strong>ia-rich soluti<strong>on</strong> regi<strong>on</strong>,<br />

Macriss et ale compiled a recommended set of values over the range of pressure<br />

from 0.07 to 34.5 bar and temperature range from -50" to 215°C.<br />

The recent <str<strong>on</strong>g>data</str<strong>on</strong>g> of Gillespie et were obtained for pressures up to 200<br />

bar and temperatures up to 316°C.<br />

at 60°C are shown in Fig. 13.<br />

and the recommended compilati<strong>on</strong> of Macriss et al.<br />

The Gillespie et al. and Macriss et al. <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

There is very good agreement between the new <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

The Gillespie et al. <str<strong>on</strong>g>data</str<strong>on</strong>g> are<br />

claimed to be thermodynamically c<strong>on</strong>sistknt and were well correlated using the<br />

Redlich-Kister approach to fitting activity coefficient <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

Thermodynamic -- evaluati<strong>on</strong>s<br />

A major thrust of U.S. and European investigati<strong>on</strong>s has been to thermo-<br />

dynamically analyze historical <str<strong>on</strong>g>data</str<strong>on</strong>g> in order to determine the c<strong>on</strong>sistency of<br />

vapor liquid equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g>. For example, in 1947 Scatchard et al. 196<br />

calculated equilibrium vapor compositi<strong>on</strong>s that were significantly different than<br />

measured values.<br />

Scatchard reached this c<strong>on</strong>clusi<strong>on</strong> through a Gibbs-Duhem<br />

integrati<strong>on</strong>, assuming water was essentially n<strong>on</strong>-volatile.<br />

More recently, Edwards4' and then W<strong>on</strong> et al.265 evaluated the thermodynamic<br />

c<strong>on</strong>sistency of the tabulated values presented earlier by Macriss.<br />

Scatchard, W<strong>on</strong> projected water vapor c<strong>on</strong>centrati<strong>on</strong>s, in equilibrium with<br />

amm<strong>on</strong>ia-rich soluti<strong>on</strong>s, significantly below those given by Macriss.<br />

researchers ~<br />

Again, as did<br />

European<br />

specifically Sch~ltz'~~ and Ziegler and T r e ~ p ~ have ~ ' also thermo-<br />

dynamically analyzed the NH3-H20 system and again c<strong>on</strong>cluded that the <str<strong>on</strong>g>report</str<strong>on</strong>g>ed<br />

measured vapor c<strong>on</strong>centrati<strong>on</strong>s are higher for amm<strong>on</strong>ia-rich soluti<strong>on</strong>s than their<br />

predicti<strong>on</strong>s.<br />

The vapor-liquid equilibrium values at 60°C computed from these thermo-<br />

dynamic formulati<strong>on</strong>s are also presented in Fig. 13.<br />

It is evident that the<br />

calculated vapor compositi<strong>on</strong>s are substantially lower than measured values in<br />

the amm<strong>on</strong>ia-rich soluti<strong>on</strong> regi<strong>on</strong> by as much as a factor of 2.<br />

This pattern<br />

appears to hold true at other temperatures in the amm<strong>on</strong>ia-rich regi<strong>on</strong> of c<strong>on</strong>-<br />

centrati<strong>on</strong>.<br />

From these comparis<strong>on</strong>s, it is c<strong>on</strong>cluded that the thermodynamic<br />

projecti<strong>on</strong>s of vapor compositi<strong>on</strong>s (Scatchard, BogartIW<strong>on</strong>, Schultz, Ziegler and<br />

Trepp) appear to be in error.<br />

The specific evidence is summarized as follows<br />

44


0.010<br />

U<br />

Ti<br />

L4<br />

+I 0.005<br />

c,<br />

B<br />

d<br />

u Ti<br />

Ll<br />

u<br />

8<br />

6"<br />

0<br />

U<br />

t-l<br />

Q)<br />

u<br />

Ll<br />

0<br />

a<br />

(d<br />

3<br />

0.001<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

Liquid Water C<strong>on</strong>centrati<strong>on</strong>, wt. frac.<br />

Fig. 13. Comparis<strong>on</strong> Qf measured and predicted vapor<br />

compositi<strong>on</strong> of the NH3 + H20 pair at 6OOC.<br />

45


3 The new <str<strong>on</strong>g>data</str<strong>on</strong>g> of Gillespie et al." com are favorably with historical values<br />

and the compilati<strong>on</strong> of Macriss et al. 153<br />

8 The Gillespie et al. <str<strong>on</strong>g>data</str<strong>on</strong>g> are claimed to be thermodynamically c<strong>on</strong>sistent<br />

and well correlated using the Redlich-Kister approach for fitting activity<br />

coefficients.<br />

Enthalpy <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

In the U.S. prior to 1964, tabulated values of liquid- and vapor-phase<br />

enthalpies for the NH3-H20 fluid system were based <strong>on</strong> European experimental<br />

studies c<strong>on</strong>ducted between 1929 and 1934. Specifically, Jennings and Shann<strong>on</strong><br />

96<br />

in 1938 and Scatchard et<br />

in 1947 produced enthalpy tables in systematic<br />

increments of compositi<strong>on</strong> and pressure based <strong>on</strong> either interpolati<strong>on</strong>s of<br />

experimental <str<strong>on</strong>g>data</str<strong>on</strong>g> (Jennings) or thermodynamic calculati<strong>on</strong>s (Scatchard).<br />

analysis by Macriss et al. in 1964 indicated that the results derived from the<br />

method of Scatchard were in good agreemenr. with historical <str<strong>on</strong>g>data</str<strong>on</strong>g> for the low-<br />

temperature regi<strong>on</strong>, below 25°C.<br />

However, Scatchard's values deviated about<br />

15% from measured <str<strong>on</strong>g>data</str<strong>on</strong>g> at high temperatures and pressures.<br />

The measurements by Macriss et al.123 involved heat capacities of four<br />

liquid mixtures of amm<strong>on</strong>ia and water c<strong>on</strong>taining between 0 and 40 wt % amm<strong>on</strong>ia<br />

in the pressure range of 3.5 to 34.5 bar.<br />

An<br />

By comparis<strong>on</strong>, Scatchard's projec-<br />

ti<strong>on</strong>s were c<strong>on</strong>sistently higher than the <str<strong>on</strong>g>data</str<strong>on</strong>g> of Macriss, deviating up to 15%<br />

at high temperatures.<br />

The differences are attributed to insufficient accuracy<br />

of the primary <str<strong>on</strong>g>data</str<strong>on</strong>g> utilized in the calculati<strong>on</strong>s of Scatchard.<br />

The Macriss<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> were c<strong>on</strong>sistently lower than historical European <str<strong>on</strong>g>data</str<strong>on</strong>g>, but the deviati<strong>on</strong>s<br />

from the latter <str<strong>on</strong>g>data</str<strong>on</strong>g> were smaller than those found by comparis<strong>on</strong> of the<br />

Macriss <str<strong>on</strong>g>data</str<strong>on</strong>g> to the Scatchard projecti<strong>on</strong>s.<br />

Macriss also presented tabular values of liquid- and vapor-phase<br />

enthalpies for pressures ranging from 0.07 to 34.5 bar.<br />

basis of the analysis by W<strong>on</strong>, 265 summarized enthalpies at pressures ranging<br />

from 0.4 to 19.0 bar. A comparis<strong>on</strong> of the W<strong>on</strong> and Macriss values at 60°C<br />

(Fig. 14) indicates <strong>on</strong>ly small deviati<strong>on</strong>s of 1 to 2%.<br />

The vapor-phase<br />

enthalpy projecti<strong>on</strong>s of W<strong>on</strong> are 1 to 2% higher than the Macriss values, but<br />

the opposite trend is noted for the liquid-phase enthalpies.<br />

Bogart,24 <strong>on</strong> the<br />

In Europe, the most recent presentati<strong>on</strong>s of liquid- and vapor-phase<br />

enthalpies are charts prepared by Electrol~x~~ (unpublished) and by Ziegler<br />

and Trepp. 277<br />

The values of the latter investigators were developed from<br />

46


800<br />

123<br />

Macriss<br />

1800<br />

P 700<br />

Ftrl<br />

0 1<br />

a3<br />

(du<br />

>m<br />

a -<br />

aJh<br />

u a<br />

@--I<br />

Ft(d<br />

3s<br />

$ t;t 600<br />

m w<br />

1600<br />

1400<br />

r<br />

u.<br />

\<br />

r<br />

09<br />

500<br />

I I I I I I 1 I<br />

- Macriss 123 0 -I<br />

1200<br />

180<br />

160<br />

3;<br />

u<br />

\<br />

140 g<br />

120<br />

100<br />

Weight Fracti<strong>on</strong>,<br />

NH3<br />

Fig, 14, Comparis<strong>on</strong> of amm<strong>on</strong>ia-water enthalpy <str<strong>on</strong>g>data</str<strong>on</strong>g> at 6OOC.<br />

47


equati<strong>on</strong>s of state. The liquid phase <str<strong>on</strong>g>data</str<strong>on</strong>g> extracted from the smoothed charts<br />

at a temperature of 60°C are also compared in Fig. 14.<br />

At 6OoC, the comparis<strong>on</strong> indicates good agreement between the two sets of<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> at all soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s, i.e., 0 to 100% NH3. There is also good<br />

agreement with the compilati<strong>on</strong>s of Macriss et al. and Bogart.<br />

=:-liquid<br />

equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

The R20-LiRr pair has been utilized in commercially available absorpti<strong>on</strong><br />

cooling machines for many years and, therefore, a relatively large number of<br />

Sources of published <str<strong>on</strong>g>data</str<strong>on</strong>g> were found.<br />

ti<strong>on</strong>s (1Jemura and H a ~ a b a Matsuda , ~ ~ ~ et al.<br />

investigati<strong>on</strong>s by<br />

and Usyukin.2S1<br />

Data were found in Japanese investiga-<br />

and Osaka Gas162) and European<br />

A comparis<strong>on</strong> of vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g> from two of the Japanese investigati<strong>on</strong>s<br />

and the two European sources is illustrated in Fig. 15, for a 50 wt %<br />

soluti<strong>on</strong>.<br />

LiBr<br />

The <str<strong>on</strong>g>data</str<strong>on</strong>g> from three of the sources (Renz, Matsuda, and Usyukin) fall<br />

practically <strong>on</strong> the same empirical straight line drawn through the actual<br />

points.<br />

The Uern~ra~~~ <str<strong>on</strong>g>data</str<strong>on</strong>g> fall significantly below those of the other inves-<br />

tigators by 15 to 20%, particularly in the low-temperature regi<strong>on</strong> below 30°C.<br />

Although not shown, similar behavior was noted for other compositi<strong>on</strong>s (20, 50 and<br />

60 wt % LiRr) at low temperatures. Therefore, from a c<strong>on</strong>census viewpoint, the<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> of Ueiniira should be excluded from c<strong>on</strong>siderati<strong>on</strong> at temperatures below 30°C.<br />

All <str<strong>on</strong>g>data</str<strong>on</strong>g> taken prior to 1928 have been assembled, evaluated, and presented<br />

82 Tn the U.S., Penningt<strong>on</strong> 165<br />

in the Internati<strong>on</strong>al Critical Tables (TCT).<br />

ineasured and <str<strong>on</strong>g>report</str<strong>on</strong>g>ed vapor pressures above soluti<strong>on</strong>s with c<strong>on</strong>centrati<strong>on</strong>s ranging<br />

from 50 to 68 wt % LiBr and temperatures from 25" to 177°C.<br />

showed that the Penningt<strong>on</strong> results deviated from those previously <str<strong>on</strong>g>report</str<strong>on</strong>g>ed in the<br />

Internati<strong>on</strong>al Critical Tables, with deviati<strong>on</strong>s averaging more than 10% of the<br />

pressure measured.<br />

Sufficient experimental details were not available to<br />

indicate which group of <str<strong>on</strong>g>data</str<strong>on</strong>g> is more accurate.<br />

More recently, McNeely13'<br />

Ellingt<strong>on</strong> et a1.52<br />

evaluated all known <str<strong>on</strong>g>data</str<strong>on</strong>g> to present a c<strong>on</strong>sistent<br />

set for inclusi<strong>on</strong> in the ASHRAE Handbook of Fundamentals.<br />

Major absorpti<strong>on</strong><br />

cooling equipment manufacturers were <str<strong>on</strong>g>survey</str<strong>on</strong>g>ed by McMeely to obtain proprietary or<br />

unpublished informati<strong>on</strong>.<br />

___-____--<br />

1_1--<br />

Based <strong>on</strong> the Penningt<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> and proprietary <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

48


1000<br />

100<br />

3<br />

El<br />

h<br />

a,<br />

1-I<br />

m<br />

aJ<br />

M<br />

!a<br />

1-I<br />

0<br />

2<br />

P<br />

10<br />

1<br />

3.7 3.5 3.3 3.1 2.9 2.7 2.5<br />

Temperature, 0 K x 103 ( 0 C)<br />

Fig. 15.<br />

Comparis<strong>on</strong> of H2Q 4- LiBr vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

49


supplied by Carrier Corporati<strong>on</strong>, McNeely developed polynomial correlati<strong>on</strong>s<br />

relating soluti<strong>on</strong> temperature, c<strong>on</strong>centrati<strong>on</strong>, and vapor pressure.<br />

Comparis<strong>on</strong> of the dew points calculated from the polynomials to measured<br />

values indicated:<br />

8 Calculated values agreed well with the ICT <str<strong>on</strong>g>data</str<strong>on</strong>g> below LiBr soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s<br />

of 44 wt %. In the c<strong>on</strong>centrati<strong>on</strong> range of 45 to 60 wt % LiBr,<br />

the calculated dew points are 0.6 to 2.8OC lower.<br />

0 For soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s above 45 wt % LiBr, the McNeely calculated<br />

values agreed with the Penningt<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> but not with the ICT compilati<strong>on</strong>s.<br />

Q There is little <str<strong>on</strong>g>data</str<strong>on</strong>g> available above soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s of 60 wt % LiBr<br />

at atmospheric pressure (1.0 bar) to substantiate the correlati<strong>on</strong>s.<br />

Recently, Herold and Moran,80 in the U.S.,<br />

developed a method for deter-<br />

mining various thermodynamic properties based <strong>on</strong> an expressi<strong>on</strong> for the Gibbs free<br />

energy of the LiBr/H20 soluti<strong>on</strong>,<br />

The vapor pressures determined by the McNeely<br />

and Herold approaches at a 50 wt % LiBr soluti<strong>on</strong> are also presented in Fig. 15<br />

and are compared with the actual experimental <str<strong>on</strong>g>data</str<strong>on</strong>g>, indicating good agreement.<br />

Methanol-Salt Fluids<br />

Methanol is a refrigerant that has been proposed as a replacement for water<br />

to prevent system freeze-up problems and to develop air-cooled systems. Most<br />

work has focused <strong>on</strong> methanol in combinati<strong>on</strong> with either LiBr or ZnBr2 or a<br />

combinati<strong>on</strong> of both. In this secti<strong>on</strong> comparis<strong>on</strong>s are made of PTX <str<strong>on</strong>g>data</str<strong>on</strong>g> for two<br />

binary soluti<strong>on</strong>s and of viscosFty <str<strong>on</strong>g>data</str<strong>on</strong>g> for another soluti<strong>on</strong>.<br />

CH?OH-L<br />

-<br />

iBr<br />

Vapor-liquid equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

Four major sources of <str<strong>on</strong>g>data</str<strong>on</strong>g> were found for the CH30H-LiBr system.<br />

One from<br />

Europe by Renz,183 <strong>on</strong>e Japanese by Uemura et a1.,245 and two from the U.S., Aker<br />

et a1.l and Biermann. 19<br />

The <str<strong>on</strong>g>data</str<strong>on</strong>g> from two investigators (Renz and Uemura) are compared in Fig. 16<br />

for soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s of 10, 30, and 50 wt % LiBr.<br />

At soluti<strong>on</strong> c<strong>on</strong>cen-<br />

trati<strong>on</strong>s below 30 wt % LiBr, there is general agreement between these two sets of<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g>. At the low soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of 10 wt % LiBr, the Renz vapor<br />

pressures are about 10 to 15% lower than the Uemura values at identical c<strong>on</strong>di-<br />

ti<strong>on</strong>s.<br />

At soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s greater than 30 wt % LiBr, the Uemura <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

50


1000<br />

100<br />

10<br />

1<br />

3.7 3.5 3.3 3.1 2.9 2.7 2.5<br />

0 -1<br />

Temperature, K<br />

x lo3 (OC)<br />

Fig, 16. Comparis<strong>on</strong> of CH3OH + LiBr vapor<br />

pressure-c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

51


are substantially higher than Renz's values, by up to 100 %. Deviati<strong>on</strong>s increase<br />

as soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> increases, Superimpositi<strong>on</strong> of the <str<strong>on</strong>g>data</str<strong>on</strong>g> from the two<br />

U.S. sources (Aker and Biermann) shows good agreement with the <str<strong>on</strong>g>data</str<strong>on</strong>g> of Renz.<br />

In the previous secti<strong>on</strong>, where H20-LiBr<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> were discussed, it was also<br />

shown that three investigators (including Rem) produced <str<strong>on</strong>g>data</str<strong>on</strong>g> in general agree-<br />

ment, while Uemura's <str<strong>on</strong>g>data</str<strong>on</strong>g> for that fluid pair also departed from the trend line<br />

drawn through the other investigators <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

V i s co s i tx<br />

CA3011-LiBr system.<br />

of 35 wt % LiBr.<br />

and U e m ~ r measured a ~ ~ ~ and <str<strong>on</strong>g>report</str<strong>on</strong>g>ed soluti<strong>on</strong> viscosities for the<br />

the temperature range of 10 to 50'C.<br />

soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s.<br />

The Uemura <str<strong>on</strong>g>data</str<strong>on</strong>g> are higher by <strong>on</strong>e to two centipoises through<br />

instrumentati<strong>on</strong> used to obtain the primary <str<strong>on</strong>g>data</str<strong>on</strong>g>, KIO<br />

which set is more accurate.<br />

CH30H-Z nBr2<br />

The <str<strong>on</strong>g>data</str<strong>on</strong>g> are compared in Fig. 17 at a soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong><br />

Similar observati<strong>on</strong>s were made at other<br />

Without a more careful screening of the methods and<br />

statement can be made as to<br />

Vapor-liquid equilibrium<br />

Both<br />

and Uem~ra~~l have also investigated the CH30H-ZnBr2 system.<br />

However, c<strong>on</strong>trary to the wide deviati<strong>on</strong>s found between them in the CH3011-LiBr<br />

system, there is general agreement between the two sets of <str<strong>on</strong>g>data</str<strong>on</strong>g>, as shown in Fig.<br />

18. Uemura's measurements are generally lower by a few percentage points at<br />

identical c<strong>on</strong>diti<strong>on</strong>s of temperature and pressure.<br />

I Vapor-liquid equilibrium<br />

A comparis<strong>on</strong> of <str<strong>on</strong>g>data</str<strong>on</strong>g> obtained in the U.S. by Aker et al.' and Biermann" for<br />

this system is presented in Fig. 19. At a soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of 44.2 wt %<br />

CH30H,<br />

Aker et al.<br />

the vapor pressures of Biermann are about 20 to 25% lower than those of<br />

At a lower c<strong>on</strong>centrati<strong>on</strong>, 27.8 wt % methanol, better agreement is<br />

obtained, but the Biermann measured vapor pressures are now slightly higher (by 5<br />

ta 10%). Again, there is no independent evidence to judge which of the two sets<br />

might be more accurate.<br />

52


20<br />

183<br />

0 Renz 245<br />

* A Uemura<br />

35 ut X Lib<br />

15<br />

PI<br />

L)<br />

2 10<br />

*rl<br />

Lo<br />

0<br />

0<br />

Lo<br />

Ti<br />

3<br />

5<br />

0<br />

0<br />

I I I 1<br />

20 40 60 80 100<br />

Temperature, 0 C<br />

Fig. 17.<br />

Comparis<strong>on</strong> of CH30H f LiBr viscosity <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

53


1000<br />

183<br />

0 Renz<br />

241<br />

A<br />

Uemura<br />

+f<br />

ut % ZnBq<br />

100<br />

bo<br />

m<br />

E<br />

10<br />

1<br />

3.7 3.5 3.3 3.1 2.9 2.7 2.5<br />

Temperature, OKm1 x lo3 (OC)<br />

Fig. 18. Comparis<strong>on</strong> of CH3OH + ZnBr2 vapor<br />

pressure-c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

54


100<br />

1<br />

0.1<br />

44.<br />

0.01<br />

0.1<br />

2.0 1.9 1.8 1,7 1,6 1-5 1.4<br />

Temperature, OR-'<br />

x lo3 (OF)<br />

Fig. 19. Comparis<strong>on</strong> of methanQ1 -1. LiBr: ZnBr2<br />

(2:l) vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

55


-- Organic refrigerant-absorbent <str<strong>on</strong>g>fluids</str<strong>on</strong>g><br />

Extensive investigati<strong>on</strong>s have been c<strong>on</strong>ducted to determine the usefulness of<br />

organic <str<strong>on</strong>g>fluids</str<strong>on</strong>g> as refrigerants, mainly halogenated hydrocarb<strong>on</strong>s, paired with<br />

high-boiling organic absorbents such as ethers, amides, and esters.<br />

An example<br />

of an organic refrigerant, methylamine, paired with a solid adsorbent, sodium<br />

thiocyanate, is also presented.<br />

~ Refrigerants ll_l 123a, 133a-ETFE<br />

For these <str<strong>on</strong>g>fluids</str<strong>on</strong>g>, the available U.S. <str<strong>on</strong>g>data</str<strong>on</strong>g> (Murphy 1509151) practically cover<br />

most of the important fluid properties.<br />

Assessment of the accuracy or precisi<strong>on</strong><br />

of the <str<strong>on</strong>g>data</str<strong>on</strong>g>, however, cannot be made from the available references.<br />

R22-DMETEG<br />

For this fluid, major U.S.<br />

experimental investigati<strong>on</strong>s <strong>on</strong> vapor-liquid<br />

equilibrium have been c<strong>on</strong>ducted by Mastrangelo, 132 Buclez, 35 and Albright et al .3<br />

Macriss and Mas<strong>on</strong>124 thermodynamically evaluated the available <str<strong>on</strong>g>data</str<strong>on</strong>g> and<br />

produced smoothed PTX curves.<br />

The <str<strong>on</strong>g>data</str<strong>on</strong>g> of Mastrangelo showed c<strong>on</strong>siderable<br />

scatter around the smoothed isotherms of Albright et al., indicating poor<br />

internal c<strong>on</strong>sistency.<br />

A much smaller scatter of Albright's raw <str<strong>on</strong>g>data</str<strong>on</strong>g> had been<br />

evident except for the two highest temperatures, 121" and 135°C) where there were<br />

<strong>on</strong>ly a few experimental points for the entire range of c<strong>on</strong>centrati<strong>on</strong>.<br />

Comparis<strong>on</strong><br />

of the scatter of the raw <str<strong>on</strong>g>data</str<strong>on</strong>g> from all sources, <strong>on</strong> the solubility of Refrigerant<br />

22 in DMETEG (in the range of 25 to 121°C) are summarized in Table 6.<br />

Sato2*')<br />

One European (Eh~nke~~) and two Japanese sources (Oouchi11i9 and Suzuki and<br />

were found for this pair.<br />

The <str<strong>on</strong>g>data</str<strong>on</strong>g> from these three sources are com-<br />

pared for soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s of 10 and 40 wt % R22 in Fig. 20.<br />

Throughout<br />

the range of test temperatures, 10 to 127OC, there are no significant differences<br />

hetween the three sources of <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

R21-DMETEG<br />

-_^____-<br />

The <str<strong>on</strong>g>data</str<strong>on</strong>g> of Bucle~,~~ Albright et a1.,3 and Mastrange10'~~ at a soluti<strong>on</strong><br />

compositi<strong>on</strong> of 30 mol % R21 are illustrated in Fig. 21. The agreement is good at<br />

temperatures below 51.7OC, whereas the Mastrangelo vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g> are about<br />

5% lower than those of the others at temperatures in excess of 62.8"C.<br />

56


Table 6.<br />

Deviati<strong>on</strong> of solubility <str<strong>on</strong>g>data</str<strong>on</strong>g> from various sources from<br />

the <str<strong>on</strong>g>final</str<strong>on</strong>g> smoothed values for R22-DMETEG<br />

Data of Albright et: al.3 Data of Mastrangelo 132<br />

Temperature Number of Average Number of Average<br />

("0 p oints deviati<strong>on</strong> (%I points deviati<strong>on</strong> ( X )<br />

28.3 9 0.74 11 4.6**<br />

55.8 9 0.22 12 0.7<br />

85.8 9 0.55 11 0.5<br />

110.9 9 0.13 3 3.3+<br />

* Interpolated values.<br />

All values of xr equal or higher than smooth curve.<br />

All values of xr equal or lower than smooth curve.<br />

**<br />

t<br />

5 7


10,000<br />

1,000<br />

A<br />

1 o*<br />

I-(<br />

0<br />

a<br />

rd<br />

3<br />

101<br />

47<br />

0 Ehmke 220<br />

A Suzuki<br />

0 Oouchi 159<br />

*ut X R22<br />

I<br />

:O)<br />

(50) (100)<br />

I I I<br />

II I II<br />

3.7 3.5 3.3 3.1 2.9 2.7 2 :5<br />

Temperature, OK-' X lo3 (OC><br />

Fig. 20. Comparis<strong>on</strong> of R22 3. DMETEG vapor<br />

pressure-c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

58


Temperature, 0 C<br />

1 oc<br />

0<br />

20 40 60<br />

I 50<br />

I 1 I<br />

1.0<br />

10<br />

(d<br />

vi<br />

v1<br />

a<br />

..<br />

ClJ<br />

k<br />

3<br />

u1<br />

m<br />

al<br />

k<br />

pc<br />

0.1<br />

1<br />

0.1<br />

50 1<br />

2.0 1.9 1.8 1.7 1.6 1-5 1,4<br />

0<br />

Temperature, R<br />

-1<br />

x lo3 COP><br />

. -<br />

I<br />

3,Ol<br />

Fig. 21.<br />

Comparis<strong>on</strong> of R21 + DMETEG vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

59


__I_-<br />

R2 2 -Dm<br />

Only a small overlap exists for the <str<strong>on</strong>g>data</str<strong>on</strong>g> of P~doll'~~ and Albright et al.<br />

in the temperature range of 24 to 35OC.<br />

ment is good at a soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of 26 mol %<br />

about 3 to 5% lower than that of Albright et al. (Fig. 22).<br />

R21 or R22-DMH<br />

However, within that range, the agree-<br />

R22, with Podoll's <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

The <str<strong>on</strong>g>data</str<strong>on</strong>g> of P ~ d o l and l ~ Biermann" ~ ~ at a soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of 37 mol %<br />

R21 are illustrated in Fig. 23.<br />

The Biermann <str<strong>on</strong>g>data</str<strong>on</strong>g> exhibit a significantly<br />

stnaller slope than the trend line drawn through Podoll's <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

At low<br />

temperatures (50"F), deviati<strong>on</strong>s up to 30 to 40% occur, with the Biermann <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding to higher vapor pressure values.<br />

For the R22-DMH fluid, and at a soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of 30 mol %<br />

3<br />

R22, the<br />

Biermann <str<strong>on</strong>g>data</str<strong>on</strong>g> exhibit vapor pressures 20 to 50% larger than those of Podoll, as<br />

shown in Fig. 23.<br />

As was the case for the R21 + DMH fluid, the deviati<strong>on</strong>s are<br />

greatest at low temperatures and the slope of the Biermann trend line is smaller.<br />

CH3NI12-NaSCN<br />

This fluid is an example of an organic refrigerant in combinati<strong>on</strong> with an<br />

inorganic salt absorbent. Two sources of smoothed <str<strong>on</strong>g>data</str<strong>on</strong>g> exist for this combinati<strong>on</strong>,<br />

by Rush et a1.,lg4 with tabulated values, and Biermann" in graphical<br />

form. The comparis<strong>on</strong> of the vapor pressures from the two sources at soluti<strong>on</strong><br />

c<strong>on</strong>centrati<strong>on</strong>s of 50 and 62 wt % CH3NH2 is illustrated in Fig. 24. At both<br />

c<strong>on</strong>centrati<strong>on</strong>s, the Biermann pressures are significantly lower, by about 40%,<br />

than those of Rush et al. There is no obvious reas<strong>on</strong> for stating which of the<br />

two sources c<strong>on</strong>tains more accurate <str<strong>on</strong>g>data</str<strong>on</strong>g>. The experimental procedures used by<br />

Riemann were presented in the reference.<br />

3.4. FINE SCREENING OF NH?-H?O DATA<br />

I<br />

The NH3-H20 <str<strong>on</strong>g>data</str<strong>on</strong>g> were selected for fine screening because the pair is used<br />

in commercially available equipment and there is a need to provide a recommended<br />

set of PTxy values covering a wider range of c<strong>on</strong>diti<strong>on</strong>s (pressure, temperature,<br />

and compositi<strong>on</strong>) than had been previously <str<strong>on</strong>g>report</str<strong>on</strong>g>ed. The important reas<strong>on</strong>s for<br />

screening are summarized as follows:<br />

0 New <str<strong>on</strong>g>data</str<strong>on</strong>g> have recently appeared in the literature,<br />

0 Discrepancies have been noted between predicted and measured PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g>, and


Temperature, 0 C<br />

100<br />

0<br />

20 40 60 80<br />

1 I 1<br />

I I<br />

1.0<br />

10<br />

(d<br />

*d<br />

rn<br />

-<br />

a<br />

0)<br />

k<br />

3<br />

rn<br />

rn<br />

QI<br />

k<br />

Pi<br />

0.1<br />

1<br />

..-.lr--...<br />

0 PoooLL173<br />

A AL.BR1WT3<br />

26% R22, mol X<br />

(50) (100) (150) (200)<br />

0.1 I I I I<br />

2.1<br />

2,O 1.9 1.8 1.7 1,6 1.5<br />

-<br />

0.01<br />

Temperature, OR-'<br />

x lo3 (OF', .-,<br />

Fig. 22.<br />

Comparis<strong>on</strong> of R22 t DMA vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

61


Temperature,<br />

0<br />

C<br />

100<br />

0 20 40 60 80<br />

\ I \ I I<br />

+<br />

DW<br />

1 .o<br />

10<br />

ni<br />

.ri<br />

v)<br />

a<br />

a,<br />

k<br />

3<br />

rn cn<br />

e,<br />

k<br />

PI<br />

+<br />

DMH<br />

0.1<br />

1<br />

---..-e-<br />

A BI<br />

o ~ a~a-2’~<br />

*mol<br />

28<br />

% REFRIGERANT<br />

0.1<br />

2.1<br />

(50) (100) (158) (20’<br />

I I I I I<br />

2.0 1.9 1.8 1.7 1.6 1,5<br />

0.01<br />

Temperature, ORc1 x lo3 (OF><br />

Fig. 23.<br />

Comparis<strong>on</strong> of R21 -t- DPN and R22 3- DMtI vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

62


Temperature, 0 C<br />

100<br />

0<br />

20 40 60 80<br />

I 4 4 --. I I<br />

0 RUSHLY4 I<br />

------ A A BIERI'UANU~~<br />

*ut x METHYLAMIME<br />

1.0<br />

10<br />

crl<br />

-4<br />

v1<br />

a<br />

n<br />

a,<br />

k<br />

3<br />

(0<br />

[II<br />

a,<br />

k<br />

&<br />

62*{<br />

0.1<br />

w<br />

Y<br />

(D<br />

m<br />

2<br />

"<br />

(D<br />

0-<br />

pl<br />

rl<br />

1<br />

0.1<br />

2.0<br />

50 1 (1001 (150) (200>(250<br />

1.9<br />

-<br />

I I 1 A<br />

1.8 1.7 1.6 1.5 1.4<br />

0.01<br />

Fig. 24. Comparis<strong>on</strong> of methylamine i- sodium<br />

thiocyanate vapor pressure <str<strong>on</strong>g>data</str<strong>on</strong>g>,<br />

63<br />

. . . . . . - .


Advanced cycle calculati<strong>on</strong>s require accurate PTxy values bey<strong>on</strong>d the range of<br />

present compilati<strong>on</strong>s.<br />

Recently four sets of PTxy equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g> appeared in the literature and<br />

extended the range of pressure, temperature, and compositi<strong>on</strong>s previously<br />

<str<strong>on</strong>g>report</str<strong>on</strong>g>ed:<br />

8 Gillespie et presented PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> in the range of pressure from 0.07 to<br />

200 bar and temperatures from 40 to 316°C over the entire liquid compositi<strong>on</strong><br />

range.<br />

o<br />

Guillevic68 presented <str<strong>on</strong>g>data</str<strong>on</strong>g> at three isotherms 130, 180, and 230°C.<br />

@<br />

e<br />

Rizvi187,188 obtained and presented <str<strong>on</strong>g>data</str<strong>on</strong>g> in ranges similar to those shown<br />

for Gillespie et al.<br />

Tsiklis et al .223 presented <str<strong>on</strong>g>data</str<strong>on</strong>g> al<strong>on</strong>g eight isotherms, temperatures ranging<br />

from 97 to 350°C and pressures from 1 to 200 bar.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>data</str<strong>on</strong>g>, tabular values based <strong>on</strong> thermodynamic formulati<strong>on</strong>s and<br />

empirical polynomials developed from <str<strong>on</strong>g>data</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong>s have also appeared in<br />

the literature that facilitate cycle computati<strong>on</strong>s.<br />

It is, therefore, necessary to compare and evaluate primary <str<strong>on</strong>g>data</str<strong>on</strong>g> sets, first<br />

to each other and then to thermodynamic predicti<strong>on</strong>s and polynomial estimates.<br />

set of recommended PTxy values can then be compiled based <strong>on</strong> the results of the<br />

aforementi<strong>on</strong>ed analysis.<br />

The evaluati<strong>on</strong> process c<strong>on</strong>sisted of the following steps:<br />

4 Comparis<strong>on</strong> of measured total pressure <str<strong>on</strong>g>data</str<strong>on</strong>g> obtained by various investigators<br />

at comm<strong>on</strong> temperatures to determine relative spread in the primary <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

0 Comparis<strong>on</strong> of measured PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> at comm<strong>on</strong> temperatures to determine spread<br />

in primary <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

A<br />

o<br />

Comparis<strong>on</strong> of PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> and previous thermodynamic projecti<strong>on</strong>s to rec<strong>on</strong>cile<br />

differences<br />

Comparis<strong>on</strong> of PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> and polynomial projecti<strong>on</strong>s to determine usefulness<br />

of current estimating techniques for cycle calculati<strong>on</strong>s<br />

8 Development of extended PTxy tables based <strong>on</strong> the comparative evaluati<strong>on</strong>.<br />

-- ComEaris<strong>on</strong><br />

~ of<br />

Measured Total -P_ressure<br />

To begin the analysis, total pressure <str<strong>on</strong>g>data</str<strong>on</strong>g> gathered by vari.ous investigators<br />

were compared at two isotherms, 80 and 133"C, as shown i n Fig, 25.<br />

Pressures<br />

64


d<br />

0<br />

rn<br />

4<br />

-rl<br />

5<br />

0<br />

In<br />

U<br />

0<br />

-3<br />

In<br />

m<br />

0<br />

m<br />

In<br />

N<br />

3<br />

N<br />

n<br />

-4<br />

3<br />

-.I<br />

n'<br />

><br />

8<br />

V<br />

0<br />

to<br />

0<br />

u<br />

(D<br />

(D<br />

u<br />

(d<br />

b)<br />

$4<br />

3<br />

m<br />

rn<br />

al<br />

CI<br />

p.<br />

rl<br />

m<br />

U<br />

0<br />

u<br />

4-1<br />

0<br />

c<br />

0<br />

m<br />

65


were generally <str<strong>on</strong>g>report</str<strong>on</strong>g>ed at these temperatures, thus eliminating the need for<br />

interpolati<strong>on</strong>s to reduce <str<strong>on</strong>g>data</str<strong>on</strong>g> to a comm<strong>on</strong> temperature.<br />

The important observati<strong>on</strong>s made €rom scanning the <str<strong>on</strong>g>data</str<strong>on</strong>g> obtained by six<br />

investigators shown in Fig. 25 are summarized as follows:<br />

@<br />

There is general agreement in the measured pressure between sources in the<br />

soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> range of 0 to 45 mol % NH3. For example, at a<br />

soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of 15 mol % NH3, the spread in the pressure is <strong>on</strong>ly<br />

about 0.2 bar compared with about 1 bar at a c<strong>on</strong>centrati<strong>on</strong> of 40 mol % NH3.<br />

0 The spread in the measured pressure increases as the amm<strong>on</strong>ia soluti<strong>on</strong><br />

c<strong>on</strong>centrati<strong>on</strong> increases.<br />

@<br />

The new <str<strong>on</strong>g>data</str<strong>on</strong>g> obtained by Gillespie et ad4 appear to be representative of<br />

the total historical <str<strong>on</strong>g>data</str<strong>on</strong>g> set obtained by the other five investigators.<br />

The total pressure <str<strong>on</strong>g>data</str<strong>on</strong>g> obtained at 133°C by three investigators (Gillespie<br />

et al.64, Guillevic,68 and Rizvi187*188) are shown in Fig. 26.<br />

The important<br />

c<strong>on</strong>clusi<strong>on</strong>s obtained from scanning this <str<strong>on</strong>g>data</str<strong>on</strong>g> set are summarized as follows:<br />

0 There is general agreement between them up to a soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of<br />

50 mol % amm<strong>on</strong>ia. At richer soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s, the <str<strong>on</strong>g>data</str<strong>on</strong>g> of Rizvi are<br />

significantly higher, by up to 10 bar, than those obtained by Gillespie and<br />

also exhibit an unusual curvature in the range of soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of<br />

60 to 80 mol % amm<strong>on</strong>ia.<br />

e<br />

Because of the unusual nature of the Rizvi <str<strong>on</strong>g>data</str<strong>on</strong>g>, a smooth curve was drawn<br />

through the <str<strong>on</strong>g>data</str<strong>on</strong>g> of Gillespie et al. as representative of the PX<br />

relati<strong>on</strong>ship at 133°C. The <str<strong>on</strong>g>data</str<strong>on</strong>g> of Gillespie et al. and Guillevic are also<br />

in agreement up to a soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> of 60 mol % amm<strong>on</strong>ia.<br />

Comparis<strong>on</strong> of PTxy Data<br />

Gillespie et al.64 compared their smoothed PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> (in terms of relative<br />

volatility) to those obtained by Wils<strong>on</strong>,264 Wucherer ,266 Guillevic, ' 68<br />

Rizvi, 187,188 and the compilati<strong>on</strong> of Macriss et al. 123<br />

approach c<strong>on</strong>sisted of correlating the <str<strong>on</strong>g>data</str<strong>on</strong>g> obtained <strong>on</strong> an isotherm, using the<br />

Redlich-Kister equati<strong>on</strong> for fitting activity coefficient <str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

The Gillespie et al.<br />

The comparis<strong>on</strong><br />

between the relative volatility of Gillespie et al. and of the other investi-<br />

gators is summarized as follows:<br />

e<br />

e<br />

Wils<strong>on</strong>, f5.7%<br />

Wucherer , fl1.6%<br />

0 Guillevic, f14.1% (better at low temperatures, 80-100°C)<br />

0 Rizvi, f24.0%<br />

66


0<br />

rl<br />

0<br />

m<br />

0<br />

CD<br />

0<br />

h<br />

N<br />

I4<br />

Eo<br />

V<br />

0<br />

c-7<br />

c-7<br />

4<br />

u m<br />

(d<br />

u<br />

m<br />

a<br />

0<br />

\D<br />

0<br />

m<br />

0<br />

.;t<br />

0<br />

m<br />

0<br />

N<br />

0<br />

4<br />

0<br />

67


Macriss et al., k15.3X (compilati<strong>on</strong> of historical <str<strong>on</strong>g>data</str<strong>on</strong>g>)<br />

8 Clifford and Hunter, &8.0%.<br />

Comparis<strong>on</strong> of PTxy Data and Thermodynamic Projecti<strong>on</strong>s<br />

Based 01-1 soluti<strong>on</strong> total pressure <str<strong>on</strong>g>data</str<strong>on</strong>g>, Scatchard,lg6 and<br />

modynamic projecti<strong>on</strong>s of PTxy values.<br />

made ther-<br />

They both c<strong>on</strong>cluded that for amm<strong>on</strong>ia rich<br />

soluti<strong>on</strong>s, the equilibrium water vapor c<strong>on</strong>centrati<strong>on</strong>s projected by thermodynamic<br />

formulati<strong>on</strong>s were significantly lower than <str<strong>on</strong>g>report</str<strong>on</strong>g>ed values (Macriss et al.) and,<br />

therefore, the measured vapor c<strong>on</strong>centrati<strong>on</strong>s were in error.<br />

In an attempt to rec<strong>on</strong>cile the differences, a comparis<strong>on</strong> was made between<br />

the relative volatilities, projected from thermodynamic c<strong>on</strong>siderati<strong>on</strong>s, pre-<br />

sented by B ~ g a r and t ~ ~ to <str<strong>on</strong>g>data</str<strong>on</strong>g> newly obtained by Gillespie et a1.,64 as shown in<br />

Fig. 27.<br />

The Bogart values at low temperature (40°C) are higher by a factor of<br />

2, than those obtained by Gillespie et al., in the amm<strong>on</strong>ia-rich soluti<strong>on</strong><br />

regi<strong>on</strong>.<br />

Significant deviati<strong>on</strong>s occur at other temperatures.<br />

Because the Gillespie et al .64 values are thermodynamically c<strong>on</strong>sistent and<br />

have been verified by comparis<strong>on</strong> with experimental <str<strong>on</strong>g>data</str<strong>on</strong>g>, the c<strong>on</strong>clusi<strong>on</strong> drawn<br />

firom the comparis<strong>on</strong> is that the thermodynamic projecti<strong>on</strong>s of W<strong>on</strong>187 are not<br />

valid.<br />

Comparis<strong>on</strong> of PTxy Data and Polynomial - Projecti<strong>on</strong>s<br />

Several researchers have empirically correlated historical <str<strong>on</strong>g>data</str<strong>on</strong>g> to provide<br />

polynomial relati<strong>on</strong>ships for PTxy values to facilitate computer cycle calcula-<br />

ti<strong>on</strong>s.<br />

Three significant efforts are summarized as follows:<br />

?a Jain and Gableg4 presented correlati<strong>on</strong>s for PTxy values that <strong>on</strong>ly applied<br />

within a limited range of pressures: 3,5 to 5.5 bar and 17.2 to 24.1 bar<br />

Electrolux"<br />

polynomials<br />

El-Sayed and T r i b ~ presented s ~ ~ correlati<strong>on</strong>s that covered the pressure and<br />

temperature range of 0.07 to 110 bar and -62 to 500°C.<br />

The projected total pressure and PTxy values were compared with measured<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> to determine the accuracy of each set of polynomials.<br />

The total pressures projected by Electrolux and El-Sayed and Tribus are<br />

compared with the smoothed <str<strong>on</strong>g>data</str<strong>on</strong>g> of Gillespie et<br />

Agreement is quite good in the amm<strong>on</strong>ia-lean regi<strong>on</strong> (less than 50 mol %<br />

where deviati<strong>on</strong>s between them are much less than 1 bar.<br />

68<br />

at 133°C in Fig. 28.<br />

However, in the<br />

amm<strong>on</strong>ia),


500<br />

100<br />

50<br />

h<br />

4J<br />

.d<br />

rl<br />

.d<br />

u rd<br />

rl<br />

0<br />

3<br />

a,<br />

?<br />

-4<br />

4J<br />

cu<br />

4<br />

a,<br />

FG 10<br />

/<br />

\ 40°C,1040F<br />

5<br />

1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Water Soluti<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong>, mol fracti<strong>on</strong><br />

Fig. 27.<br />

Comparis<strong>on</strong> of predicted and measured relative volatilities.<br />

69


0<br />

Q \<br />

e<br />

2-<br />

4<br />

tn I<br />

d<br />

a<br />

1 I I I I I I I I I i!L<br />

0 0 0 0 0 0 0 0 0 0 0 ~<br />

- c<br />

c O a , a o b c o l o q - o c u -<br />

N<br />

0<br />

E<br />

2<br />

0<br />

t-4<br />

t-<br />

.b.<br />

CY<br />

t-<br />

z<br />

W<br />

0<br />

Z<br />

0<br />

a<br />

n<br />

a<br />

+I<br />

d<br />

Cf<br />

I-l<br />

z<br />

0<br />

z<br />

4<br />

a -<br />

t<br />

c<br />

%<br />

a<br />

70


amm<strong>on</strong>ia-rich regi<strong>on</strong>, the pressures projected by the polynomials are higher by up<br />

to 10 bars than the smoothed measured values.<br />

The relative volatilities are compared in Figs. 29, 30, and 31.<br />

important observati<strong>on</strong>s are summarized as follows :<br />

The<br />

Q<br />

In a narrow regi<strong>on</strong> of applicati<strong>on</strong> the Jain and Gable polynomials provide<br />

accurate estimates of PTxy values (Fig. 29).<br />

9 The Electrolux polynomials appear to provide reas<strong>on</strong>able PTxy estimates at<br />

temperatures below 177OC and amm<strong>on</strong>ia-lean soluti<strong>on</strong>s (Fig. 30).<br />

The El-Sayed and Tribus projecti<strong>on</strong>s appear to best fit the PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g> in the<br />

soluti<strong>on</strong> compositi<strong>on</strong> range of 40 to 80 mol % water. Significant deviati<strong>on</strong>s<br />

occur in the very dilute amm<strong>on</strong>ia or amm<strong>on</strong>ia-rich soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong><br />

range (Fig. 31).<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Based <strong>on</strong> the fine screening analysis:<br />

The recent <str<strong>on</strong>g>data</str<strong>on</strong>g> of Gillespie et al. were found to be c<strong>on</strong>sistent with<br />

historical PTx and PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g>. Because the Gillespie et al. <str<strong>on</strong>g>data</str<strong>on</strong>g> are thermodynamically<br />

c<strong>on</strong>sistent and have covered ranges of temperature, pressure,<br />

and soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s heretofore not available, they are selected as<br />

the criteri<strong>on</strong> of the usefulness of other thermodynamic and empirical<br />

estimating techniques.<br />

Q<br />

Comparis<strong>on</strong> of thermodynamic projecti<strong>on</strong>s of PTxy values of W<strong>on</strong> with those of<br />

Gillespie et al. showed the W<strong>on</strong> projecti<strong>on</strong>s to be in error for amm<strong>on</strong>ia-rich<br />

soluti<strong>on</strong>s.<br />

0 Comparis<strong>on</strong> of PTxy estimates from polynomial formulati<strong>on</strong>s showed that n<strong>on</strong>e<br />

of the equati<strong>on</strong>s could accurately represent the entire range of PTxy <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

as presented by Gillespie et al. Large discrepancies were found in both<br />

the amm<strong>on</strong>ia-rich and lean soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s.<br />

3.5. GAPS IN THE DATA OF -D KEY<br />

FLUIDS<br />

The results of the review and assessment of the U.S.<br />

literature <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong><br />

absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g> and the identificati<strong>on</strong> of unresolved or potential c<strong>on</strong>flicts in<br />

the <str<strong>on</strong>g>data</str<strong>on</strong>g> provide the basis for the definiti<strong>on</strong> of gaps in the existing <str<strong>on</strong>g>data</str<strong>on</strong>g><br />

base.<br />

Additi<strong>on</strong>ally, informati<strong>on</strong> about the current activity of researchers<br />

involved in the development of advanced absorpti<strong>on</strong> heat pumps provides some<br />

insight as to potential new regimes (temperature, pressure, or c<strong>on</strong>centrati<strong>on</strong>)<br />

and new <str<strong>on</strong>g>fluids</str<strong>on</strong>g> for which <str<strong>on</strong>g>fluids</str<strong>on</strong>g> property <str<strong>on</strong>g>data</str<strong>on</strong>g> must be known.<br />

A rating system has been devised to be used in assessing the importance of<br />

filling the gaps in the <str<strong>on</strong>g>data</str<strong>on</strong>g> in support of various efforts directed at the<br />

identificati<strong>on</strong> and development of viable, practical, and commercializable<br />

71


530<br />

LOO<br />

50<br />

60°C, 140°F<br />

80'6, 176°F<br />

121.14'C, 250°F<br />

10<br />

132.74'6, 270.9<br />

O F<br />

176.6'C, 350°F<br />

5<br />

-<br />

--<br />

64<br />

Gillespie<br />

94<br />

Jain and Gable<br />

1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Water Soluti<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong>, mol fracti<strong>on</strong><br />

Fig. 29.<br />

Comparis<strong>on</strong> of projected and measured relative volatilities.<br />

72


600<br />

530<br />

\<br />

\<br />

\<br />

4OoC, 104'F<br />

100<br />

50<br />

8OoC,<br />

176'F<br />

10<br />

132-74OC. 270.9OF<br />

5<br />

475OF<br />

1<br />

.<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Water Soluti<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong>, mol fracti<strong>on</strong><br />

Fig, 30.<br />

Corngaris<strong>on</strong> of projected and measured relative volatilities.<br />

73


---- 4OoC, 104'F<br />

8OoC, 176'F<br />

121.14'C,<br />

250'F<br />

176.6'C, 350°F<br />

246.15'C,<br />

475'F<br />

/ / I<br />

54<br />

Gillespie<br />

-- El-Sayed 53<br />

1<br />

0 0.1 0.7 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Water Soluti<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong>, liiol fraci<strong>on</strong><br />

1<br />

Fig. 31.<br />

Comparis<strong>on</strong> of projected and measured relative volatilities.<br />

74


advanced absorpti<strong>on</strong> heat pumps,<br />

f hid-by-f luid basis :<br />

This rating system addresses <str<strong>on</strong>g>data</str<strong>on</strong>g> gaps <strong>on</strong> a<br />

1. Highest. Priority: C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted.<br />

The results of the assessment of gaps in the <str<strong>on</strong>g>data</str<strong>on</strong>g> for each fluid in this<br />

study, using the rating system, are presented in Figs. 32 through 44.<br />

numbers within the grid of each of the figures relate to the level of priority<br />

of filling the <str<strong>on</strong>g>data</str<strong>on</strong>g> gaps relative to a specific fluid and each property of the<br />

fluid.<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g>.<br />

A blank grid signifies that no further acti<strong>on</strong> is warranted regarding<br />

The<br />

75


1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted<br />

REFRIGERANTS<br />

R-21<br />

R-22<br />

R-123a<br />

R-124<br />

R-133a<br />

CH30H<br />

CH3W2<br />

TFE<br />

NM3<br />

N2 cI<br />

.BENTS<br />

Fig. 32.<br />

Gaps in vapor-liquid equilibrium <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


ETFE<br />

1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted<br />

R-21<br />

R-22<br />

R-123a<br />

R-124<br />

R-133a<br />

CH30H<br />

REFRIGEMTS<br />

CH3NH2<br />

TFE<br />

H: KOH: CsOH<br />

AB SORBENTS<br />

NH3<br />

H2°<br />

Fig. 33.<br />

Gaps in crystallizati<strong>on</strong> temperature <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


EFTE<br />

1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted<br />

R-21<br />

R-22<br />

R-123a<br />

R-124<br />

R-l33a<br />

CH30H<br />

w<br />

03<br />

REFRIGERANTS<br />

cH3m2<br />

TFE<br />

H: KON: CsOH<br />

A3 SORBENTS<br />

NN3<br />

H2°<br />

Fig. 34.<br />

Gaps in corrosi<strong>on</strong> <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


R-21<br />

R-2 2<br />

R-123a<br />

R-124<br />

R-133a<br />

CH3 OH<br />

L L<br />

t i i i i i LiBr ~<br />

1.<br />

2.<br />

3.<br />

Blank.<br />

C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

New Data Desirable<br />

No Fluids Data Acti<strong>on</strong> Warranted<br />

-4<br />

\o<br />

REFRIGERANTS<br />

CB3NH2<br />

TFE<br />

&%3<br />

H2°<br />

Fig. 35.<br />

Gaps in toxicity <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


EFTE<br />

1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. KO Fluids Data Acti<strong>on</strong> Warranted<br />

R-21<br />

R-22<br />

R-123a<br />

R-124<br />

R-133a<br />

CH30H<br />

00<br />

0<br />

REFRIGERANTS<br />

CH3NH2<br />

TFE<br />

ENT S<br />

NH3<br />

Fig. 36.<br />

Gaps in heat and mass transfer <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


EFTE<br />

1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Im .perat ive<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted<br />

R-21<br />

R-22<br />

R-123a<br />

R-133a<br />

CH30H<br />

REFRIGERANTS<br />

CH3NH2<br />

TFE<br />

NH3<br />

H2°<br />

Fig. 37.<br />

Gaps in viscosity <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted<br />

R-21<br />

R-22<br />

R-123a<br />

R-124<br />

R-133a<br />

CH3 OH<br />

03<br />

N<br />

REFRIGERANTS<br />

CH3NH2<br />

TFE<br />

AB SORBENTS<br />

NH3<br />

HZ O<br />

Fig. 38.<br />

Gaps in vapor-and liquid-phase enthalpy <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


X<br />

8<br />

U<br />

..<br />

Om 1<br />

x $- g<br />

V<br />

m<br />

E


SFTE<br />

1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. Xew Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted<br />

Br<br />

R-21<br />

R-22<br />

R-123a<br />

R-124<br />

R-133a<br />

CH30H<br />

m<br />

f-<br />

REFRIGERANTS<br />

CH3NH2<br />

TFE<br />

AB s ORBENTS<br />

NH3<br />

H2°<br />

Fig. 40.<br />

Gaps in specific heat <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


....<br />

r-lCJm24<br />

d<br />

(d<br />

d<br />

a<br />

h<br />

s<br />

rd<br />

N<br />

86


1. C<strong>on</strong>flict Resoluti<strong>on</strong> or New Data Imperative<br />

2. C<strong>on</strong>flict Resoluti<strong>on</strong> in Data Needed<br />

3. New Data Desirable<br />

Blank. No Fluids Data Acti<strong>on</strong> Warranted<br />

03<br />

d<br />

REFRIGERANTS<br />

R-21<br />

R-22<br />

R-123a<br />

R-124<br />

R-133a<br />

CN30H<br />

CH3NH2<br />

TFE<br />

NH3<br />

H2°<br />

Fig. 43.<br />

Gaps in heat transfer additive <str<strong>on</strong>g>data</str<strong>on</strong>g> for key <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.


k<br />

0<br />

w


R.C.<br />

4. ACKNOWLEDGEMENTS<br />

The financial support and guidance provided by Messrs. F.A.<br />

Creswiek and<br />

DeVault of Oak Ridge Nati<strong>on</strong>al Laboratory and Messrs. J.D. Ryan and R.J.<br />

Fiskum of the U.S. Department of Energy are gratefully acknowledged. The<br />

authors also wish to extend their appreciati<strong>on</strong> to Professors F. Steimle -<br />

UnPversity of Essen, K.<br />

Stephan - University of Stuttgart, I. Borde - Ben Guri<strong>on</strong><br />

University, T. Uemura - KansaJ University, M.J. Cher<strong>on</strong> -French Petroleum<br />

Institute, Mlfe. L. Rolland - Gaz de France and to all those that c<strong>on</strong>tributed<br />

unpublished <str<strong>on</strong>g>report</str<strong>on</strong>g>s and <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> absorpti<strong>on</strong> <str<strong>on</strong>g>fluids</str<strong>on</strong>g>.<br />

grateful for the patience and diligence of our secretary, Ms.<br />

Not the least, we are<br />

Patricia Powell,<br />

that prepared not <strong>on</strong>ly this <str<strong>on</strong>g>report</str<strong>on</strong>g> but also the previous two <str<strong>on</strong>g>report</str<strong>on</strong>g>s published<br />

in 1986 and 1987.


I<br />

5. REFERENCES<br />

1. Aker, J. E., Squires, R. G., and Albright, L. F., "An Evaluati<strong>on</strong> of<br />

Alcohol-Salt Mixtures as <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong> Soluti<strong>on</strong>s," Paper<br />

presented at the ASHRAE Semiannual Meeting, Chicago, January 25-28, 1965.<br />

2. Albright, L. F., Buclez, P. C., Pluche, C. R., and Doody, T. C., "Solubility<br />

of Refrigerants 11, 21, and 22 in Organic Solvents C<strong>on</strong>taining an<br />

Oxygen Atom," ASHRAE Trans. I 66, 423-433, 1960.<br />

3. Albright, L. F., Shann<strong>on</strong>, P. T., Terrier, F., and Chueh, P. L., "Solubility<br />

of Chlorofluoromethanes in N<strong>on</strong>volatile Polar Organic Solvents,"<br />

AIChE J. - 8, No. 5, 668-672, November 1962.<br />

4. Albright, L. F., Shann<strong>on</strong>, P. T., Yu, S.N., and Chueh, P. L., "Solubility<br />

of Sulfur Dioxide in Polar Organic Solvents," -lll__<br />

Chem. Eng. Prog. Symp.<br />

Ser. 59, No. 44, 66-74, 1963.<br />

.- -<br />

5. Allen, R. A. and Murphy, K. P., "Development of a Residential Sized Gas<br />

Fired <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pump," Annual Report prepared for Gas Research<br />

Institute by Allied Chemical Corporati<strong>on</strong>, Morristown, N.J., November<br />

1979.<br />

6. American Gas Associati<strong>on</strong>, "Symposium 011 <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Air-C<strong>on</strong>diti<strong>on</strong>ing<br />

Systems," Institute of Gas Technology, Chicago, Illinois, June 1968.<br />

7. Ando, E. and Takeshita, I., "R22-El41 (DEGDME)," Proceedings of the 17th<br />

C<strong>on</strong>ference of the Air C<strong>on</strong>diti<strong>on</strong>ing and Refrigerati<strong>on</strong> Institute of Japan,<br />

Tokyo, 1983, pp. 132-135 (Japanese text).<br />

8. Ando, E. and Takeshita, I., "Refrigerant-Absorbent Pair R22-DEGDME,"<br />

Nati<strong>on</strong>al Technical Report, Vol. 29, No. 1, Feb. 1983 (Japanese text).<br />

9. Ando, E. and Takeshita, I., "The Thermsphysical Properties of K22-<br />

Diethylene Glycol Dimethyl Ether Used for Gas Fired <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Cooling<br />

and Heating Systems," Paper for 17th C<strong>on</strong>ference of the Air C<strong>on</strong>diti<strong>on</strong>ing<br />

and Refrigerati<strong>on</strong> Institute of Japan, Tokyo, 1983 (Japanese text).<br />

10. Ando, E. and Takeshita, I., "Vapor Pressure of R22-DMFY" Paper presented<br />

at 16th C<strong>on</strong>ference of Air C<strong>on</strong>diti<strong>on</strong>ing and Refrigerati<strong>on</strong> Institute of<br />

Japan, Tokyo, 1982 (Japanese text).<br />

11. Ar<strong>on</strong>s<strong>on</strong>, D. (assigned to Worthingt<strong>on</strong> Corp.), "<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong><br />

System," U.S. Patent 3,478,530 (1969) November 18.<br />

12. Badarinarayana, K., Murthy, S. S., and Murthy, M.V.K., "Thermodynamic<br />

Analysis of R21-DMF Vapour <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong> Systems for Solar<br />

Energy Applicati<strong>on</strong>s," Internati<strong>on</strong>al Journal of Refrigerati<strong>on</strong> 5, No. 2,<br />

11 5-1 19, March 1982.<br />

13. Baldi , G., Speechia, V. , "Solubility of Amm<strong>on</strong>ia in Saline Soluti<strong>on</strong>s ,'I<br />

(1st Chim. Ind., Politechn., Turin, Italy). Chim. Ind. (Milan) 1971, 53<br />

(11) , 1022-7 (Ital).<br />

90


14. Baud, E. and Gay, L., "Determinati<strong>on</strong> of Hydrates in Soluti<strong>on</strong>s by a<br />

Thermodynamic Method. Applicati<strong>on</strong> to the System of Water-Amm<strong>on</strong>ia<br />

Liquid," Ann. Chim. Phs. I_ 17, 398-418, 1909 (French text).<br />

15. Baud, E. and Gay, L., "Etude du Systeme eau-amm<strong>on</strong>iac liquid. C<strong>on</strong>cordance<br />

des resultats avec l'hypothese de l'hydrate d'amm<strong>on</strong>ium," Academie des<br />

sciences, Seance du 17 mai 1909 (French text).<br />

16. Belherazem, A,, Daams, H. J., Knoche, K. F., and Stehrneir, D., "Research<br />

Activities <strong>on</strong> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Neat Pumps of the RWTH Aachen," New Working<br />

Pairs for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Processes -Proceedings of Workshop in Berlin,<br />

April 14-16, 1982, pp. 123-126. ,<br />

17. Bertocchio, R., "Couples Hydrocarbures Chlorofluores Solvants<br />

Organiques," Rec<strong>on</strong>tre Experts <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> - Paris 20-22, Mars 1985<br />

(French text).<br />

18. Biermann, W. .J., "Candidate Chemical Systems for Air Cooled, Solar<br />

Powered <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Air C<strong>on</strong>diti<strong>on</strong>er Design, Past I - Organic Absorbent<br />

Systems," Unpublished Report Prepared for Department of Energy, C<strong>on</strong>tract<br />

No. EG-77-C-03-1587, Carrier Corp., January 1978.<br />

19. Biermann, W. J., "Candidate Chemical Systems for Air Cooled, Solar<br />

Powered <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Air C<strong>on</strong>diti<strong>on</strong>er Design, Part 11 - Solid Absorbents,<br />

High Latent Heat Refrigerants," Unpublished Report Prepared for Department<br />

of Energy, C<strong>on</strong>tract No. EG-77-C-03-1587, Carrier Corp., April 1978.<br />

20. Biermann, W. J., "Candidate Chemical Systems for Air Cooled, Solar<br />

Powered <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Air C<strong>on</strong>diti<strong>on</strong>er Design, Part 111 - Lithium Salts with<br />

Anti-Freeze Additives," Unpublished Report Prepared for Department of<br />

Energy, C<strong>on</strong>tract No. EG-77-C-03-1587, Carrier Corp, June 1978.<br />

21. Blytas, 6. C., "Physicochemtcal Properties of C<strong>on</strong>centrated Soluti<strong>on</strong>s of<br />

Sodium Thiocyanate in Liquid Amm<strong>on</strong>ia," Unpublished Ph.D. Thesis,<br />

University of Wisc<strong>on</strong>sin, 1961.<br />

22. Blytas, G. C., Kertisz, D. J. and Daniels, F., "C<strong>on</strong>centrated Soluti<strong>on</strong>s<br />

in Liquid Amn<strong>on</strong>ia: Solubility of NaN03 and KBr and other Salts; Vapor<br />

Pressure of LiNO -NH3 Soluti<strong>on</strong>sYq1 J. Am. Chem. SOC. - 84, No. 6, 1083-<br />

1085, April 5, 1362.<br />

'23.<br />

Blytas, G. C. and Daniels, F., "C<strong>on</strong>centrated Soluti<strong>on</strong> of NaSCN in Liquid<br />

Amm<strong>on</strong>ia. Solubility, Density, Vapor Pressure, Viscosity, Thermal C<strong>on</strong>ductance,<br />

Heat of Soluti<strong>on</strong> and Heat Capacity", J. Am. Chem. SOC. - 84, No.<br />

7 , 1075-1082, April 5 1962.<br />

24. Bogart M.J .P., Amm<strong>on</strong>ia <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Ref rigerati<strong>on</strong> in Industrial Processes.<br />

Houst<strong>on</strong>: Gulf Publishing Co., 1980.<br />

25. Bokelmann, H ., Renz, M., "Thermopbsikalische Eigenschaft<strong>on</strong> v<strong>on</strong><br />

Trifluorethanol - Stoffsysteme fur <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>swarmepumpen," KI 11<br />

(1983). Nr. 10.<br />

91


_I_<br />

"'Working Fluids for<br />

Sorpti<strong>on</strong> Ueat Pumps," Energy Saving in Buildings, Results of the European<br />

Communities Programmes (1979-1983), The Hague, 14.11. bis 16.11, 1983.<br />

26. Bokelmann, H., Ehmke , H. J ., Rem M., Steimle ~ F.,<br />

27. Bokelmann, H., Ehmke, H. J., Renz, M., Steimle, V. F., "Investigati<strong>on</strong>s<br />

of Working Fluids €or Gas-Fired <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Plants," Internati<strong>on</strong>al Gas<br />

Research C<strong>on</strong>ference, L<strong>on</strong>d<strong>on</strong> 14-16 July, (1983).<br />

28. Bokelmann, H., Renz, M., Steirnle, V. F., "Working Fluids for Low Pressure<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Systems," IIF-IIR C<strong>on</strong>gress Commissi<strong>on</strong> B1, Paris 31 Aug. bis 7<br />

Sept. 1983.<br />

29. Bokelmann, Horst, "Auswahl, Messung Thermophysikalischer Eigenschaften<br />

und Beurteilung Der Eignung v<strong>on</strong> Niederdruck - Stoffsystem fur <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>s<br />

Warmepumpen," Forshungsberichte des Deutshen Kalte-und Klimatechnischer<br />

Vereins Nr. 12 (1984) (German text).<br />

30. Bokelrnann, H., Ehmke, H. J., Renz, M., and Steimle, F., "New Refrigerant-<br />

Absorbent Combinati<strong>on</strong>s for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Plants," Energy Ec<strong>on</strong>omics and<br />

Management in Industry, Volume 2, Energy Management, Proceedings of the<br />

European C<strong>on</strong>gress, Algrave, Portugal, April 2-5, 1984, Pergam<strong>on</strong> Press,<br />

New York (English text).<br />

31. Bokelmann, H., Ehmke, H. J., and Steimle, F., "Calorific Diagrams of the<br />

Working Fluids TFE-NMP, R123a-DTG and R22-1)TrG," Proceedings of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Heat Pumps C<strong>on</strong>gress, Paris, March 20-22, 1985.<br />

32. Bokelmann, H., Ehmke, H. J., and Steimle, F., "Presentati<strong>on</strong> of New Working<br />

Fluids for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pumps," Proceedings of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat<br />

Pumps C<strong>on</strong>gress, Paris, March 20-22, 1985.<br />

33. Boryta, D. A., "Solubility of Lithium Bromide in Water Between 50 and<br />

100°C (45-70% Lithium Bromide)," J. Chem. Eng. Data -, 15 No. 1, 142-144,<br />

1961.<br />

34. Bosnjakovic, V<strong>on</strong> F. and Grumbt, J. A., "Warmeinhalt Flussiger Athylakohol-<br />

Wasser-Gemische," Furshung auf dem Gebiete des Ingenieurwesens, Jahrgang<br />

des Zeitschrift Technische Mechanik und Thermodynamik Nr. 12,. December<br />

1931. (German text).<br />

35. Buclez, I?. C., "The Solubility of Some Easily Liquefiable Gases in Nigh<br />

Boiling Point Solvents," Unpublished Master's Thesis, Purdue University,<br />

June 1959.<br />

36. Burnett, J. C. and Himmelblau, D. M., "The Effect of Surface Active Agents<br />

<strong>on</strong> Interphase Mass Transfer," AIChE J. 16, No. 2 , 185-193, 1970.<br />

37. Chung, H., "Pompe a Chaleur a <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Systeme Fre<strong>on</strong> 21 - E181 Analyse<br />

Du Cycle A Trois Pressi<strong>on</strong>s Etude D'un Absorbeur Du Type Ejecteur."<br />

Thesis from Institut Nati<strong>on</strong>al Polytechnique De Toulouse, June 24, 1983.<br />

38. Clifford, I. L. and Hunter, E., "The System Amm<strong>on</strong>ia-Water at Temperatures<br />

up to 15OOC and at Pressures up to Twenty Atmospheres." .J. Phys. Chem.<br />

37, 101-18, 1933 (English text).<br />

92


~ 22,<br />

39.<br />

40 *<br />

41.<br />

42.<br />

43.<br />

44.<br />

45.<br />

46.<br />

47.<br />

48.<br />

49.<br />

50.<br />

51.<br />

52 e<br />

Cohen, A. and .Jelinek, R, V., "Corrosi<strong>on</strong> Rates of Mild Steel in Alkaline<br />

Lithium Bromide Soluti<strong>on</strong>s by the Polarizati<strong>on</strong> Resistance Method," I Corros.<br />

39-47, 1966.<br />

Davids<strong>on</strong>, W. F. and Ericks<strong>on</strong>, D. C., "'500°F <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pump Under<br />

Development," Paper presented at IETC, Houst<strong>on</strong>, Texas (1986).<br />

Deemer, A. R., "<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> of Water Vapor by an Aqueous Lithium Bromide<br />

Soluti<strong>on</strong>," Unpublished Master's Thesis, Illinois Institute of Technology,<br />

Chicago December 1972.<br />

Dockus, K. F., Krueger, R. HI and.Rush, W. F., "Corrosi<strong>on</strong> Inhibiti<strong>on</strong> in<br />

Lithium Bromide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong> Systems," Paper presented at<br />

ASHRAE Semiannual Meeting, February 11-14, New York, New York, 1963.<br />

Doring, R., "Thermodynamische Eigenschaf ten van Amm<strong>on</strong>iak (R7 17), " KI-<br />

Extra Nr. 5, C.F. Muller Verl. Karlsruhe, 1978 (German text).<br />

Eding , W. J. and Brady, A. P . , "Ref rigerant-Absorbent Systems ,'I SRI<br />

Project No. S-3372, Final Report prepared for Roy C. Ingersoll Research<br />

Center, Borg-Warner Corporati<strong>on</strong>: Standford Research Institute, Menlo<br />

Park, California, March 31, 1961.<br />

Edwards, T. J., Newman, J., and Prausnitz, J. M., "Thermodynamics of<br />

Vapor-Liquid Equilibrium for the Amm<strong>on</strong>ia Water System," Ind. Eng. Chem.<br />

Fund - - 17, No. 4, 264-269, 1978.<br />

Ehmke, W. J., Renz, M., "Ternary Working Fluids for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Systems<br />

with Salt Liquid-Mixtures as Absorbers," IIF-IIR C<strong>on</strong>gress Commissi<strong>on</strong> B.<br />

Paris 31, August (1983).<br />

Ehmke, Hans-Jurgen, "Stoffsysteme fur <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>swarmepumpen<br />

Experimentelle Bestimming Thermophysikalischer Eigenschaftern v<strong>on</strong><br />

Losungen der Kaltemittel Methylamin, Amn<strong>on</strong>iak and M<strong>on</strong>ochloridiflvermethan<br />

(R22)," Forschungsberichte des Deutschen Kalte-und Klimatechnischen<br />

Vereins Nr. 13, 1984 (German text).<br />

Eichholz, H. D., "Experimental Correlati<strong>on</strong> of State Properties of<br />

Electrolyte Methanol Soluti<strong>on</strong>s as Working Mixtures in <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat<br />

Pumps and Comparis<strong>on</strong> with Known Equati<strong>on</strong>s .'I Ph .D. Thesis, University of<br />

Dortmund, 1982. (German text).<br />

Eiseman, B. J., Jr., "Why Refrigerant 22 Should Be Favored for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerati<strong>on</strong>,I1 ASHRAE J., 45-50, 1959.<br />

Electrolux, Thermodynamic Properties of Aqueous Amm<strong>on</strong>ia - unpublished<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g>, March 19, 1970 (English text).<br />

Ellerwald, M., "Experimentelle Untersuchungen zum Druck-Volumen-<br />

Temperatur-Verhalten Gasformiger Wasser-Amm<strong>on</strong>iak-Gemische," Diss.<br />

Universitate Dortmund, (1981).<br />

Ellingt<strong>on</strong>, R. T., Kunst, G., Peck, R. E., and Reed, J. F., "The<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Cooling Process," Inst. Gas Technol., Chicago, Res. Bull.,<br />

No. 14, 1957.<br />

93


____I<br />

53.<br />

54.<br />

55.<br />

56.<br />

57.<br />

58.<br />

59.<br />

60.<br />

61.<br />

El-Sayed, Y. M. and Tribus, M., "Thermodynamic Properties of Water-<br />

Amm<strong>on</strong>ia Mixtures; Theoretical Implementati<strong>on</strong> for Use in Power Cycles<br />

Analysis," Paper presented at 1985 ASME Winter Meeting, Miami Beach,<br />

Florida November 17-22 , 1985.<br />

Ennan, A. A., Chobotarev, A. N., Anikeev, V. A., Kornelli, M. E.,<br />

Yureva, E. I., Kats, 3. M., "DensIty and Viscosity in the Systems<br />

Dimethylformamide-Water and Water-Urotropin in the Temperature Mange<br />

from -15" to +4OoC.," Zh. Prik. Khim, 45 [3] : 627-630 (1972).<br />

Ericks<strong>on</strong>, D. C. and Davids<strong>on</strong>, W. F., "Higher Lift Lower Cost <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Cycles," Internal Report, Energy .Developments Company, Annapolis,<br />

Maryland, July 31, 1985,<br />

Ewing, W. W. and Fisher, H. M., "Studies in the Vapor Pressure-Temperature<br />

Relati<strong>on</strong>s of the Primary System Zinc Nitrate-Water," -J. Am. - Chem. ~<br />

SOC. 59, 1046-1048, 1937.<br />

Felli, M., Galli, G., "Vapor-Liquid Equilibrium Properties of N<strong>on</strong>-<br />

Electrolyte Mixtures for use in <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong>," Int. J. Ref.<br />

323-328 (1981).<br />

Felli, M., Mattiucci, F., "P-T-X Experimental. Data of Working Mixtures<br />

for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong>, Evaluati<strong>on</strong> of their Performance with low<br />

Generator Temperatures," Proc. of XV, IIR-C<strong>on</strong>gr. Venice 1979, Paper B1,<br />

B3.<br />

Fischer, V., "Zur Thermodynamik der Amm<strong>on</strong>iak-Wassergemische," Forschung,<br />

6 Bd./Heft 2, March, April (1935) (German text).<br />

Fukuda, T. et al. "Study <strong>on</strong> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Caoling-Heating Systems with Air<br />

Heat Source-Soluti<strong>on</strong> Pump," Paper at 17th C<strong>on</strong>ference of Japan Air<br />

C<strong>on</strong>diti<strong>on</strong>ing and Refrigerati<strong>on</strong>, Tokyo, 1983 (Japanese text).<br />

Gaus, W., "On the Influence of Neutral Salts Up<strong>on</strong> the Tensi<strong>on</strong> of Amm<strong>on</strong>ia<br />

Out of Aqueous Soluti<strong>on</strong>s," Z. Anorg. Chem. 25, 236-64 (1900). (German<br />

text).<br />

62. Gensch, K., "Lithium Nitrate Amm<strong>on</strong>iakat als <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>s-Plussigkeit fur<br />

Kaltemaschinen," Zeitschr. f.d. ges. Kalte Ind. 1,2 (1937).<br />

63. George, J.H.B. and Birkett, J. D., "Study of Liquid Amm<strong>on</strong>ia-Salts Systems<br />

and Their Potential Applicati<strong>on</strong> to the <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Cooling Process," Projects<br />

ZF-72 and ZF-72a9 Final Report prepared for American Gas Associati<strong>on</strong>.<br />

New York: American Gas Associati<strong>on</strong>, 1965 (Catalog No. M10090).<br />

64. Gillespie, P. C., Wilding W. V., and Wils<strong>on</strong>, G. M., "Vapor Liquid Equilibrium<br />

Measurements <strong>on</strong> the Amm<strong>on</strong>ia-Water System from 313 K to 589 K,"<br />

Research Report RR-90 for Gas Producers Associati<strong>on</strong>: Wiltec Research<br />

Company, Inc., Provo, Utah, October 1985.<br />

11<br />

65. Girsherger, W., Hochtemperaturc <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Swarmepumen," Diss. ETW.<br />

6756 (1981) (German text).<br />

94


66. Girsberger, W., Trepp, Ch., "Arbeitsstoffpaare fur die Hochtemperatur-<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>swarmepumpe," KI-Extra, 37-40, (1981).<br />

67. Griess, J. C., DeVan, J. H. and Blanco, H. P., "Corrosi<strong>on</strong> of Materials<br />

in <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heating and Refrigerating Fluids," Oak Ridge Nati<strong>on</strong>al<br />

Laboratories, OKNL/TM-9646, June 1985.<br />

68. Guillevic, J. L., "Determinati<strong>on</strong> de D<strong>on</strong>nees D'Equilibre Completes du<br />

Systeme Eau-Amrn<strong>on</strong>iae Par Une Nouvelle Methods Statique," Doctorate<br />

Thesis at L'Ecole Nati<strong>on</strong>ale Superieure des Mines de Paris, (1983)<br />

(French text).<br />

69. Gupta, C. P. and Sharma, C. P., "Entropy Values of LiBr-Water Soluti<strong>on</strong>s<br />

and Their Vapors," ASHRAE Transacti<strong>on</strong>s, V82, part 2, p, 35-46, 1976.<br />

70. Hasaba, S., Kawai, K., and Kawasaki, K., "Vapor Pressure of Aqueous Soluti<strong>on</strong><br />

of LiBr," Refrigerati<strong>on</strong> _. 34, No. 388, 496 (1959) (Japanese text).<br />

71. Hasaba, S., Kawai, K., Kawassaki, K., and Uemura, T., "Specific Heat of<br />

Aqueous Soluti<strong>on</strong> of LiBr In Water and Solubility,'' Refrigerati<strong>on</strong> - 35, No.<br />

397, 815 (196Q) (Japanese text).<br />

I1<br />

72. Hasaba, S. and Uernura, T., C<strong>on</strong>centrati<strong>on</strong> - Enthalpy Diagram of Lithium<br />

Bromide-Water Soluti<strong>on</strong>s for the Designing of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating<br />

Machines," Refrigerati<strong>on</strong> I 36, No. 405, pp. 12-14 (1961) (Japanese text).<br />

73. Hasaba, S., Uemura, T., and Aratani, T., "Some Thermal Properties of<br />

M<strong>on</strong>oethylamine-Water Soluti<strong>on</strong>s," Refrigerati<strong>on</strong> - 35, No. 395, 671 (1960)<br />

(Japanese text).<br />

74. Hasaba, S., Uemura, T., and Higuchi, Y., "Some Physical Properties of<br />

Lithium Chloride-Water Soluti<strong>on</strong>s for Designing of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating<br />

Machines," Refrigerati<strong>on</strong> 39, No. 441, 636 (1964) (Japanese text).<br />

75. Basaba, S., Uemura, T., and Narita, H., "Some Physical Properties of<br />

M<strong>on</strong>oethylamine-Water Soluti<strong>on</strong>s at Various Temperatures," Refrigerati<strong>on</strong><br />

-936 No. 405, 619 (1961) (Japanese text).<br />

76. Hasaba, S., Uemura, T., and Narita, H., "Some Thermal and Physical<br />

Properties of Lithium Bromide-Water Soluti<strong>on</strong>s for the Designing of<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machines," Refrigerati<strong>on</strong> - 36, No. 405, 4-11<br />

(1961) (Japanese text).<br />

77. Hasaba, S., Uemura, T., and Seno, T., "C<strong>on</strong>centrati<strong>on</strong>-Entropy Diagram of<br />

Lithium Bromide-Water Soluti<strong>on</strong>s for the Designing of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerating Machines," Refrigerati<strong>on</strong> I_ 39, No. 441, 651 (1964) (Japanese<br />

text) e<br />

78. Hasseler, L. G., "Heat Transformers," AERE-R10111, April 1982, Harwell,<br />

England.<br />

79, Hensel, W. E., Jr. and Harlowe, I. W., Jr. (assigned to Arkla Industries,<br />

Inc.): "Compositi<strong>on</strong>s for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong> System," U.S. Patent<br />

3,643,455 (1972) February 22.<br />

95


80.<br />

81.<br />

82.<br />

83.<br />

84.<br />

85.<br />

86.<br />

87.<br />

88.<br />

89.<br />

90.<br />

91.<br />

92.<br />

Rerold, K. E. and Moran, M. J., "Thermodyaamic Properties of Lithium<br />

BromiddWater Soluti<strong>on</strong>s," Paper 3015 presented at the 1987 ASHRAE Winter<br />

Meeting, New York, NY, January 18-21, 1983.<br />

Hesselberth, J. F. and Albright, L. F., "Solubility of Mixtures of<br />

Refrigerants 12 and 22 in Organic Solvents of Low Volatility," ASHRAE<br />

Trans. - 71, Part 2, 27-33, 1955.<br />

"The Internati<strong>on</strong>al Critical Tables," Vol. 111, 369. New York: McGraw-<br />

Hill Book Company, Inc., 1928.<br />

Isshiki, N. and Kamoshida, J., "LiC1 + CaC12/H20 Pair," Proceedings of<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pumps C<strong>on</strong>gress, Paris, March 20-22, 1985 (English text).<br />

Iyoki, S. Hanafusa, Y ., and Koshiyania, H., "Studies <strong>on</strong> the Water-<br />

Lithium Bromide-Lithium Thiocyanate <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine,''<br />

Refrigerati<strong>on</strong>x, No. 646, 661, (August 1981) (Japanese text).<br />

Iyoki, S ., Kashiyama, H., and Uemura, T., "Inhibitors Used for the H20-<br />

LiBr-C4H602 <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerators," Kucho Reito Rengo Koenkai Koen<br />

R<strong>on</strong>burshu, 101, 1982 (Japanese text).<br />

Iyoki, S., Koshiyama, H., and Uemura, T., "Studies <strong>on</strong> the Ethanol-Lithium<br />

Iodide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine - Measurements of Physical and<br />

Thermal Properties," Refrigerati<strong>on</strong> 57, No. 662, 1183 (December 1982)<br />

(Japanese text).<br />

I1<br />

Iyoki, S., Koshiyama, H., and Uemura, T., Studies <strong>on</strong> the Water-Lithium<br />

Bromide-Butyrolact<strong>on</strong>e <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine - Measurements<br />

of the Properties," Refrigerati<strong>on</strong> _I 58, No. 665 (March 1983) (Japanese<br />

text).<br />

Iyoki, S., Koshiyama, H., and Uemura, T., "Water-Lithium Bromide -<br />

Butyrolact<strong>on</strong>e <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine T .R.J. , Oct .-Dec. 1984 ,<br />

p. 9 (English text).<br />

Iyoki, S. and Uemura, T., "Corrosi<strong>on</strong> Inhibitor in Water-Lithium Bromide-<br />

Lithium Thiocyanate <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine," Refrigerati<strong>on</strong> -956<br />

No. 646, 687 (August 1981) (Japanese text).<br />

Iyoki, S. and Uemura, T., "Corrosi<strong>on</strong> Inhibitor in Water-Lithium Chloride<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine and Dehumidifier," Refrigerati<strong>on</strong> 55,<br />

No. 630, 353 (April 1980) (Japanese text).<br />

Iyoki, S. and Uemura, T., "Studies <strong>on</strong> Corrosi<strong>on</strong> Inhibitor in Water-<br />

Lithium Bromide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machines ," Ref rigerati<strong>on</strong> - 53 ,<br />

No. 614, 3 (December 1978) (Japanese text).<br />

Iyoki, S. and Uemura, T., "Studies <strong>on</strong> the Surface-Active Agent of the<br />

Lithium Bromide-Water <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine, Refrigerati<strong>on</strong> -I<br />

_. 52, No. 591, 33 (January 1977) (Japanese text).


93. Iyoki, S. and Uemura, T., "Studies <strong>on</strong> the Water-Lithium Bromide-Ethylene<br />

Glycol <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine," Refrigerati<strong>on</strong> -J 56 No. 642, 279<br />

(April 1981) (Japanese text).<br />

94. Jain, P. C. and Gable, G. K., "Equilibrium Property Data Equati<strong>on</strong>s for<br />

Aqua-Amm<strong>on</strong>ia Mixtures ,I' ASHRAE Trans., No. 2180 , 197 1.<br />

95. Jennings, B. H., "Amm<strong>on</strong>ia-Water Properties (Experimentally-Determined P,<br />

V, T, x Liquid Phase Data)," Paper presented at ASHRAE Semiannual<br />

Meeting In Chicago, January 25-28, 1965.<br />

96. Jennings, B. H. and Shann<strong>on</strong>, F. P., "The Thermodynamics of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerati<strong>on</strong>; Tables of Properties of Aqua-Amm<strong>on</strong>ia Soluti<strong>on</strong>s," J. ASRE,<br />

p. 333-336, 1938.<br />

97. Kaltetechnik, 17 , Jahrgung, Heft 7 , 1965.<br />

98. Karavan, S. V., Orekhof, I. I., Fillipov, V. K., "Entropy Diagram of<br />

Aqueous Lithium Bromide Soluti<strong>on</strong>s," Kholod. Thek (2), 41-45, 1984 USSR<br />

(Russian text).<br />

99. Kashiwagi, T., "The Activity of Surfactant in High-Performance Absorber<br />

and <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Enhancement," Refrigerati<strong>on</strong> - 60, No. 687, pp. 72-79,<br />

(January 1985) (Japanese text).<br />

100. Kashiwagi, T., "Effect of Additi<strong>on</strong> of Octanol in LiBr Soluti<strong>on</strong> <strong>on</strong> the<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> of Water Vapor," Proceedings of the 18th C<strong>on</strong>ference of the<br />

Air C<strong>on</strong>diti<strong>on</strong>ing and Refrigerati<strong>on</strong> Institute of Japan, Tokyo, 1984<br />

(Japanese text).<br />

101. Kashiwagi, T., Kurosaki, Y. and Nikai, I., "Heat and Mass Diffusi<strong>on</strong>s in<br />

the <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> of Water Vapor by Aqueous Soluti<strong>on</strong> of Lithium Bromide,"<br />

JAR -2 1 No. 1, 89-98 (1984) (Japanese text).<br />

-<br />

102. Kashiwagi, T., Kurosaki, Y. and Shishido, H., "Enhancement of Vapour<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> into a Soluti<strong>on</strong> Using the Marang<strong>on</strong>i Effect," Japanese Society<br />

of Mechanical Engineering 51, No. 463, 1002-09 (March 1985) (Japanese<br />

text).<br />

103. Kashiwagi, T., Kurosaki, Y., Nikai, I. and Shishido, H., "A Study of<br />

Steam <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Into the Aqueous Soluti<strong>on</strong> of LiBr Using Holographic<br />

Interferometry." Proceedings XVI Internati<strong>on</strong>al C<strong>on</strong>gress of Refrigerati<strong>on</strong>,<br />

Paris, France, 1983.<br />

104. Kashiwagi, T., Saita, O., Ochiai, J., Nikai, I., Nishimoto, W. and<br />

Toyoyama, M., "Mass Diffusi<strong>on</strong> in the <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> of Amm<strong>on</strong>ia Vapor Into<br />

Amm<strong>on</strong>ia Soluti<strong>on</strong>s of NaSCN," paper presented at the XVII Internati<strong>on</strong>al<br />

C<strong>on</strong>gress for Refrigerati<strong>on</strong>, Vienna Austria, August 1987.<br />

105. Kessis, J. J., "Le Systeme Eau-Bromure de Lithium," Bull. SOC. Chem.<br />

France 1 (19651, 48.<br />

97


106. Klyucheva, E. S, , Yarym-Agaev, N. L. , "Experimental Study of Liquid-<br />

Vapor Equilibrium in the System of Diethylene Glycol-Water," (D<strong>on</strong>etsk.<br />

Politekn. Inst., D<strong>on</strong>etsk, USSR). Zh. Prinkl. Khim (Leningrad) 1980, 53<br />

(5)) 1027-9 (Russ.).<br />

107. Knoche , K. F. , "Crystallizaci<strong>on</strong> and Vapor Pressure of H20-LiSCN-LiBr ,I1<br />

Unpublished Report of Lehrstuhl fur Technishe Thermodynamik, Aachen,<br />

1984 (German text).<br />

11<br />

108. Knoche, K. F. and Raatschen, We, Thermodynamic and Physical Properties<br />

of the Ternary System CI130H-H20-LiBr ,I1<br />

dynamik, Aachen, 1987 (English text).<br />

Lehrstuhl fur Technishe Thermo-<br />

109. Koebel, M. and Aegeter, A., "The Thermal Stability of Methanol and the<br />

Ternary System Methanol-Lithiumbromide-Zincbromide," KI-extra - 14, 50<br />

(1981) (German text).<br />

110. Koehler, W. J., Ibele, W. E., Soltes, J. and Winter, E. R., "Entropy<br />

Calculati<strong>on</strong>s Tor Lithium Bromide Aqueous Soluti<strong>on</strong>s and Approximati<strong>on</strong><br />

Equati<strong>on</strong>," paper presented at the 1987 ASHRAE Annual Meeting, Nashville,<br />

Tennessee , 6/28-71 1 , 1987.<br />

111. Kouremenos, D., "Darstellung des Kreisprozesses Einer<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>skaltemaschine im T,S - Diagram," Kaltetechnik-Klimatisierung,<br />

December 23, 1971 (German text).<br />

112. Kracek, F. C, "Vapor Pressures of Soluti<strong>on</strong>s and the Ramsey-Young Rule.<br />

Applicati<strong>on</strong> to the Complete System, Water-Amm<strong>on</strong>ia," J. Phys. Chem. - 34<br />

499-521 (1930).<br />

113. Kriebel, M., Loffler, H. J., "Thermodynamische Eigenschaften des Binaren<br />

Systems Difluorm<strong>on</strong>ocholormethan (R22) - Tetraathylenglykoldimethyl ather<br />

(ElBl)," Kaltetechnik 17 (1965) 9, 266.<br />

114. Latyshev, V. P., "xi-Diagram for R22 Tetraethyleneglycoldimethylether,"<br />

Wnichi N 3243, MOSCOW, 1968 (Russian text).<br />

115. Latyshev, V. P., "Experimental InvestigatL<strong>on</strong> of the Heat Capatity of<br />

Dibutyl Phthalate and Dimethyl Ether of Tetraethylene Glycol and of<br />

their Heats of Mixing," Khol. Tekhn., 46 (8)) 31-34 (1969) (Russian<br />

text).<br />

116. Latyshev, V. P., "Temperature-C<strong>on</strong>centrati<strong>on</strong> Diagram €or Soluti<strong>on</strong>s of<br />

Fre<strong>on</strong> 22 in Dibutylphthalate," Khol. Tekhn., '47 [ll]: 61 (1970).<br />

117. Latyshev, V. P., "x, i - Diagrams for Fre<strong>on</strong> 22-Dibutylphthalate and for<br />

Fre<strong>on</strong> 22-Dimethyl Ether of Tetraethlene Glycol," Kholod. Tech. 46<br />

(19691, 7.<br />

118. Latyshev, V. P., "Investigati<strong>on</strong> of Vapor-Liquid Phase Equilibrium in the<br />

System Dibutyl Phthalate - Fre<strong>on</strong> 22," Khol. Tekhn., 45 [41: 21-24<br />

(1968).<br />

119. Ledding, A,, Borg-Warner Corporati<strong>on</strong>, private communicati<strong>on</strong> with R. A.<br />

Macriss of the Institute o€ Gas Technology, 1965.<br />

98


N.<br />

'PThermodynamische<br />

~<br />

121. Lower ~ und Physikallsche Eigenschaften der<br />

Wasserigen L~.thLunabr<strong>on</strong>Id Lssupig - Diagrams Only," Dissertati<strong>on</strong>,<br />

Technische HochscAeiRe Ka r1.s saihe 1960. Veecgl. auch Kaltetechnik Bd I 13<br />

(1961), Heft 5, Scite 178 (German text).<br />

122. Macriss, R. A. and Eakin, R .E a BvThermodynamic Properties of Amm<strong>on</strong>ia-<br />

Water Soluti<strong>on</strong>s Extended to Higher Tempe~atures and Pressures ,'? raper<br />

presented at the ASBRAE Mceting, Cleveland, July 1964; Published in<br />

ASFIRAE: Trans. - 70, 319-27, 1964 a<br />

123. Macriss, R. A,, Eakin, B. E,, Ellingt<strong>on</strong>, 8. T. and Huebler, J., "Physical<br />

and Thermodynamic Properties of Amm<strong>on</strong>ia-Water Mixtures3" ----- Inst. Gas<br />

Technol., Chicago, Res. Rill1 No. 34, 1964,<br />

-0 ______2_) -<br />

124. Maeriss Ips A. and Elascm, 13. M., "iiPhysieal and Thermodynamic Properties<br />

of New Ref rlgerant-Absorbant Pairs Project ZB-85, Final Report prepared<br />

for the Air CiandS.ti<strong>on</strong>lng and PrPme Mover Research Committee Q€ the<br />

American Gas AssoeiatPcprn., Institute of Cas Technology, Bcrober 1964.<br />

125. Macriss, W. A., Veil, %. A., and RIPS~, W. F, (assigned to the American<br />

Gas Associati<strong>on</strong>), "Absorptian Ref rigexat i<strong>on</strong> System C<strong>on</strong>taining Soluti<strong>on</strong>s<br />

of M<strong>on</strong>omethylamine Wit11 Thiocyanates ,I1 U . S. Patent 3,458,445 (1969) July<br />

29.<br />

126. Macriss, R. A., Pannwani, D., Raish, Id. P., and Blermann, W. J., "Thermodynamfc<br />

and Physical Properties of Pl[<strong>on</strong>omethyPa~Ine-Lithium Thiocyanate<br />

System 9 J c",hem.Eng,. .I..._..__ Data ____ 15, NO. 4, 466-479, 1970.<br />

127. Macriss, R. A. and RILS~, W. F. (assigned to the American Gas Associati<strong>on</strong>)<br />

"Lithium Bromi&?e--?,i thiuna Thiocyanate-Water Compositi<strong>on</strong> for an<br />

Absorbent-Refrigerati<strong>on</strong> System," U, S. Patent 3,541,013 (1970) November<br />

17.<br />

128. Macriss, R. A., Punward, D., Kush, W. F., and Biermann, W, J., "Thermodynamic<br />

and Physical Properties sf th.e Amm<strong>on</strong>ia-Lithium Thiocyanate<br />

System," J. Chem. Eng., Da'ia December 1991.<br />

129. placriss, R. A., "Selectfng Refrigerane-Absorbent Fluid Systems for Solar<br />

Energy Utilizati<strong>on</strong>," Paper presented at the ASHME Semiannual Meeting,<br />

Dallas, Texas, February 1976.<br />

130. Makitra, R. G., Moin, F. R., Politanskaya, T. I., "Solubibility of<br />

Certain Pluorochlorohydrncorb<strong>on</strong>s In Dimezlrylformamide," (Inst. Geal.<br />

Gokhim Goryuch. Iskop. Lvnv, USSR). Zh. Prinkl. Khim (Leningrad) 1979.<br />

52 (11) 2624-6 (Russ.).<br />

131. Manago, A., Ohuchi, Y., N<strong>on</strong>aka, He* Itah, S., Yatnashita, He, and<br />

Ohtashi, S., "Development or A Cas-Fired <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pump ,I' Research<br />

Center, Osaka Gas Company, Ltdn9 Japan, 1984, presented at Internati<strong>on</strong>al<br />

Gas Research C<strong>on</strong>ference (English text)<br />

99


132. Mastrangelo, S.V.R., "Solubility of Some Chlorofluorohydrocarb<strong>on</strong>s in<br />

Tetraethylene Glycol Dimethyl Ether,'' ASHRAE J. 64-68, 1959.<br />

133. Matsuda, A., Munakata, T., Yoshimaru, T., Kubara, T., and Fuehi, H.,<br />

(Dep. Chem. Eng., Kyushu University, Fukuoka, Japan 812), "Measurements<br />

of Vapor Pressures of Lithium Bromide-Water Soluti<strong>on</strong>s," Kagaku Kagaku<br />

R<strong>on</strong>bunshu 1980, (612) 119-122 (Japanese text).<br />

134. Matsuda, A., Shirabe, N., Takahashi, F., and Munakata, T., "<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

of Water Vapor by Lithium Bromide Soluti<strong>on</strong> at Low Pressures," (Dept. of<br />

Chern. Eng., Kyushu University, Fukuoka 812 Kagaku Kagaku R<strong>on</strong>bunshu 1980,<br />

(6121, 157-164 (Japanese text). '<br />

135. Matsushita, Method of Enthalpy - Determinati<strong>on</strong>, Tokyo Gas Company (1985)<br />

(English text).<br />

136. Maust, E., "New Absorbent-Refrigerant Combinati<strong>on</strong>s €or Air C<strong>on</strong>diti<strong>on</strong>ing<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong>," Doctoral Thesis, University of Maryland,<br />

Chemical Engineering (1966).<br />

137. McNeely, L. A., "Thermodynamic Properties of Aqueous Soluti<strong>on</strong>s of Lithium<br />

Bromide," ASHRAE Trans. __ 85 , Part 1, 1979.<br />

138. Mehl, W., "Ein Ubersichtsdiagramm log p - 1/T fur das paar Methylamin-<br />

Wasser," Zeitscher. f.d. ges. Kalte Ind. 42 (1935), 13.<br />

139. Melnik, V. V., Sekolov, V. V., Spivak, R. and Sorokin, V. M., "Corrosi<strong>on</strong><br />

Resistance of Metals in a LiRr Soluti<strong>on</strong>,'' Vses. Nauchno-lssled Xnst.<br />

Iodobromnoi Prom., Sala, USSR, Deposited Dec. 1982. SPSTL 693 Khp-D82,<br />

(Russian text) 1982.<br />

140. Merkel-Bosnj akovic, "Diagramme und Tabellen zur Berechriuns der<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>s-kaltemaschinen," Springer, Berlin, 1929 (German text).<br />

141. Mink, W. H. and Filbert, R. B., Jr., "Design and Development of a<br />

Refrigerati<strong>on</strong> Cycle Employing the Principle of Azeotropic Mixtures,"<br />

Final Report prepared for American Gas Associati<strong>on</strong>, Battelle Memorial<br />

Institute, Columbus, Ohio, July 29, 1955.<br />

142. Mir<strong>on</strong>ov, K. E., "Diagram of the Phase Transformati<strong>on</strong>s of the System R20-<br />

NH3," J. General Chem. ([JSSR) 25, 1039-42 (1955).<br />

143. Mohantz, B., "C<strong>on</strong>tributi<strong>on</strong> A L'etude de la Geshan Optimale D'Energie<br />

Solaire en vue de la Producti<strong>on</strong> de Froid Day Cycle a <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>," Thesis<br />

from the Institute Nati<strong>on</strong>al Polytechnique De Toulouse, July 3, 1985.<br />

--<br />

144. Mollier, H., "Heat of Soluti<strong>on</strong> of Amm<strong>on</strong>ia in Water," Mitt. Uber<br />

Forschungsarbeiten, No. 63-64, 107-13 (1909) (German text).<br />

145. Mollier, H., "Vapor Pressure of Water and Amm<strong>on</strong>ia Soluti<strong>on</strong>s," vI)z<br />

I Zeitschrift __ 52, 1315-20, August 15, 1908 (German text).<br />

10 0


146. Morel, T. Y., "C<strong>on</strong>tributi<strong>on</strong> in the Study of Thermodynamic Properties of<br />

N<strong>on</strong>-Ideal Systems Under Pressure Utilized in <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pumps,"<br />

Doctorate Thesis at L' Ecole Nati<strong>on</strong>ale Superieure Du Petrole et des<br />

Moteurs, 1983 (French text).<br />

147. Morr<strong>on</strong>e, J. W., "Solubility of Amm<strong>on</strong>ia in Low-Volatile Organic Solvents,"<br />

Unpublished Thesis Purdue University, February 1962.<br />

148. Muller, V. C. F., "KI Klima C Kalte lngenieur Extra 14, - <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

swarmepumpen," 1981. (German text).<br />

149. Munsch, E., "Calculati<strong>on</strong> of the Enthalpy of Mixing from Vapor-Liquid<br />

Equilibria," Thermochimica ACTA, 32: 151-164 (1979).<br />

150. Murphy, K, P, and Allen, R. A., "Development of a Residential Gas Fired<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pump," Interim Report prepared €or Oak Ridge Nati<strong>on</strong>al<br />

Laboratory and Gas Research Institute by Allied Chemical Corporati<strong>on</strong>,<br />

Morristown, N.J., March 1982.<br />

151. Murphy, K. et al., "Development of a Residential Gas Fired <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Heat Pump, Physical and Thermodynamic Properties of R123a/ETFE, System<br />

Development and Testlng, Ec<strong>on</strong>omic Analysis," Final Report ORNL/Sub/79-<br />

24610/5 by Allied Corporati<strong>on</strong>, Morristown, N.J., November 1983.<br />

152. Myasnikova, L. F., Shmepev, V. A., Vaisman, I. L., Bushinskii, V. I.,<br />

Novokhatka, D. A., "Temperature Dependence of Vapor Pressure of Dimethyl<br />

Formamide and its Aqueous Soluti<strong>on</strong>s," Zh. Prik. Khim., [ll]: 2604-2606<br />

(1974).<br />

153. Nowaczyk, U. Schmidt, E. L. and Steimle, F., "Selecti<strong>on</strong> of New Working<br />

Systems for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pumps," Proceedings of the Internati<strong>on</strong>al<br />

Workshop <strong>on</strong> Research Activities <strong>on</strong> Advanced Heat Pumps, Technical<br />

University of Graz, October 1986.<br />

154. Nowaczyk, U., Schmidt, E. L. and Steimle, F., "New Working Fluids<br />

Systems for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pumps and <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Transformers,"<br />

Proceedings of the XVIIth Internati<strong>on</strong>al C<strong>on</strong>gress of Refrigerati<strong>on</strong>,<br />

Vienna, Austria 1987.<br />

155. Ogawa, K., "Thermodynamic Properties of Aqueous Soluti<strong>on</strong> OF Lithium<br />

Bromide - 1st Report: Measurement of Specific Heat at Atmospheric<br />

Pressure," Refrigerati<strong>on</strong> 55, No. 630, 65-68, April 1980 (Japanese text).<br />

156. Ohuchi, Y., "Development of a Gas-Fired <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pump," ASHRAE,<br />

1985, Vol. 91, Pt. 2 (English text).<br />

157. Ono, Y., "Thermodynamic and Physical Properties of Various H20-LiBr<br />

Multi-Absorbent Systems," Tokyo Gas, Internal Reports (1979) (English<br />

text).<br />

158. Oosaba, H. and Sawaya, T., "Physicochemical Studies <strong>on</strong> the Systems LiC1-<br />

CH30H, LiBr-CB30H, LiBr-nC3H70H," J. Chem. SOC. Japan, Pure Chem. Sect.<br />

- 71, (1950) 2, 159 (Japanese text).<br />

10 1


159.<br />

160.<br />

161.<br />

162.<br />

163.<br />

164.<br />

165.<br />

166.<br />

167.<br />

168.<br />

169.<br />

170.<br />

171.<br />

172.<br />

173.<br />

174.<br />

175.<br />

Oouchi, T., "Thermodynamic and Physical Properties for R22-El81, R123a-<br />

E181, and R123a-ETFE Systems,'' Hitachi, Internal Reports, 1985 (Japanese<br />

text).<br />

Oouchi, T. et al., "Study <strong>on</strong> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Cooling-Heating Systems with Air<br />

Heat Source-Generators," Paper for 17th C<strong>on</strong>ference of Japan Air C<strong>on</strong>diti<strong>on</strong>ing<br />

and Refrigerati<strong>on</strong>, Tokyo 1983 (Japanese text).<br />

Oouchi, T. et al., "Thermodynamic Data for LiBr-H20 Soluti<strong>on</strong>s," Hitachi,<br />

Internal Reports, 1985 (Japanese text).<br />

Osaka Gas Company, "Thermodynamic Dlagrams for H20-LiBr-ZnC12, LiBr-H20<br />

Soluti<strong>on</strong>s," Internal Reports, 1985 (Japanese text).<br />

Osipov, Yu. V., Tretyakov, N. P., Nekrasov, N. N., "Heat and Mass<br />

Transfer During <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> of Amm<strong>on</strong>ia by an Aqueous Soluti<strong>on</strong> of Amm<strong>on</strong>ia<br />

from a Hydrogen-Amm<strong>on</strong>ia Mixture," 4 141: 1-8 (1972).<br />

Pavlopoulos, T., Strehlow, H., "Die Loslichkeiten der Alkalihalogenide<br />

in Methanol, Acet<strong>on</strong>itril und Ameisensaure," Z. Phys. Chem. 202 (1954),<br />

474.<br />

Penningt<strong>on</strong>, W., "HOW to Find Accurate Vapor Pressures of Lithium Bromide<br />

Water Soluti<strong>on</strong>s," Refr-lg. Eng. 63, 57-61 (1955) May.<br />

Perman, E. P., "Vapor Pressure of Aqueous Amm<strong>on</strong>ia Soluti<strong>on</strong>," Part I,<br />

J. Chem. SOC. 2, 718-25, 1901 (English text).<br />

Pierre, B., "Total Vapour Pressure in Bars Over Amm<strong>on</strong>ia-Water Soluti<strong>on</strong>s,''<br />

Kyltek. Tidsk, Sheet 14, August 1959 (English text).<br />

Pinchuk, 0. A., Orekhov, I. I., Karavan, S. V., Timofeevsky, L. S.,<br />

"Investigati<strong>on</strong> of Thermodynamic Properties of Multicomp<strong>on</strong>ent Soluti<strong>on</strong>s<br />

for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machines," Khol. Teknn., [6]: 36-38 (1982).<br />

Pinevich, G., "Viscosities of Amm<strong>on</strong>ia-Water Soluti<strong>on</strong>s ,I1 Cholodilnaja<br />

Tecknika,zpp 30, 1948.<br />

Plank, R., Hanbuch der Kaltetechnik 11, 285 (1953).<br />

Plank, R., "Handbuch der Kaltetechnik," 7, pg. 1957.<br />

Pluche, C. R., "Solubility of Various Fre<strong>on</strong>s ,in Esters and Alcohols,"<br />

Unpublished Master's Thesis, Purdue University, June 1959.<br />

Podoll, R. T., Gray, T. E., Rol<strong>on</strong>, C. E., and Sabo, K. A., "Determinati<strong>on</strong><br />

of Properties of Fluids for Solar Cooling Applicati<strong>on</strong>s,'' Prepared for<br />

Department of Energy by SRI Internati<strong>on</strong>al, Menlo Park, California, 1982.<br />

Polak, J. and Lu, B. C. Y., "Vapor-Liquid Equilibrium in System Amm<strong>on</strong>ia-<br />

Water at 14.69 and 55 psia," J. Chem. Eng. Data -, 20 No. 2, 1975.<br />

Psaknis, B. I., Cherkassy, V. S., "Calculati<strong>on</strong> of Characteristics of<br />

Lithium Bromide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong> Machines," Khol. Tekhn. 111:<br />

19-22 (1983).<br />

10 2


176. Radermacher, R., "Ternary Working Fluids for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat Pumps,"<br />

Proceedings of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>. Heat Pumps C<strong>on</strong>gress, March 20-22, Paris,<br />

France 1985.<br />

177. Radermacher, R., "Working Substance Combinati<strong>on</strong>s for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat<br />

Pumps," Unpublished Ph.D. Thesis, Institute €or Solid State Physics of<br />

the Technical University of Munich, January 1981 (English text).<br />

178. Radermacher, R. and Alefeld, G., "Lithiurnbromide-Wasser-Losungen als<br />

Absorber fur Amm<strong>on</strong>iak oder Methylamin," Brennst.-Warme Kraft I 34, 31-38,<br />

January 1982 (German text).<br />

179. Rafflenbeul, V<strong>on</strong> Lothar and Hartmann, H., "Eine Dynamische Apparatur zur<br />

Bestimmung V<strong>on</strong> Dampt-Flussigkeits-Phasengleichgewichten," Chemle-Technik<br />

- 7, Nr. 4 January 1978 (German text).<br />

180. Renz, M. "Properties of Working Fluids for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Plants," Institute<br />

fur Angewandte Thermodynamik und Klimatechnik, Universitat Essen, 1982<br />

(English text).<br />

181. Renz, M., "Eignung V<strong>on</strong> Arbeitsstoffpaaren fur Absorptianswarmepumpenprozesse,"<br />

Warmepumen, Vulkan - Verlag Essen 1978.<br />

182. Renz, M., "Thermische und Physikalische Eigenschaften des Stoffpaars<br />

Methanol-Lithiumbromide," KI, K lima - Ralte-Heizung 8 (1980) 9, 342.<br />

183. Renz, M., "Bestimmung Thermodynamischer Eigenschafter Wassriger und<br />

Methylakolischer Salzlosungen," Research Report No. 5, DKV (1980)<br />

(German text 1 .<br />

184. Renz, M., "Thermodynamisch Eigenschaften des Ternaren Stoffsystems<br />

Methanol-Lithiurnbromide - Zinkbromid," KI, Klima-Kalte-Heizung 9 (1981)<br />

9, 419.<br />

185. Renz, M., Steimle, I?., "Thermodynamic Properties of the Binary System<br />

Methanol-Lithium Bromide," Int. J. Refr. 4 (1981) 2, 97.<br />

186. Renz, M., Pfeiffenberger, U., "Thermodynamic Properties of the Binary<br />

System Water-Lithium Bromide," IIR - Meeting El, E2, Jerusalem (1982).<br />

187. Rizvi, S. S. H., Amm<strong>on</strong>ia-Water Equilibria, Ph.D. Thesis, University of<br />

Calgary, Calgary, Alberta (1985).<br />

188. Rizvi, S. S. H. and Heldemann, R. A,, "Vapor-Liquid Equilibrium in the<br />

Amm<strong>on</strong>ia-Water System," J. Chem. Eng. Data, - 32 p. 183-191, 1987.<br />

189. Robers<strong>on</strong>, J. P., "Solubility of Amm<strong>on</strong>ia in Solvent Mixtures of Low<br />

Volatility," Unpublished Master's Thesis, Purdue University, January<br />

1965.<br />

190. Robers<strong>on</strong>, J. P., Lee, C. Y., Squires, R. G., and Albright, L. F., "Vapor<br />

Pressure of Amm<strong>on</strong>ia and Methylamines in Soluti<strong>on</strong>s for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong><br />

Systems," ASHRAE Trans. - 72, Part 1, 198-208, 1966.<br />

103


191. Rolland, L., "Diagram of Fluid Properties for R133a-NMP9" Gaz de France,<br />

1986 (French text).<br />

192 Rosenfeld, L. M. , Karnaukh, M. , "Curves of C<strong>on</strong>centrati<strong>on</strong> -- Enthalpy<br />

Soluti<strong>on</strong>s of Lithium Bromide - Water for the Calculati<strong>on</strong> of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigeratl<strong>on</strong> Machine," Kholod. Tekh. - No. 1. 1958.<br />

193. Rosenfeld, L. M., Kuzmltskii, Yu. V., Paniev, G. A., "Entropy-Temperature<br />

Diagram of Equilibrium Phase of a Lithium Bromide Soluti<strong>on</strong> in Water,"<br />

IZV. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk. (1)) 70-73 1971 USSR<br />

(Russian text).<br />

194. Rush, W. F., Macriss, R. A. and Weil, S. A., "A New Fluid System for<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong>," Paper presented at the Fourth Internati<strong>on</strong>al<br />

C<strong>on</strong>gress of Heating and Air C<strong>on</strong>diti<strong>on</strong>ing, Paris, May 17-23, 1967.<br />

195. Saph<strong>on</strong>, V. S., Bittrich, H. J., "Physikalisch-Chemische Untersuchungen<br />

in Binaren Systemen v<strong>on</strong> Dimethylformamid mit Athylenglykol,<br />

Diathylenglykol und Wasser," Z. Phys. Chem. 252: 113-124 (1973).<br />

196. Scatchard, G., Epstein, L. F., Warburt<strong>on</strong>, J., Jr., and Cody, P.J.,<br />

"Thermodynamic Properties - Saturated Liquid and Vapor of Amm<strong>on</strong>ia-Water<br />

N*fixtures," J. ASRE May 1947.<br />

197. Schulz, S., "Eine Fundamentalgleichung fur das Gemisch aus Amm<strong>on</strong>iak und<br />

Wasser und die Berechnung v<strong>on</strong> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>skaltemaschinen-Prozesen,"<br />

Iiabilitati<strong>on</strong>sschrift an der Ruhr-Universitat Bochum, 1971.<br />

198. Schulz, S., "Calculati<strong>on</strong> and Optimisati<strong>on</strong> of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong><br />

Machine Processes with the Aide of Electr<strong>on</strong>ic Computers," Kaltetechnik-<br />

Klimatisierung, 24, 181-188, No. 7 (July 1972) (German text).<br />

199. Schulz, S.C.G., "Equati<strong>on</strong>s of State for the System Amm<strong>on</strong>ia-Water for the<br />

Use with Computers," Reprint from the Proceedings of the XII'th<br />

Internati<strong>on</strong>al C<strong>on</strong>gress of Refrigerati<strong>on</strong>, Washingt<strong>on</strong> D.C., Vol. 2, 1971<br />

(English text).<br />

200. Seher, D., "Arbeitsstoffgemische fur <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>swarmepumpen und<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>swarmetransformatoren," Forshungsberiehte des Deutschen Kalteund<br />

Klimatechnischen Vereins Nr. 16. (1985) (German text).<br />

201. Seher, D. and Stephan, K., "Trifluorethanol as Working Substance in<br />

AbsorptT<strong>on</strong> Heat Pumps and Heat Transformers," Klima-Kalte-Heizung, 295-<br />

301, July-August 1983 (German text).<br />

202. Seliverstov, V. M., "Solubility of Fre<strong>on</strong>s 12, 22, and 142 in<br />

Dicumylmethane, Oleic Acid, and Esters under Atmospheric Pressure at<br />

Various Temperatures," Zh. Prikl. Khim., 37 ill]: 2446-2450 (1964).<br />

203. Seliverstov, V. M., "Thermodynamic Properties of Soluti<strong>on</strong>s of Fre<strong>on</strong> 22-<br />

Dibutyl Phthalate," Tr. Livt., 75: 15-22 (1964).<br />

204. Seliverstov, V. M., "Use of Dibutyl Phthalate for Fre<strong>on</strong> <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerating Machines," Khol. Tekhn., 42 (21, 30-32, 1965 (Russian<br />

text).<br />

104


205. Seliverstov, V. M., "Solubility of Difluorom<strong>on</strong>ochloromethane in Dibutyl<br />

Phthalate at Various Temperatures and Pressures," J. Applied Chem. USSR<br />

- 38 [4]: 894-8 (1965).<br />

206. Seliverstov, V. M., "Solubility of M<strong>on</strong>ochlorodifluoromethane in Dibutyl<br />

Sebacate," RUSS. Phys. Chem., 39 [lo]: 1307-1309 (1965).<br />

207. Seliverstov, V, M., "Enthalpy-C<strong>on</strong>centrati<strong>on</strong>s Diagram of the Soluti<strong>on</strong><br />

Fre<strong>on</strong> 22-Dibutyl Phthalate," Khol. Tekhn. 43 [41: 36-38 (1966).<br />

208, Seliverstov, V. M., "Enthalpy - C<strong>on</strong>centrati<strong>on</strong> Diagram for R22-<br />

Dibutylsebacate Soluti<strong>on</strong>s," IZV.,Vysshikh Uchebn. Zaved. Energetika, 11<br />

[2]: 119-122 (1968).<br />

209. Seliverstov, V. M., "Excess Thermodynamic Functi<strong>on</strong>s of the System<br />

Difluorom<strong>on</strong>ochloromethane-Dibutyl Phthalate," Zh. Priki, Khim. 41 [l]:<br />

139-141 (1968).<br />

210. Seliverstov, V. M., "Thermodynamic Properties of Dichlorodifluoromethane-<br />

DibutylSebacate Soluti<strong>on</strong>s," Zh. Fiz. Khim., 42 121: 202-204 (1968).<br />

211. Seliverstov, V. M. and Khvastunov, V. N., "Thermodynamic Properties of<br />

the Ternary System Difluorochloromethane - Dibutyl Phthalate - Dimethyl<br />

FormamLde," Tr. VSES. Nauch. - Lssl. K<strong>on</strong>f. Terhmod. LENINGR. TEKHN.<br />

Inst. Khol. Prom., 330-334 (1970).<br />

212. Seliverstov, V. M,, "Solubility of Difluorom<strong>on</strong>ochloromethane in Certain<br />

Phthalates, Dioctyl Sebacate, Triacetin and Dimethylformamide," J. Appl.<br />

~- Chem. 43, No. 7, July 1970 (English text).<br />

213. Seliverstov, V. M., "Solubility of Fre<strong>on</strong> 22 in Mixtures of<br />

Dibutylphthalate and Dimethylformamide," Khol. Tekhn., 48 [l]: 34-36<br />

(1970).<br />

214. Seliverstov, V. M., "Phase Equilibria in the System Difluorochloromethane-Dibutylphthalate-Dimethylformamide,ll<br />

Zh. Prik. Khim., 44: 1534-<br />

1538 (1971).<br />

215. Sellerio, U., "<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>s-Kaltemaschine mit Isobutyiazetat-R22,"<br />

Kaltetechnik-Klimatisierung 18, Jahrgang, Heft 1, (1966) (German text).<br />

216. Sims, W. W., O'Neill, M. J., Reid, H. C., and Bisenius, P. M.,<br />

"Evaluati<strong>on</strong> of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Cycle for Space Stati<strong>on</strong> Envir<strong>on</strong>mental C<strong>on</strong>trol<br />

System Applicati<strong>on</strong>," Final <str<strong>on</strong>g>report</str<strong>on</strong>g> prepared for NASA Marshall Space<br />

Flight Center, HREC-5986-2, LMSC-HREC D306225 by Lockheed Inc.,<br />

Hunstville, Alabama, November 1972.<br />

217. Sosnkowska-Kehiaian, K. and Woycick, W., "Thermodynamic Properties of<br />

the Tert-Butyl alchol-benzene system, 1.1. Excess Enthalpy and Excess<br />

Entropy," Bul. Acad. Pol. Sci. Chim., 13 [9]: 648-655 (1965).<br />

I1<br />

218. Steimle, F. and Renz, M., Stoffsysteme fur <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g>swarmepumpen,"<br />

VDI-Berichte. [427], 37-44 (1981) (English text).


219. Steimle, F. and Rem, M., "Systems of Substances for <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Heat<br />

Pumps," VDI Report No. 427, 1981, Verin Duetscher Ingenieure (English<br />

text) .<br />

220. Suzuki, S. and Sato, S., "Fundamental Studies <strong>on</strong> the <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerating Machine: Part 111, Physical Properties of the Binary<br />

System, R22-Tetraethylene Glycol Dimethyl Ether (E181)," Technical<br />

Report of Kansai University No. 14, 1973 (Japanese text).<br />

221. Tange, Y. and Uemura, T., "The Thermal and Physical Properties of R152-<br />

Dimethylformamide System," Refrigerati<strong>on</strong> - 49, No. 562, 694 (1974)<br />

(Japanese text).<br />

222. Thieme, A., and Albright, L. F., "Solubility of Refrigerants 11, 21, and<br />

22 in Organic Solvents C<strong>on</strong>taining a Nitrogen Atom and in Mixtures of<br />

Liquids," ASHRAE J. - _- 3, 71-75, July 1961.<br />

223. Tsiklis, D. S., Linshits, L. R. and Goryunova, N. P., "Phase Equilibria<br />

in the System Amm<strong>on</strong>ia-Water," Russian J. Phys. Chem., USSR, - 39, 1590<br />

(1965).<br />

224. Tsimbalist, A. O., Prudnikov, A. I., Grekhov, I. I., "Solubility in a<br />

Lithium Nitrate - Amm<strong>on</strong>ia - Water System," (Leningr. Tekhnol. Inst.<br />

Kholod. Prom., Lenningrad, USSR). Zh. Prikl. Khim (Leningrad) 1983, 56<br />

(1) , 167-70 (RUSS .) .<br />

225. Tsimbalist, A. O., Prudnikov, A. I., Orekhov, T. I., "Solubility in the<br />

System of Amm<strong>on</strong>ia-Lithium Nitrate-Water," (USSR). Deposited DOC. 1983,<br />

VINITI 4436-83, 9 pp. (Russ.) Avail. VINITI.<br />

226. Tyagi, K. P., "Heat of Mixing of Some Refrigerant-Absorbent Combinati<strong>on</strong>s<br />

,'I Int. J. Tech., 14: 167-169 (1976)<br />

227. Uemura, T., "Additi<strong>on</strong> Agents Used for the H 0-LiBr <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerators," Paper presented at 10th C<strong>on</strong> $ erence of Air C<strong>on</strong>diti<strong>on</strong>ing<br />

and Refrigerati<strong>on</strong>, Tokyo, 4/22, 1976 (Japanese text).<br />

228. Uemura, T., "Die Physikalischen und Therrnodynamischen Eignesc'haften des<br />

Ternaren Systems Methanol - Lithiumiodid-Zinkbromid," Klima-Kalte-<br />

Technik, - 15, Heft 1, 6-12, 1973 (German text).<br />

229. Uemura, T., "H20-LiBr-ZnC12 <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerators," Paper at 17th<br />

Japan Air C<strong>on</strong>diti<strong>on</strong>ing and Refrigerati<strong>on</strong> C<strong>on</strong>ference, Tokyo, 1983<br />

(Japanese text).<br />

230. Uemura, T., "Inhibitors Used for H20-LiBr-LiSCN <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerators,"<br />

Paper presented at 1981 Japan Refrigerati<strong>on</strong> C<strong>on</strong>ference (Japanese<br />

text).<br />

231. Uemura, T., "The Physical Properties of R152-DMF Systems," Paper<br />

presented at the C<strong>on</strong>ference of Refrigerati<strong>on</strong> Society of Japan, November<br />

6-7, 1973 (Japanese text).<br />

106


232. Uemura, T., "Properties of Coolant - Absorbent System Used for<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong>," Refrigerati<strong>on</strong> - 52, No. 600, 65, October 1977<br />

(Japanese text).<br />

233. Uemura, T., "Studies <strong>on</strong> the Ethanol-Lithium Bromide Refrigerating<br />

Machine," Refrigerati<strong>on</strong> -950 No. 568, 89, February 1975 (Japanese text).<br />

234. Uemura, T., "Studies <strong>on</strong> H20-LiBr-C+H602 <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerators," Paper<br />

presented at 1981 Japan Refrigerati<strong>on</strong> C<strong>on</strong>ference (Japanese text).<br />

235. Uemura, T., "Studies <strong>on</strong> H20-LiBr-LiSCN <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerators," Paper<br />

presented at 1980 Japan Refrigerati<strong>on</strong> C<strong>on</strong>ference (Japanese text).<br />

236. Uemura, T., "Studies <strong>on</strong> H20-LiBr-ZnBr2 <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerators," Paper<br />

presented at 1983 Japan Refrigerati<strong>on</strong> C<strong>on</strong>ference (Japanese text).<br />

237. Uemura, T., "Studies <strong>on</strong> Inhibitors Used in the <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerators<br />

and Air C<strong>on</strong>diti<strong>on</strong>ers," Paper presented at the 1979 Japan Refrigerati<strong>on</strong><br />

C<strong>on</strong>ference, (Japanese text).<br />

238. Uemura, T., "Studies <strong>on</strong> the Inhibitors Used for the H20-LiBr <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerators," Paper presented at 12th C<strong>on</strong>ference of Air C<strong>on</strong>diti<strong>on</strong>ing<br />

and Refrigerati<strong>on</strong>, Tokyo, April 19, 1978 (Japanese text).<br />

239. Uemura, T., "Studies <strong>on</strong> the Lithium Chloride-Water <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating<br />

Machine," Tech. Reps. of Kansai University, No. 9, 71 (1967) (English<br />

text).<br />

240. Uemura, T., "Studies <strong>on</strong> the Methanol-Lithium Iodide-Zinc Bromide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerating Machine," Refrigerati<strong>on</strong> 50, No. 568, 95, 1975<br />

(Japanese text).<br />

241. Uemura, T., "Studies <strong>on</strong> the Methanol-Zinc Bromide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating<br />

Machine," Refrigerati<strong>on</strong> -351 No. 590, 1027, 1976 (Japanese text).<br />

242. Uemura, T., "Studies <strong>on</strong> the R21-Dimethylformamide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerati<strong>on</strong>,"<br />

Refrigerati<strong>on</strong> - 48, No. 551, 842, 1973 (Japanese text).<br />

243. Uemura, T., "Studies <strong>on</strong> the Specific Heat of Water-Lithium Bromide-<br />

Ethyleneglycol System," Refrigerati<strong>on</strong> -* 47 No. 532, 103, 1972 (Japanese<br />

text).<br />

244. Uemura, T., "The Vapor Pressure of Methanol-Absorbent Systems,"<br />

Refrigerati<strong>on</strong> -9 47 No. 532, 105, 1972 (Japanese text).<br />

245. Uemura, T. and Hasaba, S ., "Investigati<strong>on</strong> of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating<br />

Machine Operating <strong>on</strong> Soluti<strong>on</strong> of Methanol and Lithium-Bromide,"<br />

Refrigerati<strong>on</strong> _I 43, No. 490, 1, 1968 (Japanese text).<br />

246. Uemura, T. and Hasaba, S., "Investigati<strong>on</strong> of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating<br />

Machine Operating <strong>on</strong> Soluti<strong>on</strong> of Water and Lithium Iodide,"<br />

Refrigerati<strong>on</strong> 44, No. 504, 891, 1969 (Japanese text).<br />

10 7


247. Uemura, T. and Hasaba, T., "Some Physical Properties of Aqueous Soluti<strong>on</strong><br />

of Lithium-Bromide-Lithium Chloride Mixture," Refrigerati<strong>on</strong> .- I 45, No. 516,<br />

31, 1970 (Japanese text).<br />

248. Uemura, T. and Hasaba, S., "Studies <strong>on</strong> the Lithium Bromide-Water<br />

<str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine," 31-35, November 12, 1964. Technology<br />

Report of Kansai University, No. 6, 13, 1964 (English text).<br />

249. Uemura, T. and Hasaba, S., "Studies <strong>on</strong> the Methanol-Lithium Bromide-Zinc<br />

Bromide <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine," Refrigerati<strong>on</strong> - 44, No. 502,<br />

720, 1969 (Japanese text).<br />

250. Uemura, T. and Hasaba, S., "Studies <strong>on</strong> the R22-Absorbent <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g><br />

Refrigerating Machine," Refrigerati<strong>on</strong> - 43, No. 494, 1241, 1968 (Japanese<br />

text).<br />

251. Uemura, T. and Hasaba, S., "Thermal C<strong>on</strong>ductivity of Lithium Bromide-<br />

Water and M<strong>on</strong>oethylamine-Water Soluti<strong>on</strong>s ," 1__- Ref riserati<strong>on</strong> -_____, 38 No. 427 ,<br />

397, 1963 (Japanese text).<br />

252. Uemura, T. and Hasaba, S., "Vapor Pressure of H20-LiBr-LiCl System,"<br />

Refrigerati<strong>on</strong> ---__I-<br />

44, No. 502, 717, 1969 (Japanese text).<br />

253. Uemura, T., Hasaba, S., Higuchi, Y., Tanaka, K., and Ikenaga, S., "Some<br />

Thermal Properties of Lithium Chloride-Water Soluti<strong>on</strong>s for the Designing<br />

of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine," Refrigerati<strong>on</strong> - 40, No. 454, 671,<br />

1965 (Japanese text).<br />

254. Uemura, T., Higuchi, Y., and Hasaba, S., "Enthalpy-C<strong>on</strong>centrati<strong>on</strong> Diagram<br />

of Lithium Chloride-Water System for Designing of <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating<br />

Machine," Refrigerati<strong>on</strong> - 40, No. 456, 847, 1965 (Japanese text).<br />

255. Uemura, T., Higuchi, Y. Kano, M., and Hasaba, S., "Enthalpy-C<strong>on</strong>centrati<strong>on</strong><br />

Chart for Sodium Hyroxide-Water System," Kogaku To Gisitu - 2, No. 3, 1966<br />

(Japanese text).<br />

256. Uemura, T., Higuchi, Y., Saito, Y., and Hasaba, S., "Studies <strong>on</strong> the<br />

M<strong>on</strong>oethylamine - Water <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine," Refrigerati<strong>on</strong><br />

- 41, No. 468, 973-986, 1966 (Japanese text).<br />

257. Uemura, T., Higuchi, Y., Saito, Y., and Hasaba, S., "Studies <strong>on</strong> the<br />

M<strong>on</strong>o-Methylamine-Water <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> Refrigerating Machine," Refrigerati<strong>on</strong><br />

___ 42, No. 471, 2, 1967 (Japanese text).<br />

I1<br />

258. Uemura, T., Higuchi, Y., Seki, A., and Hasaba, S., Entropy-C<strong>on</strong>centrati<strong>on</strong><br />

Chart for Lithium Chloride-Water System," Refrigerati<strong>on</strong> 41, No. 463,<br />

391, 1966 (Japanese text).<br />

259. Uemura, T., Higuchi, Y., Toda, K., and Hasaba, S., "Vapor Pressures of<br />

Aqueous Soluti<strong>on</strong>s of Lithium Chloride," Refrigerati<strong>on</strong> 40, No. 454, 665,<br />

1965 (Japanese text).<br />

260. Uemura, T., Ikenaga, W., and Hasaba, S., "Physical Properties of the<br />

Binary System," R21 of R22-N. N Dimethylformamide," I Ref rigerati<strong>on</strong> - 42,<br />

No. 478, 626, 1967 (Japanese text).<br />

108


261. Usyukin, I. P., "Thermodynamic Curves of Lithium Bromide-Water Soluti<strong>on</strong>s,"<br />

Khold. Tekh. - 4 (11, 25-29, 1969 (English text).<br />

262. Weil, S. A., "Thermodynamic Properties of Lithium Chloride-Lithium<br />

Bromide-Water System," Unpublished Report, IGT Project No. 5-153 for the<br />

Foote Mineral Co. and American Gas Associati<strong>on</strong>, Chicago: Institute of<br />

Gas Technology, February 1960.<br />

263. Weil, S. A. and Ellingt<strong>on</strong>, R. T., "Corrosi<strong>on</strong> Inhibiti<strong>on</strong> of Lithium<br />

Bromide-Water Cooling Systems," Project ZB-29, Final Report for the<br />

General Research Planning Committ,ee of the American Gas Associati<strong>on</strong>,<br />

Chicago, Institute of Gas Technology, December 1956.<br />

264. Wils<strong>on</strong>, T. A., "The Total and Partial Vapor Pressures of Aqueous Amm<strong>on</strong>ia<br />

Soluti<strong>on</strong>s," Bulletin No. 146 of the University of Illinois Engineering<br />

Experimental Stati<strong>on</strong>, Urbana, Illinois: University of Illinois, February<br />

1925.<br />

265. W<strong>on</strong>, K. W., Selleck, F. T., and Walker, C. K., "Vapor-Liquid Equilibria<br />

of the Amm<strong>on</strong>ia-Water System," Paper presented at the I1 Internati<strong>on</strong>al<br />

Symposium <strong>on</strong> Phase Equilibrium and Fluid Properties in the Chemical<br />

Industry, Berlin, March 17-21, 1980.<br />

266. Wucherer, J., "Measurements of Pressure, Temperature and Compositi<strong>on</strong> of<br />

Liquids and Vaporous Phase of Amm<strong>on</strong>ia-Water Mixtures at the Saturati<strong>on</strong><br />

Point ,'I Z. Gesamt. Kalte-Ind. - 39, 97-104, 136-140, 1932 (German text).<br />

267. Yar<strong>on</strong>, I., "The Thermodynamic Properties of the System Dichlorom<strong>on</strong>ofluoromethane<br />

- Dimethyl Ether of Tetraethylene Glycol," Ben-Guri<strong>on</strong><br />

University of the Neger Institutes for Applied Research, Internal<br />

Report, 1985 (English text).<br />

268. Yaran, I., "The Thermodynamic Properties of the System Difluorom<strong>on</strong>ochloromethane<br />

- Dimethyl methyl Phosph<strong>on</strong>ate," Ben-Guri<strong>on</strong> University of<br />

the Negev Institutes €or Applied Research, Internal Report, 1985<br />

(English text) .<br />

269. Zatorskii, A. A., Dergachev, A. G., Kokhanskii, A. I. (USSR),<br />

"Determinati<strong>on</strong> of Parameters of a Water-Amm<strong>on</strong>ia Soluti<strong>on</strong>," Kholod.<br />

Tekh. Tekhnol., 1978, 26, 67-71 (Russ.).<br />

270. Zawacki, T. S., Macriss, Re A. and Rush, W. F., "The Effect of Additives<br />

<strong>on</strong> the Level of Instability of Gas/Liquid Interfaces: The <str<strong>on</strong>g>Absorpti<strong>on</strong></str<strong>on</strong>g> of<br />

Water Vapor by C<strong>on</strong>centrated Lithium Bromide Soluti<strong>on</strong>s in Falling-Film<br />

and Open-Channel Absorbers," Paper presented at the 75th Nati<strong>on</strong>al<br />

Meeting of the American Institute of Chemical Engineers, Detroit, June<br />

3-6, 1973.<br />

271. Zawacki, T. S., Leipziger, S., and Weil, S. A., "Inducement of<br />

C<strong>on</strong>vective Moti<strong>on</strong> in Static Absorbers,f' Paper presented at 4th Joint<br />

Chemical Engineering C<strong>on</strong>ference, American Institute of Chemical<br />

Engineers/Canadian Society of Chemical Engineers, Vancouver, B.C.,<br />

September 9-12, 1973.<br />

10 9


272. Zellhoeffer, G. F., "Solubility of Halogenated Hydrocarb<strong>on</strong> Refrigerants<br />

in Organic Solvents," Ind. Eng. Chem. - 29, May 1937.<br />

273. Zellhoeffer, G. F., Copley, M. J., and Marvel, C. S., "Hydrogen B<strong>on</strong>ds<br />

Involving the C-H Link. The Solubility of Haloforms in D<strong>on</strong>or Solvents,"<br />

J. Am. Chem. SOC. _. 60, 1337-43, June 1938.<br />

274. Zellhoeffer, G. F., and Copley, M. J., "The Heats of Mixing Haloforms<br />

and Polythylene Glycol Ethers," J. Am. Chem. SOC. 60, 1343-45, June<br />

1938.<br />

275. Zellhoeffer, G. F., "Commercial Refrigerati<strong>on</strong> by Low Pressure Steam," .I<br />

ASRE, 317-320, May 1937.<br />

276. Ziegler, B., "Warmetransformati<strong>on</strong> durch einstufige Sorpti<strong>on</strong>sprozesse mit<br />

dem Stoffpaar Amm<strong>on</strong>iak-Wasser," Diss, ETH Nr 7070, 1982 (German text).<br />

277. Ziegler, B. and Trepp, Ch., "Equati<strong>on</strong> of State for Amm<strong>on</strong>ia-Water<br />

Mixtures ,'I Internati<strong>on</strong>al Journal--of_ Ref rigerati<strong>on</strong> ---I - 7, No I 2, March 1984<br />

(English text).<br />

278. Zinner, K., "The Heat C<strong>on</strong>tent of Mixtures of Amm<strong>on</strong>ia and Water Dependent<br />

<strong>on</strong> the Compositi<strong>on</strong> and Temperature," '2. Gesamt. Kalte-Ind, I_ 41, 21-29,<br />

February 1934 (German text).<br />

J.<br />

110


6. APPENDIX. FLUIDS, PROPERTIES, DATA, AND RANGE OF CONDITIONS<br />

A- 1


~<br />

Table A.1.0.<br />

AMMONIA BINARY AND MULTICOMPONENT ABSORPTION FLUIDS PROPERTIES DATA<br />

A. 1.1. VaDor-Liauid Eauilibritrm<br />

Data Temp.<br />

Fluid System Type Range, OC<br />

Press. Range,<br />

atm<br />

Weight, %<br />

X (R)<br />

Y (R)<br />

NH3 + H20 TE 6-100 0.24-1.705<br />

0.50-18.97<br />

6.14-90<br />

NtI3 + H2O TE 97-147 0.899-16.3 0-25.9<br />

0-89 . 76<br />

NH3 + H20 GE 60-147 0.24-16.3 0-90<br />

0-100<br />

Ref e rence<br />

No . Author Year Country Text<br />

-<br />

-<br />

38 Clifford 1933 England Eng 1 ish<br />

38 Clifford 1933 England English<br />

38 Clifford 1933 England English<br />

5; NII3 + H20 GS -1 00-1 80<br />

w<br />

0.02-10 0-100<br />

0-100<br />

38 Clifford 1933 England English<br />

NH3 + H20 TS -8 3- 150 0.02-19 . 2 0-100<br />

0-100<br />

38 Clifford 1933 England English<br />

NH3 + H2O TGE . 0-61.3<br />

11.5-1801.6 (1)<br />

4.21-34.75 166 Perman 1901 England English<br />

NH3 + H20 TS 0-61.3<br />

5-1842 (1)<br />

0-35<br />

166 Perman 1901 England English<br />

NH3 + H20 TE -40-260<br />

0.04-48.39<br />

0-40<br />

167 Pierre 1901 Sweden English<br />

NH3 + H20 GE -40-175<br />

0.2-20<br />

0-100<br />

266 Wucher e r 1932 Germany German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Fluid System<br />

NH3 + H20<br />

Data<br />

Type<br />

GE<br />

Temp.<br />

Range, "C<br />

-20-1 40<br />

\*!eight, %<br />

Press. Range, x (R) - Reference<br />

-<br />

atm Y (R) No. Author<br />

- Year<br />

Country<br />

0.2-20<br />

Y=O-l00 266 Wucherer 1932 Germany<br />

Text<br />

German<br />

NH3 i- H20<br />

GS<br />

-50-210<br />

0.2-20<br />

0-100<br />

0- 100<br />

2 6 6 Wuche re r<br />

1932 Germany<br />

German<br />

NH3 + H20<br />

TS<br />

-50.5-211.4<br />

0.1-20<br />

0-100<br />

266 Wucherer<br />

1932 Germany<br />

German<br />

NH3 i- H20<br />

TS<br />

-6.2-202.7<br />

0.2-20<br />

Y=15-99<br />

266 Wucherer<br />

1932 Germany<br />

German<br />

NH3 + H2O<br />

TS<br />

NA<br />

0.2-20<br />

0.2-100<br />

10.5-100<br />

266 Wucherer<br />

1932 Germany<br />

German<br />

5; NH3 + H20 GTE<br />

1.38-120.12<br />

758-7000 (1)<br />

11.8-50.4<br />

145 Mollier<br />

1908 Germany<br />

German<br />

NH3 + H20<br />

GS<br />

20-150<br />

0-10<br />

0-50<br />

145 Mollier<br />

1908 Germany<br />

German<br />

NH3 + H20<br />

GS<br />

20-180<br />

1-10<br />

0-50<br />

145 Mollier<br />

1908 Germany<br />

German<br />

NW3 -+ R2O<br />

TS<br />

20- 150<br />

1-10<br />

0.15-52.7<br />

145 ?Jollier<br />

1908 Germany<br />

German<br />

NA3 + H20<br />

TS<br />

20-150<br />

1.08-10.20<br />

5-50<br />

145 Mollier<br />

1908 Germany<br />

German<br />

NH3 i- H20<br />

CP<br />

-70-1 75<br />

0.01-25<br />

NA<br />

199 Schulz<br />

1971 Germany<br />

English<br />

NH3 + H20<br />

CP<br />

-70-175<br />

0.01-25<br />

0-100<br />

197 Schulz<br />

1971 Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of<br />

Y - Vapor Phase A - Absorbent(s) ".I - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available<br />

A<br />

in Vapor Phase


_I<br />

Table A.1.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

NH3 + H20<br />

Data<br />

Type<br />

CP<br />

Temp.<br />

Range, OC<br />

-40-220<br />

Press. Range,<br />

atm<br />

0 . 2-so<br />

\?eight, X<br />

Y (R)<br />

Y (R)<br />

0- 100<br />

Reference<br />

NO Author Year Country Text<br />

-<br />

276 Ziegler 1982 Switzerland German<br />

NH3 + H20<br />

GCP<br />

-40- 22 0<br />

0.2-50<br />

0-100<br />

276 Ziegler 1982 Switzerland German<br />

NH3 + H20<br />

CP<br />

-40-220<br />

0.2-50<br />

0- 100<br />

277 Ziegler<br />

1984 Switzerland English<br />

NH3 -l- H20<br />

CCP<br />

-40-220<br />

0.2-50<br />

0-100<br />

277 Ziegler<br />

1984 Switzerland English<br />

NH3 + H20<br />

GC<br />

-200-227<br />

0.7-34 -47<br />

0- 100<br />

146 Morel 1983 France French<br />

?<br />

cn<br />

NH3 + H20<br />

NH3 + H20<br />

GCP<br />

P<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

59 Fischer , 1935 Germany German<br />

50 Electrolux 1970 Sweden English<br />

NH3 + €I20<br />

TEG<br />

130-230<br />

7-72<br />

7.2-68.5<br />

18.6-97.3<br />

68 Guillevic 1983 France French<br />

NH3 + H20<br />

TE<br />

0-9 1<br />

0.021-11.7<br />

8.5-84.3<br />

60.2-(265)'<br />

264 Wils<strong>on</strong> 1925 U.S.A. English<br />

NH3 + H20<br />

TE<br />

61-1 17<br />

15.3-35.9<br />

Y = 96.0-99.5<br />

122 Macriss 1944 U.S.A. Eng l i s h<br />

NH3 + H20<br />

GTS<br />

-76-243<br />

0.069-34.5<br />

0.0-100 .o<br />

0.0-100.0<br />

123 Macriss 1964 U.S.A. English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mHg (2) - mbar NA - Not Available


G<br />

.d<br />

rl<br />

M<br />

C<br />

w<br />

s rn<br />

-rl<br />

rl<br />

M<br />

c<br />

w<br />

.<br />

4<br />

m<br />

3<br />

m<br />

l-.<br />

m<br />

d<br />

c<br />

m<br />

3<br />

l-.<br />

e<br />

m<br />

r-+<br />

4<br />

cn<br />

a<br />

0<br />

a,<br />

In<br />

4<br />

.<br />

.<br />

m<br />

-4 P c 5<br />

m<br />

cn cn cn G<br />

m<br />

3 3 2 U<br />

0 m In m<br />

co 9 co co<br />

o\ m m m<br />

d<br />

d d 4<br />

n<br />

U<br />

k<br />

0<br />

5<br />

9<br />

c<br />

I 91<br />

s<br />

m<br />

ri<br />

0<br />

PI<br />

e<br />

l-.<br />

--I<br />

Nh<br />

e .<br />

'0<br />

mm<br />

I I<br />

m m<br />

0 .<br />

or-<br />

0<br />

C<br />

k.4<br />

m<br />

,.c V<br />

U<br />

td<br />

V<br />

w<br />

a<br />

cn<br />

4<br />

V<br />

A<br />

m a<br />

0 .<br />

m o<br />

03-<br />

I I<br />

..<br />

m e<br />

m m<br />

e<br />

G<br />

0<br />

z<br />

m<br />

a<br />

N<br />

V<br />

A<br />

mC<br />

..<br />

m 3<br />

00-<br />

I I<br />

..<br />

mm<br />

mm<br />

U<br />

k<br />

m<br />

br<br />

0<br />

a<br />

e<br />

N<br />

rn<br />

M<br />

c<br />

1.(<br />

C<br />

C<br />

a,<br />

r,<br />

9<br />

cn<br />

e<br />

a<br />

l-.<br />

co<br />

4<br />

..<br />

00<br />

99 oc<br />

00 00<br />

co 00<br />

44 dd<br />

I I I I<br />

00<br />

..<br />

oc<br />

..<br />

Hd<br />

1 1<br />

CO<br />

1 .<br />

* * 00 00 00<br />

04<br />

0<br />

a<br />

m<br />

3<br />

a,<br />

ri<br />

D m<br />

E-<br />

02<br />

e<br />

a<br />

L<br />

4<br />

0<br />

s-4<br />

e<br />

m<br />

N<br />

I<br />

.<br />

4<br />

co<br />

0<br />

0<br />

m<br />

e<br />

m<br />

I<br />

4<br />

N<br />

0<br />

0<br />

l-.<br />

h<br />

0 cc<br />

0 0 4 4<br />

N N N N<br />

I I I I<br />

e m r- m<br />

.--(<br />

u2 0 0<br />

e 0<br />

. . 0 0<br />

0 0<br />

l-.<br />

e<br />

4<br />

I<br />

.-.I<br />

m<br />

9 m<br />

s-4 e<br />

m m<br />

I<br />

I<br />

0 e m<br />

I l l<br />

w<br />

E-<br />

U v u PI V cn<br />

E- v w V €+ E-<br />

v<br />

wm w<br />

w v b<br />

0<br />

N<br />

5<br />

+<br />

m<br />

!=2<br />

2;<br />

0,<br />

5<br />

+<br />

m<br />

E<br />

z<br />

0<br />

N<br />

5:<br />

+<br />

0<br />

N<br />

X<br />

+ + 4- + + +<br />

m<br />

X<br />

z<br />

C 0 0 0<br />

N N N N<br />

x X X X<br />

A- 6


Table A. 1.0, (C<strong>on</strong>t. )<br />

Weight, %<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, OC atm Y (R) - No. Author Year Country Text<br />

I__-<br />

NH3 -+ H20 TEG 33-345 0.05-2 18 0.0-100.0 188 Rizvi 1987 Canada English<br />

0.0-100 . 0<br />

NH3 + H20 GE S 97-350 1-220 0.0-100.0 223 Tsiklis 1965 U.S.S.R. English<br />

0.0-100 . 0<br />

NH3 + H2O GC 0-65 0.01-30 10.0-90.0 149 Munsch 1978 Germany English<br />

NH3 + H20 GC -125-1 75 0.1-8000 (1) 12 . 0-87.6 112 Kracek 1930 U.S.A. English<br />

NH3 f H20 GC -23 1241 (1) 0-100 112 Kracek 1930 U.S.A. English<br />

NH3 f H20 TC -99 . 07- 0.1-10000 (1) 0-100 112 Kracek 1930 U.S.A. English<br />

192.78<br />

NH3 + H20 TC -90- 180 0.31-10000 (1) 0- 100 112 Kracek NA U.S.A. English<br />

NH3 + H20 GS 0-210 0.5-20 0-100 51 Ellerwald 1981 Germany German<br />

NH3 + 920 TEP 50-250 1 . 09-83.5 5.84-97.25 51 Ellerwald 1981 Germany German<br />

NH3 -t H20 PTS -34-21 1 0.5-13.6 0- 100 269 Zatorskii 1978 U.S.S.R. Russian<br />

NH3 + H20 P -62-4 99 0.07- 109 0.0-100.0 53 El-Sayed 1985 1J.S.A. English<br />

0 . 0-1 00 .o<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, I? - Veiqht<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A. 1.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

__.I Type<br />

Weight, %<br />

Temp. Press. Range, X (R)<br />

Range, OC atm Y (R)<br />

-<br />

No. Author<br />

Reference<br />

Year Country<br />

__I<br />

Text<br />

NH3 + LiN03<br />

TE<br />

40-125<br />

1-16<br />

33.7<br />

62<br />

Gensch<br />

1937<br />

Germany<br />

Gernan<br />

NH3 + LiN03<br />

TE<br />

-10-130<br />

0.2-13.8<br />

32.6-100<br />

21<br />

Blytas<br />

1961<br />

U. S. A.<br />

Eng 1 i s h<br />

NB3 -F<br />

NaSCN<br />

TGE<br />

-20-90<br />

0.34-49.64<br />

42.2-100.0<br />

23<br />

Blytas<br />

1962<br />

U.S.A.<br />

English<br />

NH3 + NaSCN<br />

TE<br />

25-100<br />

1.01-29.23<br />

34.4-53.0<br />

189<br />

Ro ber s<strong>on</strong><br />

1965<br />

U. S. A.<br />

Eng 1 i sh<br />

hx3 + LiSCN<br />

GTEP<br />

28-104<br />

1.06-15.40<br />

40.2-61.6<br />

128<br />

Macr i ss<br />

1971<br />

U. §.A.<br />

English<br />

?<br />

03<br />

NH3 + LiSCN<br />

NH3 + NH4I<br />

GE<br />

TE<br />

35-100<br />

25-100<br />

1.19-11.65<br />

4.. 68-49.16<br />

41.4-54.4<br />

25.6-50.3<br />

19<br />

190<br />

Biermann .<br />

Robers<strong>on</strong><br />

1978<br />

1964<br />

U. S. A.<br />

U. S.A.<br />

English<br />

English<br />

NB3 f NH4I<br />

TS<br />

20-120<br />

2.34-54.61<br />

29.9-39.9<br />

63<br />

George<br />

1965<br />

U. S.A.<br />

Eng 1 i s h<br />

N H ~ + NaBr<br />

TE<br />

25-100<br />

3.58-53.85<br />

39.6-60.6<br />

190<br />

Rob er s<strong>on</strong><br />

1966<br />

U. S. A.<br />

English<br />

NH3 -k NH4Br<br />

TE<br />

25-100<br />

2.94-52.16<br />

31.3-51.6<br />

190<br />

Rob e r so n<br />

1966<br />

U.S.A.<br />

English<br />

NH3 -+ NaI<br />

TE<br />

25-100<br />

3.42-57.23<br />

37.1-63.6<br />

190<br />

Rober s<strong>on</strong><br />

1966<br />

U. S. A.<br />

English<br />

NH3 -+ DMETEG<br />

TE<br />

30-1 00<br />

1.65-35.78<br />

1.5-17.6<br />

190<br />

Robe r so n<br />

1966<br />

U. S.A.<br />

Eng 1 i s h<br />

N H ~ -k DMETrEG<br />

TE<br />

30-100<br />

1.16-36.37<br />

1.2-20.9<br />

190<br />

Robe 1:s<strong>on</strong><br />

1966<br />

u. S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s) M -<br />

(1) - mmHg (2) - mbar NA -<br />

ppm by weight of A in Vapor Phase<br />

Mole, W - Weight<br />

No t Avai 1 ab 1 e


Table A.1.0.<br />

(C<strong>on</strong>t.)<br />

?-<br />

Weight, X<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System Type_ Range, "C atm Y (R) NO Author Year Country Text<br />

NH3 + 1, 4 - TE 30-100 0.22-25.92 2.2-26.3 190 Robers<strong>on</strong> 1966 U.S.A. Eng 1 ish<br />

Butanediol<br />

NH3 + 2, 3 - TE 30-100 0.54-30.13 2.6-30.6 190 Robers<strong>on</strong> 1966 U.S.A. Eng 1 ish<br />

Butanediol<br />

NH3 + TEG TE 30-100 0.16-38.31 1.2-30.4 190 Robers<strong>on</strong> 1966 U.S.A. English<br />

NH3 + Polydi- GE 30 7.23-1 1.72 2.0-6.0 190 Robers<strong>on</strong> 1966 U.S.A. English<br />

methylsiloxane<br />

UJ NH3 + Nitro- TE 30-100 3.10-35.30 2.0-13.5 147 Morr<strong>on</strong>e 1962 U.S.A. English<br />

benzen<br />

NH3 + Octyl- TE 30- 100 2.55-36.89 2.5-33.6 147 Morr<strong>on</strong>e 1962 U.S.A. English<br />

amine<br />

NH3 -k DMA TE 30-100 1.79-40.75 3.2-37.8 147 Morr<strong>on</strong>e 1962 U.S.A. English<br />

I<br />

-<br />

NH3 + Aniline TE 30-100 2.21-21.93 5.4-38.9 147 Morr<strong>on</strong>e 1962 U.S.A.<br />

English<br />

NH3 + H20:LiBr TGS -80-300 1-30 0-100 177 Radetmacher 1981 Germany English<br />

(2:3) (W> GE 0-100<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


C<br />

m<br />

4<br />

-4<br />

btl<br />

G<br />

J<br />

h<br />

C<br />

(d<br />

al<br />

(3<br />

E:<br />

d<br />

00<br />

m<br />

d<br />

k<br />

0)<br />

a<br />

al<br />

a<br />

(d<br />

&<br />

5<br />

E<br />

9<br />

r-<br />

ri<br />

0<br />

0<br />

I<br />

0<br />

rl<br />

0<br />

m<br />

I<br />

rl<br />

0<br />

0<br />

N<br />

I<br />

0<br />

N<br />

I<br />

m<br />

(3<br />

k<br />

m<br />

.d<br />

.;!<br />

P<br />

P<br />

.<br />

m<br />

cn<br />

E=J<br />

P<br />

. .<br />

h<br />

E<br />

al<br />

a<br />

4<br />

00<br />

m<br />

d<br />

\o 9<br />

9 9<br />

m<br />

m<br />

rl<br />

rl<br />

.$ In<br />

00 cc<br />

m<br />

m<br />

d<br />

I-i<br />

C<br />

0<br />

d<br />

0<br />

m 03<br />

k<br />

k<br />

aJ<br />

aJ<br />

P<br />

P<br />

2 2<br />

k<br />

0<br />

5<br />

2<br />

z<br />

O-1<br />

a<br />

aJ<br />

9 N<br />

N<br />

m<br />

0 0<br />

m<br />

m<br />

4 rl<br />

r- r.<br />

-3 -3<br />

n<br />

4.J<br />

d<br />

0<br />

V<br />

W<br />

0<br />

d<br />

4<br />

a,<br />

r-i<br />

P<br />

KJ<br />

c+<br />

d<br />

m<br />

0<br />

0<br />

d<br />

I<br />

9<br />

9<br />

m<br />

I<br />

r-<br />

0 0<br />

0<br />

0<br />

I<br />

5:<br />

I<br />

9<br />

d<br />

.-i<br />

4<br />

rl<br />

m<br />

9<br />

I<br />

CIJ<br />

d<br />

b<br />

N<br />

4<br />

m<br />

N<br />

U<br />

m<br />

ca<br />

In In 0<br />

4<br />

m<br />

I<br />

a2<br />

I<br />

cc<br />

4<br />

0 ?-I<br />

.<br />

v7<br />

b<br />

In<br />

N<br />

N<br />

I<br />

N<br />

m<br />

I<br />

m<br />

I<br />

m<br />

N<br />

I<br />

m<br />

. . d<br />

.<br />

0 0 0 0<br />

0<br />

0<br />

N<br />

I<br />

0<br />

m<br />

I<br />

0<br />

0<br />

N<br />

I<br />

0<br />

N<br />

0<br />

0<br />

N<br />

I<br />

0<br />

N<br />

I<br />

0<br />

0<br />

N<br />

I<br />

0<br />

N<br />

I<br />

0<br />

0<br />

I<br />

In<br />

N<br />

d<br />

Pl<br />

w<br />

I3<br />

m<br />

ct,<br />

E-+<br />

m<br />

c3<br />

M<br />

t+<br />

cn<br />

c3<br />

.. -<br />

.. n<br />

A-10


Data<br />

Weight, %<br />

Temp. Press. Range, X (R) Reference<br />

NO Author Year Country Text<br />

_L<br />

Fluid System Type Range, OC atm Y (R)<br />

NH3 + H20:Cr03 TE 70-260 9.9-47 .<br />

-<br />

84 4-45 167 Pierre 1901 Sweden English<br />

NH3 + LiN03: TE 35 & 50<br />

1,4 BDL (0.77:l<br />

to 9.0:1)(W)<br />

0.15-2.00 7.7-33.1 224 Tsimbalist 1983 U.S.S.R. English<br />

NH3 + LiNO3:<br />

1,6 HDL (2.7:1,<br />

TE 35 & 50 0.15-2.00 21.9-37.4 224 Tsimbalist 1983 U.S.S.R. English<br />

7.4: 1)(W)<br />

NH3 + 1, 4 TE 30-100 0.93-37.58 10.4-48.9 190 Robers<strong>on</strong> 1966 U.S.A. English<br />

? Butanediol:<br />

i--L<br />

P NaSCN (6.04:l)<br />

(M)<br />

NH3 + 1, 4<br />

Butanedfol:<br />

TE 30-100 1.53-39.16 12.0-40.9 190 Robers<strong>on</strong> 1966 U.S.A. Eng 1 ish<br />

NaSCN (13.29: 1)<br />

(M)<br />

m3 + 1, 4<br />

Butanediol :NaI<br />

TE 30-100 1.08-41.78 10.4-39.3 190 Robers<strong>on</strong> 1966 U.S.A. English<br />

(4.99:1)(M)<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


P<br />

cn<br />

.<br />

5<br />

.",<br />

d<br />

rl<br />

M<br />

C<br />

w<br />

.<br />

4 4<br />

cn<br />

co<br />

P 9<br />

2<br />

"rf<br />

d<br />

bn<br />

F:<br />

w<br />

a<br />

C<br />

m<br />

rl<br />

M<br />

C<br />

W<br />

9<br />

9<br />

en<br />

4<br />

9 5,<br />

9 J3<br />

m Q\<br />

d 4<br />

9<br />

m<br />

4<br />

m<br />

6<br />

d<br />

.<br />

A<br />

4J<br />

C 0<br />

V<br />

W<br />

C 0 rn<br />

&<br />

a,<br />

P<br />

2<br />

0<br />

m<br />

.-i<br />

.<br />

.<br />

m<br />

m<br />

I<br />

r-<br />

Q,<br />

F:<br />

0<br />

v,<br />

k<br />

QI<br />

P<br />

0<br />

a?<br />

0<br />

en<br />

rd<br />

I-.<br />

0<br />

*<br />

I<br />

m<br />

m<br />

In<br />

0 N<br />

hl N<br />

I I<br />

J m<br />

Q<br />

cu<br />

0<br />

rl -4<br />

r:<br />

0<br />

v,<br />

br<br />

aJ<br />

F<br />

0<br />

rY<br />

0<br />

m<br />

6-4<br />

hl<br />

4<br />

J3<br />

I<br />

r-4<br />

c7<br />

f-i<br />

k<br />

0<br />

W<br />

W<br />

-d<br />

r-4<br />

c<br />

a3<br />

m<br />

aJ<br />

v,<br />

rd<br />

c:<br />

pi<br />

k<br />

0<br />

(d<br />

><br />

.<br />

0<br />

9<br />

\o<br />

m<br />

I<br />

hl<br />

9<br />

d<br />

.<br />

hl<br />

J<br />

I<br />

d<br />

9<br />

.<br />

m<br />

.-i<br />

m<br />

J<br />

J<br />

cv<br />

I<br />

m<br />

.--l<br />

.<br />

f-i<br />

.<br />

In<br />

03 h 0<br />

r-4 f-i<br />

I<br />

I<br />

9<br />

hl<br />

0<br />

Pl<br />

0<br />

I l l<br />

4<br />

ozz<br />

0<br />

Q<br />

rl<br />

I<br />

0<br />

m<br />

0 0<br />

0 0<br />

4 4<br />

I<br />

I<br />

0 0<br />

0 m<br />

0<br />

0<br />

.-i<br />

I<br />

0 m<br />

0<br />

m<br />

4<br />

I<br />

0<br />

C<br />

9-4<br />

I<br />

w<br />

E-c<br />

w<br />

E-r<br />

w<br />

IE"<br />

w<br />

€-I<br />

v)<br />

CY<br />

H<br />

e<br />

X<br />

?n<br />

*d-cc<br />

ow<br />

m .rf II<br />

.--la4<br />

aJ *.<br />

4 c-<br />

mm<br />

mu<br />

x 7s<br />

z m<br />

n<br />

.--I<br />

..<br />

..<br />

n<br />

r:<br />

W<br />

h<br />

4<br />

el<br />

z<br />

2<br />

A-12


Table A.l.O.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

NH3 + H20<br />

Weight, %<br />

Data Temp. Press. Range, x (9) Reference<br />

Type Range, "C atm -f (R) No. Author Year Country Text<br />

GS -151-0 NA 0.0-1 00 .o 123 Macriss 1964 U.S.A. English<br />

-<br />

-<br />

NH3 + H20<br />

NH3 + H20<br />

NH3 + H20<br />

NH3 + H2O<br />

TGE 0 - -110 1<br />

GC -100-0 HA<br />

GE 25-75 NA<br />

GS 0- 130 NA<br />

0-100 142 Mir<strong>on</strong>ov 1955 U.S.S.R. Eng 1 ish<br />

0-100 112 Kracek NA U.S.A. English<br />

25-40 27 Rokelmann 1983 Germany English<br />

0-100 181 Renz 1978 Germany German<br />

T-<br />

P<br />

NH3 + H20<br />

N H ~ f NaSCN<br />

NH3 + LiNO3<br />

NH3 + LiN03<br />

w3 + LiN03<br />

NH3 + Licl<br />

NH3 + Li2SO4<br />

GE 25-75 NA 25-40 46 Ehmke 1983 Germany English<br />

GE -90-305 NA 0.0-100 .o 23 Blytas 1962 U.S.A. English<br />

GE 5-35 NA 28.8-38.3 225 Tsimbalist 1983 U.S.S.R. English<br />

GS 0-80 NA 30-100 181 Renz 1978 Germany German<br />

TE NA 0.264-0.313 15-19 13 Baldi 1971 Italy Italian<br />

TE NA 0.251-0.574 15-23 13 Raldi 1971 Italy Italian<br />

TE NA 0.303-0.459 15-19 13 Baldi 1971 Italy Italian<br />

NH3 + KMO3<br />

TE NA 0.293-0.593 15-22 13 Raldi<br />

1971 Italy 1 t a1 ian<br />

X - Liquid Phase R - Refrigerant c - pQm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - nmHg (2) - mbar NA - Not Available


_L<br />

Fluid System<br />

NH3 + KC1<br />

Data<br />

Type<br />

TE<br />

Weight, Z<br />

Temp, Press. Range, X (R)<br />

Range, OC atm Y (R)<br />

NA<br />

0.31 4-0.503<br />

15-21<br />

No.<br />

13<br />

Author<br />

Raldi<br />

Reference<br />

Year Country<br />

-<br />

1972 Ttaly<br />

Text<br />

Italian<br />

NH3 + KBr<br />

TE<br />

NA<br />

0.285-0.474<br />

14-19<br />

13<br />

'Baldi<br />

1971 Italy<br />

Italian<br />

N H ~ + NaBr TE<br />

NA<br />

0.332-0.591<br />

16-2 1<br />

13<br />

Baldi<br />

1971 Italy<br />

Italian<br />

NH3 + NaCl<br />

TE<br />

NA<br />

0.188-0.351<br />

11-17<br />

13<br />

Baldi<br />

1971 Italy<br />

It ali an<br />

NH3 + NaN03<br />

TE<br />

NA<br />

0.312-0.359<br />

15-16<br />

13<br />

Raldi<br />

1971 Italy<br />

Italian<br />

NH3 + Na2SO4<br />

TE<br />

NA<br />

0.351-0.359<br />

16-17<br />

13<br />

Raldi<br />

1971 Italy<br />

Italian<br />

NH3 f LiN03: TE<br />

H 0 (0.73:l to GS<br />

3 tw><br />

NB3 + LiNO3: GE<br />

~~0 (2.3:1 to m)<br />

5-35<br />

0-60<br />

NA<br />

NA<br />

0.9-29.1<br />

10-40<br />

225 Tsimbalist<br />

46 Ehmke<br />

1983 U.S.S.R.<br />

1983 Germany<br />

English<br />

English<br />

NB3 + LiN03:<br />

1,4 BDL (0.77:1<br />

to 9.0:1)(W)<br />

GS<br />

35 & 50<br />

0,15-2<br />

7.7-33.1<br />

224 Tsimbalist<br />

1983 U.S.S.R.<br />

English<br />

NH + LiNO3: GS<br />

1,a HDL (2.7:1,<br />

7.4: 1) (W)<br />

35 6( 50<br />

0.15-2<br />

21.9-37.4<br />

224 Tsirnbalist<br />

1983 U.S.S.R.<br />

English<br />

x - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbentts) M -<br />

(1) - mmHg (2) - mbar NA -<br />

ppm by weight of A in Vapor Phase<br />

Mole, W - Weight<br />

Not Avallable


Table A. 1.0. (C<strong>on</strong>t. )<br />

A.1.3.<br />

Corrosi<strong>on</strong><br />

Weight, %<br />

Data Temp. Cor ro s i<strong>on</strong> X (R) Reference<br />

Fluid System Type Range, OC Inhibitor, wt % Y (9) No. Author Year Country Text<br />

NH3 + H2O:LiBr TE 200 N<strong>on</strong>e 10 67 Griess 1985 U.S.A. English<br />

-<br />

A.1.4.<br />

Heat of Mixing<br />

Weight, %<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, "C atm Y (R) NO Author Year Country Text<br />

NH3 + H20 TE 10.5-15 1 9.5-78.8 144 Mollier 1909 Germany German<br />

-<br />

-<br />

7<br />

i--L<br />

u-l NH3 + 1120 GE 15 1 0-60 144 Mollier 1909 Germany<br />

German<br />

NH3 + H20 GC 100 NA 0-100 149 Munsch 1978 Germany English<br />

NH3 + H20 TE 12 & 10 NA 0-100 232 Uemura 1977 Japan Japanese<br />

NH3 + H20 GTE NA NA 18.0-80.34 14 Saud 1909 France French<br />

NH3 + H20 TE NA NA 18.0-80.34 15 Raud 1909 France French<br />

NH3 + H-20 GS NA NA 0- 100 278 Zinner 1934 Germany<br />

German<br />

NH3 + H2O GCP NA NA NA 59 Fischer 1945 Germany German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


F<br />

I<br />

K 9- I<br />

c I<br />

F<br />

b<br />

h<br />

F<br />

?<br />

E<br />

ti<br />

L i I<br />

a<br />

c<br />

C<br />

t<br />

C<br />

c<br />

I<br />

.?<br />

c<br />

C<br />

\<br />

C<br />

U<br />

r<br />

C<br />

;j<br />

1,<br />

U<br />

7<br />

3<br />

.<br />

R<br />

-I<br />

r<br />

C<br />

.r-i<br />

M<br />

m<br />

h<br />

P<br />

9<br />

N<br />

hl<br />

al<br />

cn<br />

cd<br />

s<br />

P4<br />

b<br />

0<br />

a<br />

(d<br />

3<br />

c<br />

.rl<br />

4<br />

4<br />

z<br />

I<br />

cb<br />

€3<br />

00<br />

?-i<br />

00<br />

co<br />

?-id<br />

I I<br />

c.9<br />

00<br />

2<br />

0<br />

0<br />

c r-i<br />

z I<br />

0<br />

N<br />

I<br />

0<br />

e<br />

d 4s<br />

w E+<br />

c9<br />

w<br />

E-+<br />

m m<br />

X<br />

E Z<br />

+ +<br />

m m<br />

i”Zg<br />

m<br />

s z<br />

+ + +<br />

A-16


Table A.1.0.<br />

(C<strong>on</strong>t.)<br />

Data Temp.<br />

Fluid System Type Range, "C<br />

NH3 + H20: TGS 30-180<br />

LiBr (2:3)(W)<br />

Weight, X<br />

Press. Range, X (R) Reference<br />

atm Y (R) No. Author Year Country Text<br />

NA 0-100<br />

-<br />

-<br />

177 Radermacher 1981 Germany Eng 1 i eh<br />

NA 0-100 178 Radermacher 1982 Germany German<br />

0-25 16-100 47 Ehmke 1984 Germany German<br />

t;<br />

P<br />

4 NH3 + NaSCN<br />

GS 20-200<br />

GE -65-100<br />

0-2 5 16-100 47 Fhmke 1984 Germany German<br />

NA 31.2-89.9 23 Blytas 1962 U.S.A. English<br />

NH3 + LiSCN TE 27-138<br />

NA 37.4-52.5 128 Macriss 1971 U.S.A. English<br />

A. 1.6. Vapor-Liquid Enthalpies<br />

NH3 + H20 TE -26.25 -<br />

131.83<br />

NH3 + H20 GS -100-200<br />

NH3 + H20 GS -80-180<br />

9.2-17.9<br />

NA<br />

NA<br />

10-90 278 Zinner 1934 Germany German<br />

0- 108 278 Zinnelr 1934 Germany German<br />

0-100 278 Zinner 1934 Germany German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


n<br />

J.J d<br />

Q<br />

V<br />

.<br />

W<br />

0<br />

4<br />

P<br />

a,<br />

d<br />

a<br />

a<br />

E-1<br />

C<br />

k<br />

a,<br />

c9<br />

8<br />

h<br />

G<br />

rd<br />

a<br />

c3<br />

m<br />

N<br />

m<br />

E<br />

4<br />

rl<br />

0)<br />

-E<br />

2<br />

6<br />

4<br />

v-4<br />

00<br />

cc<br />

I I<br />

00<br />

4V-i<br />

0<br />

N<br />

I<br />

N<br />

0<br />

J<br />

cl<br />

4<br />

N<br />

I<br />

0<br />

m<br />

I<br />

w<br />

H<br />

0<br />

32<br />

4-<br />

X<br />

z<br />

N<br />

m<br />

c<br />

v)<br />

1-(<br />

4<br />

ho<br />

t:<br />

w<br />

c<br />

a,<br />

*d<br />

cn<br />

0<br />

R<br />

en<br />

P-l<br />

s<br />

x<br />

=t<br />

d<br />

0<br />

bc<br />

U<br />

V<br />

a,<br />

rl<br />

PI<br />

0<br />

Ln<br />

Q<br />

Q<br />

I<br />

0<br />

4<br />

4<br />

z<br />

0<br />

m<br />

N<br />

I<br />

Q<br />

ln<br />

I<br />

PI<br />

E+<br />

c9<br />

?-r\l<br />

!z<br />

+<br />

tr:<br />

B<br />

m<br />

&4<br />

0<br />

0.<br />

ITi<br />

3<br />

A-18


Table A.1.0.<br />

(C<strong>on</strong>t.)<br />

Weight, X<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System Type Range, 'C atm Y (R) No. Author<br />

9-<br />

Year Country Text<br />

NW3 + R20 GC 150-250 4-35 8-100 51 Ellerwald 1981 Germany German<br />

IJH3 f R20 PTS -34-21 4. 0.5-19.6 0-100 269 Zatorskii 1978 U.S.§.R, Russian<br />

NH3 f E20 CP -5-7, 43-55 3.45-5.52, NA 94 Jain 1971 U.S.A. English<br />

17.24-24.13<br />

NH3 i- H20 P -62-499 0.07-lO9 0.0-100.0 53 El-Sayed 1985 U.S.A. English<br />

0.0-100.0<br />

NE3 4- H20: cs -20-210 1-30 0-100 179 Radermacher 1981 Germany English<br />

3; LiAr (2:3)(~)<br />

co<br />

m3 -+ H20: GS -70-2 10<br />

LiRr (2:3)(W)<br />

1-30<br />

-<br />

0-1 00 178 Radermacher 1982 Germany<br />

German<br />

A.1.7.<br />

Specific Heat<br />

NH3 + H20 P NA NA<br />

NH3 + H2O P -40-220 0.2-50<br />

NB3 + H20 P -40-220 0.2-50<br />

NHQ + H20 GS 10-30 NA<br />

NA 232 Uemura 1977 Japan Japanese<br />

0-1 00 276 Ziegler 1982 Switzerland German<br />

0-100 277 Ziegler 1984 Switzerland English<br />

0-100 232 Uemura 1977 Japan Japanese<br />

X - Liquid Phase R - Ref rigerant e - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A. 1 .O.<br />

(C<strong>on</strong>t.<br />

Weight, %<br />

nata Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, *C atm<br />

y<br />

No. Author Year Country Text<br />

(R) -<br />

NH3 -+ H20: TGS 30- 150 NA<br />

LiBr (2:3)(W) GE<br />

-<br />

0-100 177 Radermacher 1981 Germany Engli sh<br />

NA<br />

0-100 176 Radermacher 1981 Germany English<br />

NA<br />

0-100 178 Radermacher 1982 Germany German<br />

NA<br />

0-50 47 Ehmke 1984 Germany German<br />

NA<br />

0-50 47 Ehmke 1984 Germany<br />

German<br />

NR3 i LiN03:<br />

R20 (3:l)(W)<br />

GS<br />

20-90 NA 10-50<br />

32 Rokelrnann 1985 Germany English<br />

NH3 + NaSCN TE 0-25 NA 12.3-42.6 23 Rlytas 1962 E.S.A. English<br />

NH3 + UNO3 G SP NA NA 24-40 62 Gensch 1937 Germany German<br />

A.1.8.<br />

Stabilitv<br />

NH3 + N&CN Nas. 150 NA NA 90 Macriss 1464 U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by welght of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - rnbar NA - Not Available


Table A.1.0,<br />

(C<strong>on</strong>t.)<br />

A.1.9.<br />

Viscosity<br />

Weight, Z<br />

Data Temp. Press. Range , x (R) Reference<br />

Fluid System Type Range, OC atm Y (R) No * Author Year Country Text<br />

NH3 + H20 GTS 10-149 1-20 0- 100 124 Pinevich 1948 U.S.S.R. English<br />

-<br />

-<br />

NH3 + NaSCN GE -10-60 NA 35.0-100.0 23 Blytas<br />

1962 U.S.A. English<br />

NH3 + LiSCN TE 24-93 EA 39.0-52.0 128 Macriss 1971 U.S.A. Engl i s h<br />

NH3 + LiNO3: GE 10-70 HA<br />

H20 (2.3:l to a)<br />

26.2-32.2 46 Ehmke 1983 Germany Eng 1 ish<br />

N<br />

r<br />

A.l.lO. Mass Transfer Rate<br />

NH3 + H20 GE 26<br />

0.40-1.07<br />

MA 36 Burnett 1970 U.S.A. English<br />

NH3 + H20 C NA<br />

NA<br />

NA 163 Osipov 1972 rJ.S.S.R. English<br />

NH3 + H20<br />

GS<br />

NA<br />

0-4<br />

0-40 163 Osipov 1972 U.S.S.R. English<br />

NH3 + H20 GE NA<br />

NH3 + NaSCN GE 25<br />

10-20<br />

1<br />

NA 163 Osipov 1972 U.S.S.S. Eng 1 ish<br />

40-50 104 Kashiwaga 1987 Japan Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of h in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


II_<br />

I_<br />

A,1.11.<br />

Heat Transfer Rate<br />

Weight, W<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, "C atm Y (R) No. Author Year Country Text<br />

NH3 + H20 GS 30-36 NA NA 163 Osipov 1972 U.S.S.R. English<br />

-<br />

NH3 4- H20 GE NA 18-20 HA 163 Osipov 1972 U.S.S.R.<br />

Eng 1 ish<br />

NH3 f H20 C NA NA NA 163 Osipov 1972 U.S.S.R. Eng 1 ish<br />

A.1.12.<br />

Thermal C<strong>on</strong>ductivlx<br />

NH3 + H20 GS 0-60 NA 0- 100 232 Uemura .I977 Japan Japanese<br />

N B ~ + NaSCN TE 20-69 NA 12.3-1 7 , 3 23 Rlytas I962 U.S.A. English<br />

A.1.13.<br />

Refractive Index<br />

m3 + H20 GS NA 5-20 0-100 278 Zinner 1934 Germany German<br />

A.1.14.<br />

Entropy<br />

'M3 + 820 CP -40- 2 20 0.2-50<br />

NH3 4- H20 CP -40-220 0.2-50<br />

WN3 f H20 CP NA NA<br />

0-100 276 Ziegler 1982 Switzerland German<br />

0-100 271 Ziegier 1984 Swftzerland English<br />

NA 59 Fischer I935 Germany German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mHg (2) - mbar NA - Not Available


Table A.1.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Press. Range, X (Q) Reference<br />

Fluid System Range, OC atrn y (R) c_ No. Author - Year Country Text<br />

NH3 + H20 P -62-499 0.07-109 0.0-100.0 53 El-Sayed<br />

0.0-1 00.0<br />

1985 U.S.A. English<br />

NH3 + H20 GS - 5 0- 2 00 0 . 6-25 0-100 111 Kouremenos 1971 Greece<br />

German<br />

NH3 + H20 PTS -34-2 11 0.5-19.6 0-100 269 Zatorskii 1978 U.S.S.R. English<br />

- __<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbat NA - Not Available


a,<br />

In<br />

a<br />

C<br />

a<br />

a<br />

(d<br />

'7<br />

d<br />

(B<br />

n<br />

(d<br />

t,<br />

0<br />

00<br />

m<br />

d<br />

(d<br />

T2<br />

u<br />

2<br />

r"<br />

m<br />

m<br />

d<br />

a<br />

m<br />

rn<br />

I<br />

N<br />

N<br />

4<br />

.<br />

r\<br />

d<br />

W<br />

m<br />

m<br />

I<br />

N<br />

-3<br />

8<br />

N<br />

yz<br />

I<br />

B<br />

pi<br />

w<br />

E-!<br />

k<br />

m<br />

'ti 4<br />

i-<br />

o,<br />

z<br />

a<br />

m<br />

d)<br />

c<br />

(B<br />

CL<br />

to<br />

Q<br />

c<br />

(d<br />

Q<br />

to<br />

9<br />

e3<br />

m<br />

o\<br />

4<br />

(d<br />

P<br />

(d<br />

(I)<br />

to<br />

'jd<br />

0<br />

12<br />

0<br />

Q<br />

0<br />

I<br />

.<br />

d<br />

u-l<br />

m<br />

m<br />

A<br />

d<br />

U<br />

0<br />

0<br />

a3<br />

I<br />

m<br />

Q<br />

m<br />

4<br />

I<br />

0<br />

PI<br />

w<br />

c3<br />

k<br />

J<br />

9<br />

0<br />

z<br />

f2<br />

hl<br />

a,<br />

m<br />

a<br />

F:<br />

(d<br />

a<br />

a<br />

E:<br />

(d<br />

a<br />

(d<br />

'7<br />

m<br />

m<br />

m<br />

d<br />

(d<br />

P<br />

ld<br />

u)<br />

(d<br />

tr.<br />

0<br />

12<br />

4<br />

0<br />

00<br />

I 0<br />

0<br />

e<br />

4<br />

w<br />

0<br />

0<br />

e3<br />

I 4<br />

0<br />

m<br />

I<br />

0<br />

4<br />

P.4<br />

c3<br />

E+<br />

k<br />

!=<br />

.d d<br />

d-<br />

a<br />

X<br />

N<br />

I l l<br />

4<br />

vzz<br />

A-24


~~<br />

I_<br />

Table A.2.0.<br />

(Coat.)<br />

Fluid System<br />

Data<br />

Type<br />

TE<br />

Temp.<br />

Range, OC<br />

25-93<br />

Press. Range,<br />

atm<br />

0.002-0.26<br />

Weight, %<br />

X (R)<br />

Y (R)<br />

40 & 50<br />

- No.<br />

Author<br />

58 Felli<br />

Reference<br />

Year Country Text<br />

1979 Italy English<br />

H20 + LiBr<br />

GE<br />

0-1 10<br />

0.0 1-0.32<br />

40-1 00<br />

5% Pelli<br />

1979 Italy English<br />

H20 + LiBr<br />

GC<br />

0-180<br />

0.01-1<br />

0-70<br />

186 Renz<br />

1982 Germany English<br />

H20 + LiBr<br />

GS<br />

0- 180<br />

1-1000 (2)<br />

30.0-100.0<br />

218 Steimle<br />

1981 Germany English<br />

H20 + LiBr<br />

GS<br />

0-180<br />

1-1000 (2)<br />

30.0-100.0<br />

219 Steimle<br />

1981 Germany English<br />

?<br />

h)<br />

H20 + LiRr<br />

H20 + LiBr<br />

GP<br />

P<br />

GTP<br />

20-240<br />

0-200<br />

1-10,000 (1)<br />

1.4-7000 (1)<br />

38.0-45 .O<br />

30.0-100.0<br />

162 Osaka Gas<br />

261 Usyuk-in<br />

1985 Japan Japanese<br />

1969 U.S.S.R. English<br />

H20 + LiBr<br />

TE<br />

0- 100<br />

0.0008-1.01<br />

27.8-100.0<br />

52 Ellingt<strong>on</strong><br />

1957 U.S.A. English<br />

H20 + LiBr<br />

TE<br />

25-177<br />

0.0010-3.61<br />

39 6-50 3<br />

165 Penningt<strong>on</strong><br />

1955 U.S.A. English<br />

H20 + LiBr<br />

TEGP<br />

4-182<br />

0.001-0.85<br />

37.7-100.0<br />

137 McNeely<br />

1979 U.S.A. English<br />

H20 + LiBr<br />

GE<br />

28-56<br />

0.0037-0.030<br />

41.0-46.9<br />

119 Ledding<br />

1965 U.S.A. English<br />

H20 + LiBr<br />

GS<br />

100<br />

0.1-1<br />

40- 100<br />

46 Ehmke<br />

1983 Germany Eng li s h<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, 'w - Weight<br />

(1) - mmHg (2) - mbar YA - Not Available


92-V<br />

n<br />

+-4X<br />

I l l<br />

W<br />

P<br />

0<br />

%-<br />

N<br />

r<br />

P-<br />

o<br />

CJ<br />

G3<br />

’d<br />

0<br />

I<br />

w<br />

N<br />

0<br />

F<br />

I<br />

10<br />

0<br />

0<br />

0<br />

n<br />

F<br />

v<br />

VI<br />

0<br />

0<br />

I<br />

9<br />

0<br />

0<br />

N<br />

W<br />

9<br />

c:<br />

m<br />

9<br />

F:<br />

Y<br />

m<br />

c.l<br />

a<br />

a<br />

-4<br />

4<br />

0,<br />

tl m<br />

3<br />

m<br />

S<br />

m<br />

P<br />

P-<br />

m<br />

7<br />

Ed<br />

0<br />

+<br />

r<br />

P.<br />

n<br />

P<br />

h)<br />

3<br />

Q<br />

I<br />

h)<br />

0<br />

F<br />

cd<br />

I<br />

N<br />

8<br />

8<br />

0<br />

A<br />

b-.<br />

W<br />

ul<br />

0<br />

0<br />

I<br />

0<br />

0<br />

0<br />

I--<br />

N<br />

VI<br />

a<br />

C<br />

ID<br />

i3<br />

c^<br />

Y<br />

pl<br />

)1<br />

ro<br />

m<br />

VI<br />

4<br />

@.l<br />

“cl<br />

a,<br />

=I<br />

4<br />

m<br />

P<br />

oa<br />

S<br />

ID<br />

w<br />

ID n<br />

n<br />

0<br />

z<br />

W


~ 0.02-1<br />

Weight, X<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System Type Range, '6 atm - Y (R) No. Author Year Country Text<br />

TGE<br />

103.9-160.6<br />

1<br />

46.3-87.5<br />

-<br />

77 Hasaba<br />

-<br />

1964 Japan<br />

Japanese<br />

GE<br />

-10-1 10<br />

1-1000 (1)<br />

19.6-100.0<br />

246 Uerniira<br />

19 6 9 Japan<br />

Japanese<br />

GP<br />

. o-100<br />

1-100 (1)<br />

20.0-100.0<br />

246 Uemura<br />

1969 Japan<br />

Japanese<br />

TE<br />

26.30-35.35<br />

22.54-23.65 (I)<br />

5 1.6-73.0<br />

246 Uemura<br />

1969 Japan<br />

Japanese<br />

GS<br />

20-120<br />

0.006-2.0<br />

15.0-50 .o<br />

19 Biermann<br />

1978 U.S.A.<br />

English<br />

GE<br />

0-1 10<br />

0.01-0.32<br />

44-100<br />

58 Felli<br />

1979 Italy<br />

English<br />

TE<br />

10-7 7<br />

0.01-0.35<br />

68<br />

58 Felli<br />

1999 Italy<br />

English<br />

GS<br />

100<br />

0.06-1<br />

60-100<br />

46 Ehmke<br />

1983 Germany<br />

Engli sh<br />

CP<br />

NA<br />

NA<br />

NA<br />

78 Hasseler<br />

1982 England<br />

English<br />

GE<br />

0-1 10<br />

0.01-0.32<br />

30-100<br />

58 Felli<br />

1979 Italy<br />

English<br />

GE<br />

0-1 10<br />

0.0 1-0.32<br />

50-1 00<br />

58 Felli<br />

1979 Italy<br />

English<br />

GE<br />

0-1 10<br />

0.01-0.32<br />

35-100<br />

58 Felli<br />

1979 Italy<br />

Eng 1 ish<br />

GS<br />

75-175<br />

.0<br />

30.0<br />

55 Ericks<strong>on</strong><br />

1985 U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmiIg (2) - mbar NA - 'Not Available


h<br />

c<br />

a<br />

aJ<br />

c7<br />

E<br />

4<br />

cn<br />

3<br />

d<br />

m<br />

5<br />

.<br />

. 4<br />

cn<br />

3<br />

P<br />

El)<br />

3<br />

.<br />

.d<br />

cn<br />

P<br />

4<br />

m<br />

P<br />

. 4<br />

u?<br />

"s .<br />

w<br />

d<br />

'rl<br />

-3<br />

93<br />

cu<br />

J<br />

M<br />

d<br />

vi<br />

3<br />

W<br />

(r<br />

0<br />

N<br />

I<br />

N<br />

N<br />

r-4<br />

m<br />

F-<br />

N<br />

I<br />

9<br />

.<br />

e 4<br />

u<br />

0<br />

0<br />

N<br />

&I<br />

m<br />

c,<br />

m<br />

W.<br />

V<br />

0<br />

0<br />

N<br />

w<br />

Kii<br />

u<br />

m<br />

03<br />

u<br />

0<br />

c<br />

rn<br />

u<br />

m<br />

w<br />

rg<br />

v)<br />

0<br />

8<br />

I<br />

a<br />

d<br />

0<br />

0<br />

I<br />

Q<br />

cl<br />

4<br />

m<br />

9<br />

Q<br />

N<br />

Q<br />

0<br />

I<br />

4<br />

N<br />

0<br />

Q<br />

0<br />

d<br />

.<br />

0<br />

rn<br />

0<br />

0<br />

I<br />

0<br />

0<br />

8<br />

,-4<br />

.<br />

0<br />

CTi<br />

I<br />

m<br />

0<br />

0<br />

0<br />

.<br />

F4<br />

r'l<br />

h<br />

m<br />

0<br />

0<br />

I<br />

m<br />

03<br />

0<br />

0<br />

0<br />

m<br />

N<br />

0<br />

c<br />

I<br />

cn<br />

0<br />

CL'<br />

.<br />

*-I<br />

.<br />

N<br />

m<br />

0<br />

0<br />

I<br />

N<br />

N<br />

0<br />

Q<br />

A<br />

W<br />

N<br />

0<br />

0<br />

hl<br />

w<br />

w<br />

E--+<br />

H c 3 U<br />

a<br />

w<br />

9<br />

4-<br />

0 N<br />

N<br />

s-4<br />

+ + +<br />

A-28


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Type<br />

Temp.<br />

Range, OC<br />

-<br />

Press. Range,<br />

a t m<br />

Weight, %<br />

X (R)<br />

Y (R)<br />

- Reference<br />

NO Author Year Country Text<br />

-<br />

H20 + DEG<br />

GS<br />

120<br />

0-2<br />

0-100<br />

104 Klyucheva 1980 U.S.S.R. English<br />

H20 + TEG<br />

GE<br />

60-160<br />

200 & 918 (2)<br />

0-100<br />

200 Seher 1985 Germany German<br />

H20 + DMF<br />

TEP<br />

30-150<br />

17-760 (1)<br />

0- 100<br />

152 Myasnikova 1974 U.S.S.R. English<br />

H2O + DMF<br />

GEP<br />

-10-40<br />

NA<br />

0-48<br />

54 Ennan 1972 U.S.S.R.<br />

Eng 1 ish<br />

3;<br />

N<br />

\5,<br />

HZ0 + PPA<br />

GS<br />

60-100<br />

60-100<br />

0.05-1.02<br />

0.05-1.02<br />

0.2-99.6 (M)<br />

0.2-95.8 (M)<br />

0.2-99.6 (M)<br />

0.2-95.8 (M)<br />

179 Rafflenbeul 1978 Germany German<br />

179 Rafflenbeul 1978 Germany German<br />

27-51<br />

0.0028-0.010<br />

13.8<br />

119 Ledrling 1965 1J.S.A. English<br />

27-43<br />

0.011-0.028 Sat. at 2OoC 19 Biermann 1978 U.S.A. Eng 1 i s h<br />

H*O +<br />

LfC C13~02<br />

GTE<br />

27-41<br />

0.015-0.033 Sat. at 2OoC 19 Riemann 1978 U.S.A. English<br />

H20 + Li-<br />

GTE<br />

Senzenesulf<strong>on</strong>ate<br />

27-35<br />

0.021-0.032 Sat. at 20°C 19 Biermann 1978 U.S.A. English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mdg (2) - mhar NA - Not Available


Q)<br />

m<br />

a<br />

C<br />

a<br />

04<br />

(d<br />

7<br />

Q)<br />

m<br />

a<br />

fi<br />

ld a<br />

(d<br />

?-Y<br />

E:<br />

ld<br />

a<br />

(8<br />

+J<br />

0<br />

W<br />

m<br />

d<br />

L<br />

I<br />

h<br />

F:<br />

(d<br />

a<br />

4<br />

E v f<br />

c3<br />

P<br />

4<br />

v?<br />

3<br />

C<br />

ld<br />

P.<br />

(d<br />

-I<br />

.-I<br />

03<br />

m<br />

d<br />

0<br />

9<br />

CT.<br />

4<br />

4 0<br />

oo r-<br />

cT\<br />

cn<br />

d<br />

d<br />

to<br />

I--<br />

m<br />

d<br />

7-4<br />

co<br />

m<br />

.-)<br />

I<br />

a<br />

m<br />

(d<br />

.c<br />

p.<br />

k<br />

0<br />

a<br />

UJ 3<br />

rd<br />

k<br />

3<br />

P<br />

ri<br />

I--<br />

cn<br />

N ,+<br />

r-<br />

4: d<br />

N<br />

N<br />

In<br />

m<br />

N<br />

C<br />

4<br />

0<br />

I<br />

N<br />

N<br />

w<br />

(8<br />

0<br />

u<br />

0<br />

N<br />

u<br />

a<br />

0<br />

n<br />

U<br />

C<br />

0<br />

u<br />

v<br />

00<br />

9<br />

9<br />

I<br />

4<br />

I--<br />

(?<br />

a3<br />

e<br />

m<br />

I<br />

9<br />

N<br />

4<br />

0<br />

0<br />

9<br />

I<br />

0<br />

0<br />

4<br />

.<br />

0<br />

I<br />

0<br />

0,<br />

e<br />

m<br />

I<br />

9<br />

*c:<br />

U O<br />

(dm<br />

m(?<br />

+J<br />

(d<br />

v1<br />

m<br />

w<br />

0<br />

N<br />

P<br />

N<br />

-3<br />

I l l<br />

n<br />

v<br />

c-4<br />

fi<br />

4<br />

v<br />

0<br />

0<br />

e<br />

I<br />

F\l<br />

e<br />

N<br />

0<br />

0<br />

I<br />

9<br />

0<br />

0<br />

.<br />

d<br />

0<br />

0<br />

0<br />

I<br />

4<br />

d<br />

0<br />

.-i<br />

I<br />

ln<br />

0<br />

0<br />

.<br />

0<br />

I<br />

4<br />

0<br />

0<br />

.-i<br />

0<br />

0<br />

m<br />

I<br />

a<br />

4<br />

Q<br />

m<br />

0<br />

0<br />

I<br />

In<br />

4<br />

4<br />

rT)<br />

43<br />

I<br />

In<br />

d<br />

(?<br />

cn<br />

I<br />

N<br />

d<br />

m<br />

Q)<br />

I<br />

Q)<br />

N<br />

,-4<br />

I<br />

0<br />

I l l<br />

0<br />

9<br />

P,<br />

m<br />

a<br />

P.4<br />

v:<br />

L3<br />

w<br />

c3<br />

w<br />

(3<br />

VI<br />

c3<br />

0<br />

c3 1<br />

d<br />

..<br />

.. In<br />

h<br />

fi<br />

W<br />

W<br />

z<br />

r:<br />

I l l<br />

n<br />

xslc<br />

A-30


aJ<br />

m<br />

PI<br />

c:<br />

a<br />

ck<br />

(d<br />

c,<br />

c<br />

a ca<br />

9<br />

a<br />

a<br />

ca a C<br />

r, 9 w<br />

B<br />

3<br />

r,<br />

d 4<br />

m<br />

a .<br />

c, 3<br />

0 0 06<br />

h h b<br />

6 m 6<br />

r.4 U d<br />

c m<br />

d<br />

rl<br />

M<br />

d<br />

rs.<br />

Jz<br />

m<br />

d<br />

4<br />

M<br />

C<br />

w<br />

P<br />

. P<br />

Ln v1<br />

3<br />

00<br />

b<br />

m<br />

d<br />

3 .<br />

rn<br />

h<br />

0<br />

I+<br />

&<br />

m<br />

1<br />

ca<br />

E1<br />

co<br />

k<br />

3<br />

3<br />

3<br />

c<br />

F:<br />

ca<br />

e<br />

&<br />

a,<br />

.d<br />

m<br />

C<br />

d<br />

ca<br />

E<br />

CI<br />

aJ<br />

*ri<br />

m<br />

c<br />

C<br />

‘ 2<br />

CI<br />

a,<br />

-4<br />

a<br />

.<br />

U<br />

C<br />

0<br />

V<br />

W<br />

.<br />

0<br />

N<br />

.<br />

2<br />

aJ<br />

4<br />

P<br />

(d<br />

E-l<br />

9<br />

m<br />

+<br />

.<br />

I<br />

.<br />

*<br />

d<br />

m<br />

I- m<br />

N h h<br />

m -f -3<br />

N N N<br />

0<br />

rn 0 . m<br />

. . 0 .<br />

N 0 0 U<br />

h a\ 4 N<br />

I I I I<br />

4 0 0 m<br />

.<br />

h<br />

In<br />

n<br />

4<br />

W<br />

_ _<br />

N<br />

-3<br />

N .<br />

m . 0<br />

0 4<br />

I I<br />

4 m<br />

0 QI<br />

.<br />

0 m<br />

.<br />

0 0<br />

rg N<br />

m<br />

.<br />

4<br />

n<br />

4 n<br />

v 4<br />

v<br />

4 0<br />

. 0 m<br />

co 0<br />

m 0<br />

I+ 4 0<br />

I I I<br />

hl 0 *<br />

0 h<br />

. 0<br />

Qo 0<br />

.<br />

0<br />

u<br />

0<br />

0 N<br />

.<br />

U<br />

(d<br />

U<br />

a<br />

VI<br />

.<br />

.<br />

N<br />

h<br />

0<br />

I<br />

0 h<br />

0<br />

0<br />

V<br />

0<br />

0 hl<br />

u<br />

(d<br />

U<br />

.<br />

a<br />

co<br />

.*<br />

I-4<br />

.<br />

0<br />

I<br />

9<br />

N<br />

4<br />

.<br />

8<br />

1 % N<br />

4 0<br />

m \D<br />

4 4<br />

I<br />

sa<br />

0<br />

0 0<br />

rb 0 N<br />

4 06<br />

I<br />

I<br />

0 00<br />

0 In<br />

N<br />

0<br />

9<br />

0<br />

ro<br />

!&<br />

w Pi E-l c3 w<br />

0<br />

U<br />

4<br />

.. ..<br />

I*co<br />

Ppm<br />

rl.<br />

+<br />

A-31


'5<br />

7-1<br />

d<br />

M<br />

C<br />

w<br />

c m<br />

7-1<br />

rl<br />

bo<br />

C<br />

w<br />

.<br />

4<br />

m<br />

D<br />

m<br />

9<br />

cn<br />

r-4<br />

4<br />

rn<br />

.<br />

P<br />

m<br />

9<br />

cn,<br />

r-4<br />

P<br />

. e: C P<br />

03<br />

co<br />

m R a rn<br />

(d<br />

a 9<br />

rd<br />

", r=l<br />

In m<br />

9 00<br />

m<br />

m<br />

r-4 r-4<br />

m 0<br />

PI 9<br />

m<br />

r-i<br />

m<br />

Fi<br />

n<br />

*J<br />

G<br />

0<br />

u<br />

v<br />

0<br />

.<br />

C.l<br />

t<br />

aJ<br />

d<br />

P<br />

(d<br />

Ec<br />

H !<br />

I<br />

N<br />

oc<br />

N<br />

m<br />

N<br />

rl<br />

0<br />

I<br />

ob<br />

N<br />

0<br />

0<br />

.<br />

cn<br />

m<br />

4 r-4<br />

r-4 r-i<br />

Ln<br />

m<br />

00 N<br />

N (?<br />

. .<br />

m t-7<br />

9 Q\<br />

0 0<br />

0 0<br />

I I<br />

hl \o<br />

d 4<br />

0 Q<br />

0 8<br />

M<br />

c<br />

.d<br />

"rj<br />

a al<br />

k-3<br />

0<br />

N<br />

rJ<br />

I<br />

0<br />

N<br />

u"<br />

d<br />

0<br />

I<br />

u"<br />

t-<br />

0<br />

0<br />

.<br />

0<br />

rd<br />

k<br />

d<br />

2<br />

P<br />

.<br />

a<br />

03 I<br />

m<br />

m<br />

p\J<br />

0<br />

c<br />

0<br />

.<br />

.<br />

0<br />

0<br />

0<br />

rl<br />

I<br />

0<br />

0<br />

rl<br />

n<br />

d<br />

v<br />

0 h<br />

I<br />

m<br />

0<br />

.<br />

C<br />

0<br />

m<br />

d<br />

0<br />

2.<br />

In<br />

0<br />

0<br />

c7 I<br />

h<br />

N<br />

&<br />

aJ<br />

v)<br />

rd<br />

2=<br />

P<br />

k<br />

0<br />

a<br />

3<br />

9 m m<br />

I I<br />

9 m<br />

N CJ<br />

0 h<br />

0 9 N<br />

9 03 4 .-I<br />

I I I I<br />

r- 0 0 h<br />

h) N N N<br />

I<br />

w<br />

c3<br />

w<br />

c3<br />

w u<br />

w<br />

W<br />

Frr<br />

cn<br />

V<br />

..<br />

F<br />

P<br />

Fr:<br />

n<br />

.. .<br />

9<br />

kN<br />

a *.<br />

4-4<br />

3.4-<br />

m u<br />

+ N<br />

k<br />

D m<br />

N C<br />

ZN<br />

k<br />

o m<br />

CJC<br />

XN<br />

A-32


m C m<br />

m m<br />

a a cn<br />

m<br />

c 3 +J<br />

k<br />

aJ<br />

. rn . a. cn<br />

C P B<br />

c, 3 El<br />

dJ<br />

C C<br />

m m<br />

P<br />

a<br />

m m<br />

c, 9 El<br />

n<br />

LI<br />

.<br />

W<br />

0<br />

IX<br />

-4<br />

.<br />

.<br />

0<br />

0<br />

0<br />

I<br />

0<br />

0<br />

N<br />

. .<br />

. .<br />

0 m<br />

0 03<br />

m N<br />

I I<br />

0 N<br />

0 -1<br />

PJ l-4<br />

m<br />

. m<br />

Q\<br />

I I<br />

0<br />

0<br />

m<br />

-4<br />

.<br />

4j<br />

e<br />

.<br />

.<br />

0<br />

0<br />

2<br />

0<br />

r-4<br />

U<br />

0<br />

N<br />

0<br />

.<br />

0<br />

e<br />

I<br />

0<br />

0<br />

N<br />

W<br />

4<br />

P<br />

m<br />

H<br />

h<br />

d<br />

W<br />

L<br />

0<br />

4<br />

I<br />

d<br />

0 0<br />

.<br />

PJ N<br />

I I<br />

0 0<br />

\b<br />

0<br />

.<br />

h<br />

I-i<br />

W<br />

.<br />

I<br />

.<br />

U<br />

U<br />

h<br />

d<br />

v<br />

cn 4<br />

0<br />

4<br />

I<br />

N<br />

0<br />

0<br />

0<br />

. .<br />

0<br />

0<br />

03<br />

a<br />

0 d<br />

e<br />

e<br />

N<br />

0<br />

0<br />

ul<br />

I<br />

0<br />

m<br />

m<br />

0<br />

0<br />

I<br />

N<br />

\D-<br />

0<br />

.<br />

0<br />

0<br />

!n<br />

N<br />

I<br />

0<br />

N<br />

m<br />

4<br />

I<br />

03<br />

m<br />

h<br />

0<br />

m<br />

s-4<br />

I<br />

0<br />

rc)<br />

I/<br />

$1 u<br />

43<br />

F<br />

rl<br />

ov<br />

CVC<br />

XN<br />

ov<br />

NC<br />

X N<br />

A-33<br />

-. ~<br />

....................<br />

......................


al<br />

u)<br />

Q)<br />

E:<br />

(d<br />

a<br />

iu<br />

i r,<br />

4<br />

m<br />

9<br />

. 4<br />

m<br />

3 .<br />

\c)<br />

9<br />

m<br />

"4<br />

00<br />

r--<br />

o\<br />

'1-1<br />

rp<br />

k<br />

3<br />

s<br />

aJ<br />

3<br />

4<br />

%<br />

h<br />

H<br />

*rl<br />

24<br />

0<br />

h<br />

w<br />

0<br />

a<br />

CQ<br />

P<br />

4-<br />

m<br />

N<br />

h<br />

co<br />

9<br />

0<br />

4<br />

n<br />

a<br />

0<br />

C<br />

0<br />

C<br />

\o<br />

.<br />

0<br />

0<br />

0<br />

I<br />

*<br />

e<br />

.<br />

d<br />

?+<br />

Q<br />

0<br />

el<br />

I<br />

0<br />

m<br />

d<br />

V<br />

c<br />

hl<br />

0<br />

U<br />

C<br />

0<br />

u<br />

v<br />

-4<br />

u<br />

RJ<br />

I<br />

-5.<br />

-3<br />

d<br />

4<br />

0<br />

6<br />

4<br />

.<br />

0<br />

c\I<br />

P<br />

Q,<br />

rl<br />

P<br />

(D<br />

Ec<br />

h<br />

r-4<br />

W<br />

0<br />

0<br />

h<br />

I<br />

0<br />

Q<br />

n<br />

4<br />

W<br />

I l l<br />

4<br />

v z z<br />

0<br />

4<br />

$--i 0<br />

0<br />

r-<br />

I<br />

0<br />

0<br />

I<br />

03<br />

0<br />

.<br />

0<br />

I<br />

c\I<br />

I<br />

0<br />

0<br />

rl<br />

.<br />

0<br />

0<br />

9<br />

I<br />

0<br />

N<br />

I<br />

4<br />

0<br />

9<br />

cn<br />

Ir!<br />

c3<br />

w<br />

m<br />

(3<br />

!&<br />

PI<br />

w<br />

c3<br />

w<br />

c3<br />

cn<br />

c3<br />

A-34


Fluid System<br />

H20 + LiBr:<br />

4,BLN (20:1)(M)<br />

H20 + LiBr:<br />

4,BLN (20:1)(M)<br />

H20 + Li1:EG<br />

Data<br />

Type<br />

GEP<br />

GS<br />

GS<br />

Weight, %<br />

Temp. Press. Range, X (R) Reference<br />

Range, OC atm Y (R) No. Author Year Country Text<br />

_I<br />

60-120 0-700 ( 1) 44.1-100.0 88 Iyoki 1984 Japan English<br />

40-100 30-400 (1) 40.0 b 60.0 88 Iyoki 1984 Japan English<br />

-20-160 0.5-700 (1) 10.0-100.0 157 Ono 1979 Japan English<br />

-<br />

~~0 + LiBr: GS<br />

27-260 0.0013-1.33 5.0-25.0 11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A. English<br />

u ul<br />

€50 + NaOH: GS<br />

KOH : C SOB<br />

(1.67:1.5:1)(W)<br />

50-175<br />

0.01-1.0<br />

30.0 55 Ericks<strong>on</strong> 1985 U.S.A.<br />

English<br />

H20 + LiN03: GS<br />

NaN03 :KNO<br />

(3.05: 1.41 : 1) (W)<br />

50-300<br />

0.02-15<br />

30.0-100.0 40 Davids<strong>on</strong> 1986 U.S.A.<br />

English<br />

H20 i- LiC1:<br />

CaC12 : Zn(N0<br />

(4.2 : 2.7 : 1) ?W$<br />

GS<br />

0-130<br />

0.002-0.89<br />

40-100 168 Pinchuk 1982 U.S.S.R. Russian<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.2.0.<br />

(Cant.)<br />

Weight, %<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System Type Range, OC atm Y (R) No. Author Year Country Text<br />

H20 + LiBr: GS 0-180<br />

ZnBr2 : DEG<br />

1-1000 (1)<br />

-<br />

-<br />

15.0-40.0 157 Ono 1979 Japan English<br />

H20 + LiBr: GS 0-180<br />

ZnBr2 : EG<br />

1-1000 (1)<br />

15.0-40.0 157 On0 1979 Japan Engl I S h<br />

H20 + LIRr: GS 0-180<br />

ZnBr2:DMEDEG<br />

1-1000 (1)<br />

15.0-40.0 157 On0 1979 Japan English<br />

?<br />

w<br />

rn<br />

H20 + LiBr: GS 0-180<br />

ZnBr2 :PI)<br />

320 4- LIT: GS -20-160<br />

LfBr :EG<br />

1-1000 (1)<br />

0.5-700 (1)<br />

15.0-40.0 157 On0 1979 Japan<br />

English<br />

0.0-100.9 1.57 Ono 1979 Japan English<br />

A.2.2.<br />

Crystallizati<strong>on</strong> Temperature<br />

R20 + LiRr TE -16.7-78<br />

~~0 + LiBr GE -1 6.7-1 40<br />

NA<br />

NA<br />

31.8-42.7 73 Hasaba 1960 Japan Y apanes e<br />

24 .O-42.7 73 Hasaba 1960 Japan Japanese<br />

H20 + LIBP GE 0-140<br />

NA<br />

19.2-50.0<br />

248 Uemura 2964 Japan Japanese<br />

H20 + LiBr GE -16.7-140<br />

NA<br />

19.2-50 .O 232 Uemura 1977 Japan Y apanese<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s) M -<br />

(11 - mdg (2) - mbar NA -<br />

ppm by welght of A in Vapor Phase<br />

Mole, W - Weight<br />

Not Available


Table A.2.0.<br />

(Cant.)<br />

Fluid System<br />

H20 + LiBr<br />

H20 + LiBr<br />

H20 + LiRr<br />

Data<br />

2Zlz<br />

GS<br />

GS<br />

GS<br />

Weight, %<br />

Temp. Fress. Range, X (R) Reference<br />

Range, OC atm y (R) - No. Author - Year Country Text<br />

-68-140 NA 24.0-100.0 121 Lower 1961 Germany German<br />

-10-80 NA 30.0-46.0 131 Manago 1984 Japan English<br />

-1 0-80 NA 30.0-46.0 156 Ohuchi 1985 Japan English<br />

H20 + LiBr<br />

GE<br />

-73-93 NA 0.0-100.0<br />

52 Ellingt<strong>on</strong> 1957 U.S.A. Engl f s h<br />

H20 + LiBr<br />

TE<br />

-50-100<br />

NA<br />

8.2-20.2<br />

33 Roryta<br />

1961 U.S.A.<br />

English<br />

7 H20 + LiBr<br />

w<br />

ll<br />

H20 + LiBr<br />

GE<br />

GS<br />

15-75<br />

4-143<br />

NA<br />

NA<br />

9.2-12.1<br />

NA<br />

119 Ledding<br />

11 Ar<strong>on</strong>s<strong>on</strong><br />

1965 U.S.A.<br />

1969 U.S.A.<br />

English<br />

English<br />

H20 + LiBr<br />

TE<br />

-72-159<br />

NA<br />

9.5-32.5<br />

105 Kessis<br />

1965 France<br />

French<br />

€1~0 + LiBr<br />

GE<br />

-.72-159<br />

NA<br />

0-100<br />

105 Kessis<br />

1965 France<br />

French<br />

H20 + LiRr<br />

7%<br />

-67.2-138<br />

NA<br />

25 .O-60.9<br />

105 Kessis<br />

1965 France<br />

French<br />

H20 + LiBr<br />

GS<br />

0-50<br />

NA<br />

35-100<br />

181 Renz<br />

1978 Germany<br />

German<br />

H20 + LiCl<br />

TGE<br />

-20- 160<br />

NA<br />

41.4-74.0<br />

74 Hasaba<br />

1964 Japan<br />

Japanese<br />

H20 -t- tic1<br />

GE<br />

-20-160<br />

NA<br />

40.0-65 .O<br />

239 Uemuta<br />

1967 Japan<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not 4vaflable


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Data Temp.<br />

Fluid System Type Range, OC<br />

H20 + LJI TGE - 10-80<br />

H20 + ZnBr2 GS 21<br />

H20 4- LiSCN GS 22<br />

R20 + LiNO3 GE 0-60<br />

H20 -t NaOH GS 40-1 25<br />

7 E20 9 KOH GS 20-125<br />

W<br />

H20 * CSF GE 6-56<br />

R20 + CsBr GE 10-57<br />

H20 -+ NaOH:KOH GS 30-1 10<br />

f 1 : I >(W><br />

H20 -t LiBr: GE 15-65<br />

CsBr (1:1 to<br />

7:1)<br />

I-120 + CsF:RbF GE -2.2-22<br />

(1:b)<br />

Press. Range,<br />

atm<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

HA<br />

NA<br />

NA<br />

NA<br />

Weight, X<br />

x (R)<br />

Reference<br />

Y (R) No. Year Country Text<br />

--- - Author _I_<br />

18.9-40.1 246 Uernura 1969 Japan J a pane se<br />

NA 11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A. English<br />

19.0 6 AGA 1968 Y.S.A. English<br />

30-65 225 Tsirnbaltst 1983 U.S.S.R. English<br />

NA 55 Ericks<strong>on</strong> 1985 U.S.A. English<br />

NA<br />

55 Ericks<strong>on</strong> 1.985 U.S.A.<br />

English<br />

2.3-2.5 119 Ledding 1965 U.S.A. English<br />

39.5-51.1 119 Ledding 1965 1J.S.A. English<br />

NA 55 Ericks<strong>on</strong> I985 U.S.A. English<br />

20.9-56.0 119 Ledding 1965 U.S.A. English<br />

2.5-4.2 119 Ledding 1965 U.S.A. English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A In Vapor Fhase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - rnbar NA - Not Available


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Type<br />

Temp.<br />

Range, O C<br />

Press. Range,<br />

atm<br />

IJeight, 2<br />

x (R)<br />

Y (R)<br />

Reference<br />

No. Author Year Country Text<br />

-<br />

-<br />

H20 + LiBr:<br />

LiSCN (0.25: 1<br />

to 4:1)(M)<br />

GE<br />

-6-93<br />

NA 25.0-47.0<br />

127 Macriss 1970 U.S.A. English<br />

H20 + LiBr:<br />

LiSCN<br />

(4:l to 1:4)(M)<br />

GS<br />

22-30<br />

NA 9.7-16.2<br />

6 AGA 1968 U.S.A. English<br />

3;<br />

H20 + LiRr:<br />

LiSCN (l:l)(M)<br />

u H20 + LiBr:<br />

* LiSCN (1:l) (M)<br />

GTE<br />

GS<br />

0.3-73.3<br />

0-100<br />

NA 30.0-44.0<br />

84 Iyoki 1981 Japan 3 apane se<br />

235 Uemura 1980 Japan Japanese<br />

H20 + LiRr:<br />

LiSCN (0:l to<br />

B) (MI<br />

GE<br />

-10-90<br />

NA 50.0-80.0<br />

107 Knoche 1984 Germany<br />

German<br />

24-99<br />

NA<br />

NA<br />

11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A.<br />

English<br />

10-143<br />

NA<br />

NA<br />

11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


U<br />

X<br />

a,<br />

E+<br />

a,<br />

c .c m<br />

m m a,<br />

d *d c<br />

d rl co<br />

M bc a<br />

c d fd<br />

F-1 w 9<br />

2<br />

a<br />

r,<br />

c<br />

a<br />

m<br />

9<br />

s:<br />

Eo<br />

"d<br />

rl<br />

M c<br />

w<br />

c<br />

(d<br />

a<br />

(0<br />

r,<br />

u\<br />

CQ<br />

cn<br />

4<br />

0<br />

C<br />

0<br />

.r(<br />

\o<br />

m<br />

d<br />

a<br />

m<br />

4<br />

Q<br />

M<br />

fd<br />

d<br />

(d<br />

c<br />

k<br />

0<br />

a<br />

fd<br />

P<br />

fi<br />

.rl<br />

4<br />

0<br />

0<br />

0 m<br />

4 N<br />

I<br />

I<br />

a 0<br />

0<br />

d<br />

a<br />

2<br />

0 0 0<br />

0<br />

m<br />

hl<br />

hl<br />

I<br />

I<br />

0<br />

0<br />

0<br />

N<br />

I<br />

0<br />

n<br />

d<br />

W<br />

a<br />

0<br />

h<br />

I<br />

m<br />

0<br />

.<br />

d<br />

4<br />

z<br />

4<br />

z<br />

4<br />

z<br />

4<br />

z<br />

0<br />

9 m<br />

0<br />

4 4<br />

I<br />

I<br />

0 0<br />

hl<br />

I<br />

m<br />

9<br />

I<br />

0<br />

m<br />

\o<br />

I<br />

0<br />

0<br />

m<br />

I<br />

0<br />

4<br />

I<br />

0<br />

I d<br />

I<br />

W<br />

c3<br />

w<br />

a<br />

W<br />

c3<br />

w<br />

c3<br />

El<br />

',"<br />

A-4 0


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Type<br />

Weight, %<br />

Temp. Press. Qanqe, x (R) Reference<br />

Range, "C<br />

atm<br />

Y (R) - NO. Author Year Country Text<br />

-10-65<br />

NA<br />

15.0-25.0 156 Ohuchi 1985 Japan English<br />

10-63<br />

NA<br />

NA 11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A.<br />

English<br />

-20-65<br />

NA<br />

15.0-30.0 131 Manago 1984 Japan<br />

English<br />

10-50<br />

NA<br />

15.0-25.0 131 Manago 1984 Japan<br />

English<br />

-20-65<br />

NA<br />

15.0-30.0<br />

156 Ohuchi 1985 Japan<br />

English<br />

29<br />

NA<br />

NA<br />

11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A.<br />

English<br />

18-79<br />

NA<br />

NA<br />

11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A.<br />

English<br />

H20 + LiBr:EG<br />

( 10 : 1 ) (M)<br />

GTE<br />

2 1.50-74.9<br />

NA<br />

36.2-43.0<br />

93 Iyoki 19 8 1 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s) Y -<br />

(1) - mmHg (2) - mbar NA -<br />

p'pm by weight of<br />

Mole, W - Weight<br />

Not Available<br />

A in Vapor Phase


c m<br />

.d<br />

d<br />

ho<br />

d<br />

w<br />

d<br />

(0<br />

a<br />

m<br />

+<br />

m<br />

h<br />

m<br />

4<br />

d<br />

E m<br />

a a<br />

( d m<br />

r,r,<br />

c m<br />

d<br />

4<br />

to<br />

CT)<br />

P<br />

m<br />

-4<br />

d<br />

M<br />

d<br />

ee7<br />

.<br />

.<br />

4<br />

CA<br />

.<br />

9<br />

4<br />

.<br />

p:<br />

m<br />

cn<br />

3<br />

A<br />

u<br />

d a<br />

V<br />

v<br />

k<br />

0<br />

c u<br />

k<br />

3 0<br />

0<br />

d<br />

Q<br />

0<br />

(d<br />

3<br />

60<br />

a<br />

d<br />

d<br />

d<br />

h<br />

In<br />

d<br />

9<br />

0<br />

0<br />

.-i<br />

I<br />

o<br />

.<br />

c,<br />

I-l<br />

0<br />

0<br />

a<br />

e-4<br />

.<br />

I<br />

0<br />

0<br />

a3<br />

4<br />

I<br />

0<br />

O m<br />

Clhl<br />

m m<br />

.<br />

T- P-<br />

e -3<br />

I I<br />

N hl<br />

. .<br />

4 e<br />

N<br />

N<br />

m<br />

F.4<br />

d<br />

0<br />

0<br />

d<br />

I<br />

5,<br />

In<br />

m<br />

lrl<br />

I<br />

a<br />

m<br />

aJ<br />

rn<br />

m<br />

s<br />

PI<br />

n<br />

e-4<br />

W<br />

0<br />

P-<br />

I<br />

u-i<br />

n<br />

d<br />

v<br />

4<br />

", d z<br />

b<br />

I<br />

m<br />

4<br />

z<br />

4<br />

2<br />

Q<br />

0<br />

0<br />

9<br />

d<br />

I<br />

a<br />

N<br />

I<br />

m<br />

hl<br />

I<br />

h)<br />

N<br />

0<br />

r-<br />

I<br />

In<br />

I l l<br />

n<br />

ffi4c<br />

m<br />

c3<br />

c n w<br />

c3u<br />

w<br />

H<br />

W<br />

w<br />

c3<br />

m<br />

W<br />

w<br />

c3<br />

m<br />

u<br />

u<br />

w<br />

..<br />

k<br />

!n<br />

*d<br />

4<br />

I I l l<br />

A-4 2


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Pres s. Range, X (R) Reference<br />

Fluid System Type Range, OC atm Y (R9 No. Author Year<br />

_I<br />

Country Text<br />

H20 + LiBr:<br />

ZnBr2:CaBrz<br />

(l:l:l)(M) GS 43-100 NA NA 11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A. English<br />

(1.2:1:0.5)(M) GS 4-27 NA NA 11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A. English<br />

(1.2:1:0.12)(?4) GS 16 NA NA 11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A. Eng 1 ish<br />

-<br />

(1.2:1:0.3)(M) GS 4-60 NA NA<br />

11 Ar<strong>on</strong>s<strong>on</strong> 1969 U.S.A.<br />

English<br />

? *<br />

w<br />

(1.1:1:0.27)(M) GS 43 NA<br />

H20 + ZnBr2:<br />

LiAr (1:i):~~<br />

GE 0-42 NA<br />

NA 11 Ar<strong>on</strong>s<strong>on</strong> ,1969 U.S.A. English<br />

NA 157 Ono 1979 Japan English<br />

H 0 + ZnBr2:<br />

LjBr ( 1 : 1) :PD<br />

GE<br />

25-42 NA<br />

NA 157 Ono 1979 Japan English<br />

H20 + ZnBr2:<br />

LiBr (1:l):<br />

GE 32-42 NA<br />

MBEDEG<br />

NA 157 Ono 1979 Japan English<br />

H20 + ZnBr2: GE 18-42 NA<br />

LiBr (1:l):DEG<br />

H20 + LiI: GS -20-160 0.5-700 (1)<br />

LiRr:EG<br />

NA 157 Ono<br />

0.0-100.0 157 Ono<br />

1979 Japan English<br />

19 7 9 Japan English<br />

X - Liquid Phase R - Re€rigerant e - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


A.2.3.<br />

Corrosi<strong>on</strong><br />

Weight, %<br />

Data Temp. Corrosi<strong>on</strong><br />

x (R) - Reference<br />

Fluid System Type Range, "C Inhibitor, wt % Y (R) - No. Author - Year Country<br />

Text<br />

H20 + LiBr TE NA LiSCN 0.2 37 .o 232 Uemura 1977 Japan Japanese<br />

LiN03<br />

Li2WO4<br />

0.3<br />

0.2<br />

Li3PO4 0.2<br />

Li2SiF5.2I-l 0<br />

Li6(M07024 5<br />

0.2<br />

.12w20 0.1<br />

~i2~i03.11~20 0.2<br />

LiClQ4.3Hp 0 2<br />

NH2 CONH2 0.3<br />

(C5H5NH)2C:NH 0.2<br />

CgHqSC(SH):N 0.1<br />

5 Methytbenzo<br />

triazofe 0.2<br />

n-octy l<br />

Alcohol<br />

C6H4 (CN) 2<br />

0.1<br />

0.2<br />

Cobratec 99 0.1<br />

Cobratec 100 0.1<br />

c~H~(co~)O 0.1<br />

NHCH:NCN:CN 0.2<br />

X - Liquid Phase R - Refrigerant c ppm by weight of A in Vapor Phase<br />

Y Vapor Phase A Absorbent(s) M Mole, W - Weight<br />

(1) - mmHg (2) - mbar<br />

NA - Not Available


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Weight, X<br />

Data Temp. Corrosi<strong>on</strong> X (R) Reference<br />

Fluid System Type Range, O C Inhibitor, wt X y (R) NO. Author Year Country Text<br />

II<br />

H20 + LiBr TE NA Above Inhibitors 37.0 232 Uemura 1977 Japan Japanese<br />

+ LiOH 0.2<br />

H20 + LiBr TE 143-182 Various Lithium 37.0-46.0 42 Dockus 1963 U.S.A. English<br />

Salts + LiOH +<br />

Organics 0.1-0.3<br />

H20 + LfBr TE NA N<strong>on</strong>e 37.0 91 Iyoki 1978 Japan Japanese<br />

-<br />

~~0 + LiBr TE NA LiOH 0.2 37.0 91 Iyoki<br />

?<br />

* H2O + LiBt<br />

v1<br />

1978 Japan Japanese<br />

GE NA LiOH<br />

Cobrate 99<br />

0.1-1<br />

0.1-1<br />

37.0 91 Iyoki 1978 Japan Japanese<br />

Cobrate 100 0.1-1<br />

0.3<br />

0.2<br />

0.2<br />

0.2<br />

0.2<br />

37 .O 91 Iyoki 1978 Japan Japanese<br />

0.1<br />

0.2<br />

0.2<br />

0.3<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A In Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


u<br />

F:<br />

0<br />

A<br />

.<br />

V<br />

W<br />

0<br />

B<br />

aJ<br />

I+<br />

P<br />

rd<br />

P<br />

w I * - k<br />

N.4 NNd.-i.-iC\I c1<br />

0-4<br />

. e . . . .<br />

c0 000000 0 in0<br />

CUCCINNN.<br />

. ... ..<br />

,--If3<br />

Q0000 00<br />

w w w<br />

E-.l U B<br />

A-46


Table A. 2.0. (C<strong>on</strong>t . )<br />

Veiqht, %<br />

Data Temp. Corrosi<strong>on</strong> x (R) Reference<br />

Fluid System Type Range, 'C Inhibitor, wt X y (R) NO Author Year Country Text<br />

LiC104.3H20 0 -2<br />

NH2CONH2 0.3<br />

( Cg Hg NH ) 2 c : NH 0 * 2<br />

C~H~SC(SH):N 0.1<br />

5 Methylbenzot<br />

riazole 0.2<br />

n-octylalcohol 0.1<br />

CgHq(CN12 0.2<br />

Cobratec 99 0.1<br />

Cobratec 100 0.1<br />

CgHq(C02)O 0.1<br />

c. NfICH:NCN:CH 0.2<br />

3;<br />

U<br />

H20 + LiRr<br />

TE<br />

-<br />

-<br />

NA Above Inhibitors 37.0 238 Uernura 1978 Japan<br />

+ LiOH 0.2<br />

Japanese<br />

fl20 + LiBr<br />

GE<br />

NA N<strong>on</strong>e 42.0-74.0 237 Uemura 1979 Japan<br />

J apane se<br />

W20 + LiBr GE NA L iOH 0.2-1 37 .O 237 Uemura 1979 Japan<br />

H20 + LiBr GE NA LiSCN 0.2<br />

LiN03 0.3<br />

37.0 237 Uemura 1979 Japan<br />

L iWO4 0.2<br />

Li3PO4 0.2<br />

Li2SiF6.2H20 0.2<br />

Japanese<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A In Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


(d (d<br />

k<br />

b-l<br />

3<br />

s<br />

3<br />

h<br />

m<br />

N<br />

a,<br />

L=l<br />

h<br />

m<br />

N<br />

m<br />

a<br />

N<br />

a,<br />

m<br />

td<br />

s<br />

PA<br />

I l l<br />

n<br />

v<br />

a<br />

.<br />

P-<br />

c7<br />

0<br />

c-4<br />

P<br />

a,<br />

d<br />

P<br />

td<br />

E+<br />

n<br />

a cu<br />

C<br />

F-4cJcvmCJ-i w<br />

...... .<br />

c?cocoo 0<br />

I<br />

0 N<br />

c<br />

Q)<br />

2<br />

......<br />

de.J.-id.-iN<br />

QOOOOO<br />

Q<br />

m o<br />

m-i<br />

E<br />

m c<br />

k<br />

6<br />

U<br />

7.4<br />

P<br />

'rl<br />

c<br />

n X<br />

a0<br />

> -4<br />

04<br />

4s-<br />

c<br />

z<br />

n<br />

e4z<br />

A-48


Table A. 2.0. (C<strong>on</strong>t . )<br />

IJeight, %<br />

Data Temp . Cor r os i<strong>on</strong> x (R)<br />

Fluid System - Type Range, "C Inhibitor, wt % Y (R)<br />

Reference<br />

NO Author Year Country<br />

LI<br />

Text<br />

H20 + LiRr<br />

NA<br />

No ne 47.0<br />

52 Sllingt<strong>on</strong> 1957 Y.S.A.<br />

English<br />

H20 + LiRr<br />

TE 75<br />

LiCcO 46.0<br />

(0-2080 ppm)<br />

39 Cohen 1966 U.S.A.<br />

English<br />

TE 50<br />

12 Compounds 63.0<br />

139 Melnik 1982 U. S.S.R.<br />

Rus s Fan<br />

H20 + LiBr<br />

E 2 60<br />

T, i 2 C r04 0.1 32.0<br />

LiOH 0.16<br />

67 Griess 1 9 8 5 ?J . S . A.<br />

English<br />

GE<br />

NA<br />

N<strong>on</strong>e<br />

42 .O-74.0<br />

90 Iyoki 1980 Japan<br />

Japanese<br />

TE<br />

NA<br />

N<strong>on</strong>e 59.7<br />

90 Iyoki 1980 Japan<br />

Japanese<br />

H2O + LiCl<br />

GTE<br />

NA<br />

LiOH 0.2 59.7<br />

90 Iyoki 1980 Japan<br />

Japanese<br />

H2O + LiCl<br />

GE<br />

NA<br />

NHCH:NCH:CH 0.2 59.7<br />

Cobratec 99 0.1<br />

Cobratec 100 0.1<br />

C6H4(C02)0 0.1<br />

CgHqSC(SR) :N 0.1<br />

(c~H~NH)~C:NH 0.2<br />

NH 2 CONH2 0.3<br />

1,5 6 (MOT 024<br />

. 1-2H20 0.1<br />

90 Iyoki 1980 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, 'CJ - Weight<br />

(1) - mmxg (2) - mbar NA - Not Available<br />

P L<br />

in Vapor Phase


I__<br />

Table A. 2.0. (C<strong>on</strong>t. )<br />

Fluid System<br />

Weight, %<br />

Data Temp. Corrosi<strong>on</strong> x (R)<br />

Type .. Range, O C Inhibitor, wt % Y (R) -<br />

Reference<br />

No. Author Year Counrry Text<br />

-<br />

?<br />

LiC104.3820 0.2<br />

LiNOg 0.3<br />

ti~i03.n1120 0.2<br />

~ i ~ i ~ 6 . 2 ~ 0.22 0<br />

Li3P04.1/2H20 0.2<br />

L~wO~.H~O 0.2<br />

L i S CN . H20 0.2<br />

J320 + LiCl GE NA Above Inhibitors<br />

+ LiOH 0.2<br />

VI H20 + LiCl GE NA Cobratec 99 0-0.9<br />

0<br />

Cobratec 100 0-0.9<br />

H20 + NH4SCN TE 24-100 N<strong>on</strong>e<br />

1120 + LiBr: TE NA N<strong>on</strong>e<br />

LiSCN<br />

59.7 90 Iyoki 1980 Japan<br />

59.7 90 Iyoki 1980 Japan<br />

59.7 230 Uernura 1979 Japan<br />

5.6-68.0 124 Macriss 1964 U.S.A.<br />

52.0 89 Iyoki 1981 Japan<br />

Japanese<br />

Japanese<br />

Japanese<br />

English<br />

Japanese<br />

H20 + LiRr: TE NA LiOH<br />

LiSCN<br />

0.2<br />

52.0 89 Iyoki<br />

1981 Japan<br />

Japanese<br />

H20 -+ LiBr: GE NA N<strong>on</strong>e<br />

LiSCN<br />

52.0 89 Iyoki<br />

1981 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase 4 - Absorbent(s) 3 - Mole, IJ - Weight<br />

(1) - mmHg (2) - mbar N.4 - Not Available


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Yeight, %<br />

Data Temp. Corrosi<strong>on</strong> X (R) Reference<br />

Fluid System Type Range, OC - Inhibitor, wt % Y (R) i No. Author Year Country Text<br />

0.3 52.0 89 Iyoki 1981 J apan Japanese<br />

0.2<br />

0.1<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0.1<br />

0.2<br />

89 Iyoki 1981 Japan<br />

Japanese<br />

H20 f LiRr: GE NA Cobratec 99 0-0.8 52.0<br />

LiSCN Cobratec 100 0-0.8<br />

LiN03 0-0.6<br />

89 Iyoki 198 1 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(I) - mmHg (2) - mbar NA - Not Available


5)<br />

n<br />

2<br />

rd<br />

a<br />

rd<br />

7<br />

c<br />

a<br />

a<br />

”3<br />

a, aJ a,<br />

m<br />

Lo<br />

Lo<br />

a, a, a,<br />

d<br />

ci<br />

cd Fi<br />

P<br />

a to a<br />

-I b-, r,<br />

C<br />

cd<br />

a<br />

rg<br />

r,<br />

c:<br />

a<br />

P-<br />

a<br />

c<br />

a<br />

a<br />

p.<br />

3 3<br />

r-4<br />

00<br />

m<br />

.I(<br />

d<br />

W<br />

Q\<br />

d<br />

r?<br />

U<br />

E:<br />

0<br />

U<br />

W<br />

.<br />

0<br />

e4<br />

.<br />

P<br />

a,<br />

d P a<br />

E-l<br />

k<br />

0<br />

5<br />

3<br />

z ;I<br />

a<br />

k<br />

0 m<br />

N<br />

3<br />

0<br />

.<br />

C 0<br />

N N<br />

m m .<br />

C<br />

4-<br />

2<br />

0<br />

z<br />

0<br />

m<br />

N<br />

Q<br />

N<br />

ln<br />

CC)NF-4flN-+.I(r-lN4CC)”jNN<br />

N<br />

0 OOOOCCCOOQOCOO 0 I l l<br />

a,<br />

z<br />

, . . . . . . . . . . . . .<br />

0<br />

0<br />

4<br />

V<br />

a,<br />

u<br />

rd<br />

b<br />

P 0<br />

V<br />

d<br />

a,<br />

Lo<br />

a<br />

s<br />

&<br />

k<br />

0<br />

a<br />

3<br />

d<br />

.li<br />

4<br />

4<br />

u x z<br />

4<br />

z<br />

4<br />

Z<br />

c z<br />

W<br />

w<br />

W<br />

E+<br />

..<br />

W<br />

c3<br />

..<br />

k<br />

G<br />

*rl<br />

IJ<br />

A-5 2


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Type<br />

I<br />

Temp.<br />

Range, "C<br />

-<br />

Corrosi<strong>on</strong><br />

Inhibitor, wt %<br />

Weight, X<br />

X (R)<br />

Reference<br />

Y (R) NO Author -Year Country Text<br />

-<br />

TdiSiOg.nH20 0.2<br />

LiC104.3~~0 0.2<br />

H20 + LiBr:<br />

LiSCN<br />

GE<br />

NA<br />

Above Inhibitors<br />

+ LiOH 0.2<br />

52.0 230 Uemura 198 1 Japan Japanese<br />

H20 + LiBr:<br />

LiSCN<br />

GE<br />

NA<br />

Cobratec 99 0-0.8<br />

Cobratec 100 0-0.8<br />

LiN03 0-0.8<br />

52.0 230 Uemura 1981 Japan Japanese<br />

150 & 250<br />

Zi2MoO4<br />

25.0 131 Manago 1984 Japan English<br />

200 & 250<br />

N<strong>on</strong>e<br />

25.0 156 Ohuchi 1985 Japan English<br />

50-175<br />

N<strong>on</strong>e<br />

20.0 131 Manago 1984 Japan English<br />

200 & 250<br />

N<strong>on</strong>e<br />

20.0 131 Manago 1984 Japan English<br />

150<br />

N<strong>on</strong>e<br />

25.0 131 Manago 1984 Japan Eng 1 ish<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Fhase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmRg (2) - mbar NA - Not Available


a a,<br />

- d<br />

cn<br />

cn<br />

n a, a<br />

4 E E<br />

-!<br />

JI! a a<br />

d (d (d<br />

Ll '7 r,<br />

C<br />

a<br />

rd<br />

3<br />

a, a<br />

cn<br />

cn<br />

a, a,<br />

d<br />

m s<br />

P, p.<br />

m<br />

R)<br />

r, 9<br />

d<br />

a<br />

E<br />

m<br />

a<br />

a cn<br />

a<br />

a<br />

r,<br />

C<br />

m<br />

a<br />

(d<br />

(d (d<br />

r, '7 '7<br />

k<br />

0<br />

s<br />

u<br />

3<br />

;I z<br />

s<br />

4<br />

.',<br />

m<br />

H<br />

m<br />

M<br />

n<br />

u<br />

C 0<br />

u<br />

W<br />

8<br />

0<br />

4<br />

0<br />

.<br />

cc)<br />

I<br />

hl<br />

N<br />

m<br />

-3<br />

hl<br />

4<br />

V Z Z<br />

a,<br />

c<br />

0<br />

z<br />

a,<br />

d<br />

0<br />

z<br />

0<br />

z<br />

0<br />

tn<br />

d<br />

4<br />

z<br />

4<br />

z<br />

4<br />

z<br />

4<br />

z<br />

4<br />

z<br />

W<br />

c3<br />

h<br />

c<br />

W<br />

n<br />

51:<br />

.. d<br />

W<br />

h<br />

w<br />

W<br />

i9 E,<br />

A- 5 4


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Data Temp.<br />

Fluid System Type Ranpe, "C,<br />

Weight, %<br />

Cor ro s i <strong>on</strong><br />

x (R)<br />

-L-..-.---u-w-u.-- Inhibitor, wt X Y (R)<br />

_.<br />

Reference<br />

No. Author Year - Country Text<br />

-<br />

H20 + LiBr:<br />

4,ELN (20:1)(M)<br />

GE<br />

NA<br />

Cobratec 99 0.1-<br />

0.8<br />

50.3<br />

85 Iyoki<br />

19 8 2 Japan<br />

Japanese<br />

4<br />

bl<br />

Ll<br />

H20 + LiBr:<br />

4,BLN (20:1)(M)<br />

GS<br />

30 6 90<br />

LiOH<br />

Cobratec 99 + LiOH<br />

Cobratec 100 + LiOH<br />

50.3<br />

85 Iyoki 1982 Japan<br />

Japanese<br />

H20 + LiBr:<br />

Ethanol<br />

(3: 1) (W)<br />

TE<br />

138<br />

LiNOj<br />

(0-300 ppm)<br />

20.0<br />

20 Riermann 1978 U.S.A.<br />

English<br />

H20 + LiBr:EG<br />

(3:1)(W)<br />

TE<br />

138<br />

LiNO3, Li2Mo04<br />

(0-300 ppm)<br />

20.0<br />

20 Riermann 1978 U.S.A.<br />

Eng 1 ish<br />

K20 + LiBr:<br />

ZnBr2 :EG<br />

GE<br />

160<br />

N<strong>on</strong>e<br />

7,3-14.2<br />

157 Ono 1979 Japan<br />

English<br />

X - Liquid Phase R Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s) M -<br />

(1) mmHg (2) - mbar NA ppm by weight of A in Vapor Phase<br />

Mole, W - Weight<br />

Not Available


~ NA<br />

A.2.4.<br />

Heat of Mixing<br />

Data Temp.<br />

Fluid System Type Range, O C<br />

H20 + LiUr GTZ 15-45<br />

Press. Range,<br />

atm<br />

NA<br />

Weight, %<br />

X (R)<br />

y (9)__<br />

No. Author<br />

I<br />

46.1-99.7 76 Hasaba<br />

Reference<br />

-<br />

Year Country Text<br />

1961 Japan Japanese<br />

H20 + LiBr GS 25<br />

NA<br />

40.0-100.0<br />

76 Hasaba<br />

1961 Japan Japanese<br />

H20 + LiSr GE 15-45<br />

NA<br />

40.0-100.0<br />

248 Uemura 1964 Japan English<br />

W20 + LiRr GE 15-45<br />

NA<br />

40.0-100.0<br />

232 Uemura 1977 Japan Japanese<br />

7<br />

H20 + LiBr GP -20-200<br />

Ln<br />

1120 + tiBr GTC 25<br />

NA<br />

NA<br />

30.0-100.0<br />

30.0-60.0<br />

261 Usyukin 1969 U.S.S.R. English<br />

170 Plank 1953 Germany German<br />

H20 + LiUr GC 0-120<br />

NA<br />

30-100.0<br />

121 Lower 1961 Germany Gernan<br />

H20 + LIBr TC 25<br />

NA<br />

0.0-100.0<br />

52 Ellingt<strong>on</strong> 1957 U.S.A. Engl i 8 h<br />

H20 + LiRr TE 25<br />

0.004-0.03<br />

45.0-95.0<br />

168 Pinchuk 1982 U.S.S.S. Russian<br />

H20 C LiBr TSP 25-135<br />

NA<br />

35.7-40.0<br />

136 Pfaust 1966 U.S.A. English<br />

H29 + LiCI GTE 25<br />

NA<br />

56.4-69.2<br />

253 Uemura 1965 Japan Japanese<br />

R29 9 LiCl GS 2s<br />

50.0-100.0<br />

253 Uemura 1965 Japan Y apane se<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) PI - Mole, W - Weight<br />

(2) - rnbar NA - Not Available<br />

(1) - mmHg


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Weiqht, X<br />

Data Temp. Press. Range, x (R) Reference<br />

- No. Author - Year Country Text<br />

Fluid System Trpe RanE, OC atm Y (R)<br />

H20 + LiCl GS 25 NA 50.0-100.0 239 Uemura 1967 Japan English<br />

H20 + LiI GE 25 NA 40.0-100.0 246 Uemura 1969 Japan Japanese<br />

H20 + H2SO4 GTC NA NA 0-100.0 170 Plank 1953 Germany German<br />

H20 + DMF TE 20 NA 0-100.0 195 Saph<strong>on</strong> 1973 Germany<br />

German<br />

?<br />

H20 + LiBr: GE 25<br />

LiSCN (1: 1 )(M)<br />

~1 H20 + LiBr: GS 25<br />

LiSCN (l:l)(M)<br />

H20 f LiRr: TS 25<br />

LFSCN (l:l)(Pi)<br />

H20 + LiRr: GE 25<br />

ZnBr2 (1:2.6)(W)<br />

H20 + LiBr: GE 25<br />

4 ,RLN (20: 1)(M)<br />

NA 40.0-100.0 84 Iyoki 1981 Japan Japanese<br />

NA 30.0-100.0 235 Uemura 1980 Japan Japanese<br />

NA 35.0-95.0 84 Iyoki 1981 Japan Japanese<br />

NA 0.0-100.0 236 Uemura 1983 Japan Japanese<br />

NA 41.9-100.0 234 Uemuta 1381 Japan Japanese<br />

H26 + LiBr: TS 25 MA 42.0-96.0 87 Tyoki 1 9 8 3 Japan Japanese<br />

4, BLN (20:1)(11)<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mHg (2) - mbar NA - Not Available


f<br />

U<br />

n<br />

f<br />

y 1-1<br />

d rl<br />

a<br />

7 w<br />

f<br />

.d<br />

I 4<br />

M<br />

z w fi<br />

f<br />

d<br />

(d<br />

d<br />

1-1<br />

d v)<br />

M<br />

tn<br />

w " 2<br />

Q<br />

m<br />

aJ<br />

L:<br />

(d<br />

Q<br />

(d<br />

",<br />

((I<br />

r,<br />

l4<br />

Eo<br />

m<br />

4<br />

I<br />

n<br />

u<br />

C<br />

0<br />

u<br />

.<br />

W<br />

.<br />

0<br />

hl<br />

.<br />

P<br />

Q)<br />

rl<br />

P<br />

(d<br />

w<br />

CI<br />

0<br />

5<br />

3<br />

1 4<br />

b<br />

Eo<br />

?<br />

c, 9 .<br />

9<br />

2 m<br />

I I<br />

0 0<br />

hl (u<br />

4 4<br />

0 cc<br />

03 Eo<br />

00 hl 9<br />

Eo<br />

d<br />

d<br />

U<br />

r-i<br />

.?-I<br />

%<br />

h<br />

H<br />

0<br />

m 0 0<br />

0 .<br />

0 In m<br />

4 d 6<br />

I I<br />

I<br />

6 U 0<br />

. * * .<br />

I<br />

.<br />

0<br />

e m In<br />

4 4<br />

a!<br />

2<br />

c 2<br />

m<br />

Q<br />

.<br />

0 I<br />

m<br />

0<br />

Q<br />

.<br />

. .<br />

. .<br />

m o<br />

.<br />

m 0 0<br />

en<br />

E o Q \<br />

d<br />

f A A<br />

c o<br />

u 4<br />

CI<br />

0 a<br />

P<br />

In In m c<br />

N N (u<br />

0<br />

(c1<br />

d<br />

I<br />

m<br />

(u<br />

VI<br />

(3<br />

A-5 8


Fluid System<br />

*<br />

Data<br />

Temp.<br />

Range, 'C<br />

Press. Range,<br />

atm<br />

Veight, %<br />

X (R)<br />

Y (R)<br />

Ref e rence<br />

- No. Author - Year Country<br />

Text<br />

H20 + LiBr<br />

GTS<br />

0-100<br />

NA<br />

40.0-90.0<br />

248<br />

Uemura<br />

1964<br />

Japan<br />

English<br />

H20 + LfBr<br />

TS<br />

0-100<br />

NA<br />

40.0-90 .O<br />

232<br />

Uemura<br />

1977<br />

Japan<br />

Japanese<br />

H20 + LiBr<br />

GS<br />

0-100<br />

NA<br />

30.0-100.0<br />

121<br />

Lower<br />

1961<br />

Germany<br />

German<br />

H20 + LiBr<br />

GP<br />

20-240<br />

NA<br />

38 .O-45.0<br />

162<br />

Osaka Gas<br />

1985<br />

Japan<br />

Japanese<br />

H20 + LiBr<br />

GE<br />

25-80<br />

NA<br />

35.0-100.0<br />

5 2<br />

F, 11 ing t <strong>on</strong><br />

1957<br />

U.S.A.<br />

English<br />

?<br />

ln<br />

H20 + LiBr<br />

H20 + LiBr<br />

P<br />

TSP<br />

0-250<br />

25-135<br />

0.1-15.5<br />

SA<br />

30.0-100.0<br />

35.0-51 .O<br />

80<br />

136<br />

Herold<br />

Maust<br />

,1987<br />

1966<br />

U.S.A.<br />

U.S.A.<br />

English<br />

English<br />

1120 + LiC1<br />

GTE<br />

5-90<br />

NA<br />

54.0-92.5<br />

77<br />

Hasaba<br />

1964<br />

Japan<br />

Japanese<br />

H20 + LiC1<br />

GTS<br />

. 5-100<br />

NA<br />

60.0-95.0<br />

77<br />

Hasaba<br />

1964<br />

Japan<br />

Japanese<br />

H20 + LiCl<br />

GE<br />

5-100<br />

NA<br />

50.0-100.0<br />

239<br />

Uemura<br />

1967<br />

Japan<br />

English<br />

H20 + LiCl<br />

GS<br />

5-100<br />

NA<br />

6O,O-95 .0<br />

239<br />

Uemura<br />

1967<br />

Japan<br />

Englfsh<br />

H20 + LiI<br />

TE<br />

0-80<br />

NA<br />

37.7-94.7<br />

246<br />

Uemura<br />

1969<br />

Japan<br />

Japanese<br />

H20 + LiI<br />

GTS<br />

0-80<br />

NA<br />

40.0-95.0<br />

246<br />

'Jemura<br />

1969<br />

Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Nole, b7 - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


-5<br />

"d<br />

r(<br />

bc<br />

d<br />

li!<br />

9;<br />

u?<br />

CT)<br />

E2<br />

N<br />

r.<br />

m<br />

7-4<br />

aJ m<br />

aJ<br />

C<br />

a<br />

s<br />

m<br />

.d<br />

-I<br />

m<br />

d<br />

w<br />

d tu tu rd<br />

M a a<br />

c a (0 Ki<br />

w "-, r-,<br />

+I<br />

fi<br />

m<br />

a<br />

tu<br />

'7<br />

m<br />

cc<br />

m<br />

4<br />

k<br />

0<br />

c u<br />

3<br />

d<br />

a<br />

C<br />

C<br />

w<br />

zf<br />

m<br />

4<br />

Y<br />

0<br />

%-<br />

w<br />

r-<br />

cc<br />

a<br />

m<br />

a<br />

s<br />

P-<br />

k<br />

0<br />

p.<br />

(d<br />

3<br />

E:<br />

.d<br />

n<br />

u<br />

E:<br />

0<br />

U<br />

v<br />

0<br />

N<br />

2<br />

aJ<br />

r?<br />

P<br />

tu<br />

P<br />

aJ<br />

M<br />

C<br />

(d<br />

@ E<br />

. m<br />

m<br />

tn<br />

aJ<br />

k<br />

P-<br />

0<br />

03<br />

4.<br />

I<br />

0<br />

0<br />

2<br />

.<br />

.<br />

0 0<br />

0 0<br />

m<br />

I<br />

c<br />

e<br />

I<br />

c<br />

N 0<br />

N<br />

a<br />

0<br />

0<br />

C<br />

d<br />

I<br />

4.<br />

0<br />

m<br />

.<br />

c<br />

z<br />

4<br />

I l l<br />

C<br />

zf<br />

I<br />

m<br />

m-4<br />

I<br />

a<br />

0<br />

m<br />

03 N<br />

I<br />

a<br />

I<br />

0<br />

N<br />

0<br />

0<br />

r-4<br />

I<br />

0<br />

I l l<br />

!L<br />

w<br />

c3<br />

w<br />

H<br />

w<br />

CY<br />

w<br />

H<br />

I%<br />

E<br />

+<br />

0<br />

N<br />

X<br />

oin<br />

NE:<br />

8U<br />

Nc<br />

ZN ZN<br />

A-68


Data Temp. Press. Range,<br />

Type Range, OC atm<br />

~~0 + LiBr: TE 0- 100 NA<br />

4,BLN (20:1)(M)<br />

H20 + LiBr:EG GTE 40.04-82.32 NA<br />

(10: l)(M)<br />

H20 + LiRr:EG TS 20-100 NA<br />

(10: 1)(M)<br />

H20 + LiBr: GE 0-60 NA<br />

ZnBr2 : EG<br />

Weight, X<br />

x (R)<br />

Reference<br />

NO. Author Year Country Text<br />

y (R) -<br />

-<br />

50.4-100.0 88 Iyoki 1984 Japan English<br />

40.3-100.0 93 Iyoki 1981 Japan Japanese<br />

40.0-100.0 93 Ivoki 1981 Japan Japanese<br />

15.0-80.0 157 Ono 1979 Japan English<br />

3;<br />

0<br />

H20 + LiBr: GS 10-60 NA<br />

ZnBr2 : EG<br />

A.2.6. Vapor-Liquid-Phase Enthalpies<br />

15.0-80 0 157 Ono 1979 Japan Eng 1 ish<br />

H20 + LiRr GS 0-170 5-70Q (1)<br />

H20 + LiBr GS 0- 100 5-700 (1)<br />

H20 + LiRr GS 0- 120 5-700 (1)<br />

H20 + LiRr GS 0-120 5-700 (1)<br />

30.0-100.0 121 Lower 1961 Germany German<br />

30.0-100.0 72 Sasaba 1961 Japan Japanese<br />

30.0-100.9 248 Uemura 1964 Japan Eng 1 ish<br />

30.0-100.0 23% Uemura 1977 Japan Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A In Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


I_<br />

Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data Temp. Press. Range,<br />

Type Range, 'C atm<br />

-<br />

Reference<br />

No. Author Year Countrv Text<br />

H20 + LiBr<br />

GP 20-240 NA<br />

38.0-45 .O<br />

162 Osaka


I_.<br />

Data Temp. Press. Range,<br />

Fluid System Type Range, OC atm -<br />

H20 + LII GS 0-120 5-750 (1)<br />

- NO<br />

246<br />

Author<br />

Uemura<br />

Reference<br />

Year Country<br />

-<br />

1969 Japan<br />

Text<br />

Japanese<br />

H20 + NaOH GS 0-120 5-700 (1)<br />

20.0-100.0<br />

255<br />

Uemu ra<br />

1966 Japan<br />

Japane s e<br />

H20 + H2SO4 CP NA NA<br />

NA<br />

78<br />

Hasseler<br />

1982 England<br />

English<br />

1120 + LiBr: GS 0-130 0.007-2.3<br />

LiSCN<br />

30.0-100.0<br />

235<br />

Uemura<br />

1980 Japan<br />

Japanese<br />

K20 + LiRt: GS 0-130 0.007-0.9<br />

LiSCN (1:1)(M)<br />

30.0-100.0<br />

84<br />

Iyoki<br />

1981 Japan<br />

Japanese<br />

5; m<br />

H20 + LiBr: GS 0-250 NA<br />

H20 + LiBr: GS 0- 120 1.3-1330 (2)<br />

ZnBr2 ( 1 : 2.6) (W)<br />

20.0-100.0<br />

236<br />

Uernura<br />

1983 Japan<br />

Japanese<br />

~nC12 (1:1)(W)<br />

20.0-40.0<br />

131<br />

Manago<br />

1984 Japan<br />

English<br />

H20 + LiBr: GS 0-200 1-5000 (1)<br />

ZnC12 (l:l)(w)<br />

0.0-1 00.0<br />

156<br />

Ohuchi<br />

1985 Japan<br />

English<br />

820 + LiBr: GP 0-200 1-so0 (1)<br />

ZnCl2 (1:l)<br />

0.0-100.0<br />

162<br />

Osaka Gas<br />

1985 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - ?Tole, W - Weight<br />

(1) - mmHg (2) - mbar Nh - Not Available


W aJ W<br />

01 en m<br />

U W al W<br />

: s<br />

c c:<br />

m m<br />

E - I Q a a<br />

m (d (D<br />

9 '7 +-I<br />

k<br />

c c, c<br />

(D m m<br />

a e e<br />

m (d (d<br />

9 c-, '9<br />

c<br />

m<br />

a<br />

m<br />

r-,<br />

c<br />

a<br />

m<br />

c<br />

cd (B<br />

F<br />

cg<br />

r, '7<br />

4<br />

24<br />

0<br />

P.<br />

H<br />

ca<br />

k<br />

3<br />

$<br />

3<br />

h<br />

H<br />

.rl<br />

%<br />

0<br />

h c<br />

t-4 0<br />

W<br />

m<br />

a<br />

N<br />

N<br />

U<br />

m<br />

hl<br />

n<br />

*I<br />

c<br />

0<br />

u<br />

W<br />

0 0<br />

a 0<br />

Q C<br />

v-4 .-i<br />

I I<br />

0 C<br />

6<br />

0<br />

c<br />

.<br />

e<br />

I<br />

0<br />

e<br />

I<br />

0<br />

0 0<br />

6 0<br />

0 0<br />

4 d<br />

I I<br />

0 0<br />

6 0<br />

,--I M<br />

6<br />

el<br />

0<br />

m<br />

u? Q<br />

N<br />

r?<br />

N<br />

W<br />

n<br />

4<br />

W<br />

0<br />

Q<br />

rl<br />

I<br />

m<br />

Q<br />

F-.<br />

N<br />

v<br />

I<br />

m<br />

.<br />

0<br />

n<br />

N<br />

U<br />

0<br />

0<br />

0<br />

r-4<br />

I<br />

m<br />

0<br />

.<br />

0<br />

0 4<br />

0 z<br />

N<br />

I<br />

CJ<br />

U<br />

0<br />

a";<br />

W b c<br />

E+C<br />

(d<br />

#<br />

I O 0 0 m<br />

12 N N<br />

1<br />

I<br />

I<br />

0 0 0<br />

CY<br />

m<br />

I<br />

M<br />

m<br />

N<br />

m<br />

N<br />

k n<br />

- '4<br />

l-l<br />

A<br />

..<br />

+-+<br />

00<br />

N-i<br />

Z-<br />

n<br />

d<br />

.. ..<br />

d<br />

kV<br />

pc<br />

.rlw<br />

..<br />

A W<br />

I-N<br />

k<br />

o m<br />

N C<br />

X N<br />

A-64


Table 4.2.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Press. Range, X (R) Ref e rence<br />

Fluid System Type Range, OC atm<br />

Y (R) No.<br />

_e<br />

Author Year<br />

__I<br />

Country Text<br />

H20 + LiC1: PTE 25 0.003 45-9s 168 Pinchuk 1982 U.S.S.R. Russian<br />

CaC12 : Zn(N0<br />

( 4.2 : 2 . 7 : 1 )?W$<br />

A.2.7.<br />

Specfic T-leat<br />

H20 + LiBr GTEP 24- 130.2 NA<br />

33.8-89.1 71 Uemura<br />

1960 Japan<br />

Japanese<br />

H20 + LiBr TE? 24-130 NA<br />

33.8-89.1 248 IJemura<br />

1964 Japan<br />

English<br />

y H20 + LiRr P NA<br />

0<br />

m<br />

H20 + LiBr<br />

GEP 20-100<br />

NA<br />

NA<br />

NA 232 Uemura<br />

40.0-90.0 155 Ogawa<br />

197 7 J apan<br />

1980 Japan<br />

Japanese<br />

Japanese<br />

H20 + LiBr GS 0-80 NA<br />

40.0-100.0 121 Lower<br />

1961 Germany<br />

German<br />

H20 + LiBr P 0-200<br />

GP<br />

NA<br />

30.0-100.0 261 Usyukin<br />

1969 U.S.S.R.<br />

English<br />

H20 + LiBr GE NA NA<br />

40.0-100.0 52 Ellingt<strong>on</strong><br />

1957 U.S.A.<br />

Engl i 6 h<br />

H20 + Lib P 0-250 0.1-15.5<br />

30.0-100.0 80 Herold<br />

1987 U.S.A.<br />

English<br />

H20 + LiBr TE 25 0.004-0.03<br />

45.0-95.0 168 Pinchuk<br />

1982 U.S.S.R.<br />

Russian<br />

X Liquid Phase R Refrigerant c ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A Absorbent(s) M Mole, W - Weight<br />

(1) - mHg<br />

(2) - mbar NA - Not Available


99-FJ<br />

?<br />

N<br />

0<br />

n<br />

W<br />

P=<br />

3<br />

us 9<br />

m a2<br />

w a<br />

l-4 CI.


Data Temv. Press. Range,<br />

Fluid System Type Range, OC atm<br />

H20 + LiBr: GEP 10-70<br />

4,BLN (20:1)(M)<br />

NA<br />

Veight, X<br />

X (R) - Reference<br />

No. Author Year Coun<br />

Y<br />

Text<br />

(R) - I__<br />

50.0-100.0 234 Uemura 1981 Japan Japanese<br />

H20 + LiRr: TEP 10-70<br />

4,BLN (20:1)(M)<br />

NA<br />

so.0-100.0 87 Iyoki 1983 Japan Japanese<br />

cn<br />

H20 + LiBr: TEP 10-70<br />

4,BLLN (20:1)(M)<br />

H20 + LIBr:EG TEP 20-80<br />

(10:l) (MI<br />

H20 + LiBr:EC TF NA<br />

(4.5 : 1 ) (\*I)<br />

NA<br />

NA<br />

NA<br />

50.0-100.0 88 Iyoki 1984 Japan English<br />

50 . 0-95.0 243 Uemura 1972 Japan Japanese<br />

55.0-75.0 20 Biermann 1978 U.S.A. Fngl i sh<br />

H20 + LiC1: GS 0-130 0.003-0.03<br />

CaC12:Zn(NO<br />

(4.2 : 2 . 7 : 1 )?W?<br />

45.0-95 0 168 Pinchuk 1982 U.S.S.R. Russian<br />

A.2.9.<br />

Viscosity<br />

H20 + LiBr GTE 0-90 NA<br />

39.3-88.6<br />

76 Hasaba 1961 Japan<br />

Japanese<br />

H ~ O + LiBr TS 0-90 NA<br />

60.0-95 0<br />

76 Hasaba 196 1 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


I_<br />

Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

H20 f LiRr<br />

Data<br />

v TY Pe<br />

GE<br />

TS<br />

Weight, %<br />

Temp. Press. Range, X (R)<br />

Range, OC atm Y (R)<br />

5-90 NA 40.0-90.0<br />

No.<br />

248<br />

Author<br />

Uemura<br />

Ref e rence<br />

Year Country<br />

-<br />

1964 Japan<br />

Text<br />

English<br />

TS<br />

0-90 NA 40.0-95.0<br />

232<br />

Ueniura<br />

1974 Japan<br />

Japanese<br />

GS<br />

0- 100 NA 30.0-100.0<br />

121<br />

Lower<br />

196 1 Germany<br />

German<br />

GP<br />

20-80 NA 39. r3-45.0<br />

162<br />

Osaka Gas<br />

1985 Japan<br />

Japanese<br />

GS<br />

21-77 NA 40.8-100.0<br />

52<br />

Ellingt<strong>on</strong><br />

1957 1J.S.A.<br />

English<br />

GTE<br />

5-90 NA 57.6-89.2<br />

74<br />

Hasaba<br />

1964 Japan<br />

Japanese<br />

GTS<br />

5-100 NA 60.0-95.0<br />

74<br />

Yasaha<br />

1964 Japan<br />

Japanese<br />

TG E<br />

60 & 80 NA 62.4-95.9<br />

239<br />

Uemura<br />

1967 Japan<br />

English<br />

TS<br />

5-1 00 NA 60.0-95 .0<br />

2 39<br />

Ue mu r a<br />

1967 Japan<br />

English<br />

GTE<br />

10-80<br />

NA 37.7-94.7<br />

246<br />

Uemura<br />

1969 Japan<br />

Japanese<br />

TS<br />

10-80<br />

NA 40.0-95.0<br />

246<br />

Zernura<br />

1969 Japan<br />

Japanese<br />

GEP<br />

-15-40 NA 0.0-48.0<br />

54<br />

Ennan<br />

1972 U.S.S.R.<br />

English<br />

X - Liquid Phase TI - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Yole, W - I?eight<br />

(1) - mnHg (2) - rnbar NA - Not Available


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Data Temp. Press. Range,<br />

Fluid System Type Range, "C atm<br />

~~0 + Utropin GEP -10-40 NA<br />

H2O + TEG GS 20-90 NA<br />

Weight, Z<br />

X (R)<br />

Reference<br />

NO<br />

Y (R) -<br />

Author Year Country Text<br />

1_1<br />

70.0-85 0 54 Fnnan 1972 U.S.S.R. English<br />

0- 100 200 Seher 1985 Germany German<br />

H20 + LiRr:<br />

LiSCN (l:l)(M)<br />

GTE<br />

5-90 NA<br />

47.3-86.5<br />

84 Iyoki 1981 Japan Japanese<br />

H20 + LiBr: GS 5-90<br />

LiSCN (1: 1 )(MI<br />

NA<br />

NA<br />

40.0-100.0 235 Uemura 1980 Japan Japanese<br />

21.9-90.0 236 Uemura I983 Japan Japanese<br />

820 + LiBr: GE 20-80 NA<br />

~ n ~ 1(l:l)(W)<br />

2<br />

20.0-40.0 131 Manago 19 84 Japan English<br />

20.0-40.0 156 Ohuchi 1985 Japan English<br />

H20 + LiBr: GI! 20-80 NA<br />

~ n ~ 1(1:l)<br />

2<br />

H20 + LiRr: TE 0-100 NA<br />

4 ,BLN (20: I )(MI<br />

20.0-30.0 162 Osaka Gas 1985 Japan Japanese<br />

50.4-100.0 87 Iyoki 1983 Japan Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Ahsorbent(s1 M - Mole, W - Weight<br />

(I) - mmHg (2) - mbar NA - Not Available


QI<br />

u)<br />

a,<br />

5:<br />

(D<br />

a<br />

m<br />

+J<br />

C<br />

m<br />

a<br />

a<br />

+I<br />

P?<br />

eo<br />

cn<br />

F-i<br />

'4<br />

24<br />

0<br />

A<br />

H<br />

h<br />

ac<br />

0<br />

0<br />

0<br />

I<br />

4<br />

.-i<br />

.<br />

U<br />

X<br />

QI<br />

k<br />

h<br />

k<br />

U<br />

E:<br />

3<br />

0<br />

QIV<br />

U<br />

c<br />

QJ<br />

c<br />

rn<br />

1-I<br />

l-4<br />

hc<br />

d<br />

w<br />

c<br />

u)<br />

'rl<br />

4<br />

bo<br />

c<br />

w<br />

-2<br />

cn<br />

3<br />

cc<br />

h<br />

m<br />

4<br />

c<br />

E:<br />

k<br />

aJ<br />

Sl-4<br />

m<br />

0<br />

N<br />

2<br />

0<br />

K-7<br />

cr)<br />

I<br />

0<br />

P-)<br />

N<br />

.<br />

c<br />

c<br />

rn<br />

ffl<br />

'rl -74<br />

r-4 r-i<br />

bo<br />

bo<br />

C c:<br />

w<br />

w<br />

c<br />

m<br />

a<br />

m<br />

7<br />

9'<br />

a0<br />

a<br />

.4<br />

'I+<br />

s<br />

0<br />

h<br />

w<br />

03<br />

(0<br />

0<br />

0<br />

c<br />

I<br />

4<br />

0<br />

In<br />

.-I<br />

c<br />

41<br />

m<br />

+I<br />

m<br />

h<br />

Cn<br />

3<br />

a<br />

0<br />

c<br />

0<br />

h<br />

m<br />

.-i<br />

0<br />

0<br />

03<br />

I<br />

c<br />

In<br />

.<br />

.<br />

z-+<br />

c E:<br />

(d (d<br />

a<br />

a<br />

m (d<br />

9 3<br />

0 m<br />

h<br />

h<br />

m<br />

m<br />

.I( 3<br />

'd<br />

2.4 0<br />

h<br />

H<br />

0<br />

6:<br />

0<br />

h<br />

m<br />

rl<br />

0<br />

0<br />

03<br />

I<br />

0<br />

0<br />

cv<br />

6<br />

c<br />

0<br />

a?<br />

co<br />

h<br />

m<br />

3<br />

n<br />

U<br />

C<br />

0<br />

L'<br />

W<br />

0<br />

hl<br />

-2<br />

aJ<br />

r-i<br />

P<br />

(D<br />

k<br />

0<br />

0<br />

0<br />

I<br />

4s<br />

0<br />

m<br />

F-i<br />

Q<br />

.<br />

0<br />

c7<br />

I<br />

0 .<br />

m<br />

F-i<br />

c<br />

z<br />

c<br />

z<br />

0<br />

C<br />

I<br />

0<br />

.I(<br />

Q<br />

a\<br />

I<br />

0<br />

hl<br />

a<br />

m<br />

I<br />

Q<br />

N<br />

0<br />

m<br />

I<br />

a<br />

hl<br />

u3<br />

\o<br />

I<br />

m<br />

4s<br />

0<br />

\a<br />

I<br />

0<br />

0<br />

u3<br />

I<br />

0<br />

0<br />

\o<br />

I<br />

a<br />

m<br />

m<br />

W<br />

13 w<br />

w<br />

w<br />

c3<br />

w<br />

k<br />

W<br />

13<br />

W<br />

k<br />

c9<br />

w .. ..<br />

k<br />

P2<br />

;$<br />

..<br />

k<br />

m<br />

*d a<br />

l.4W<br />

+ N<br />

k<br />

o m<br />

r\lc<br />

EN<br />

..<br />

k<br />

p?<br />

..<br />

k<br />

-4 a<br />

Jl2<br />

m<br />

rl<br />

GI%<br />

I-v<br />

..<br />

..<br />

+ h l<br />

k<br />

N C<br />

TN<br />

o m<br />

..<br />

+ n'<br />

h<br />

hlc<br />

ZN<br />

o m<br />

A-70


A.2.10.<br />

Mass Transfer Rate<br />

Weight, %<br />

Data Temp. Press. Ranqe, X (Q) Reference<br />

Fluid System Type Range, "C atm<br />

No . Author<br />

-<br />

Year Country Text<br />

Y (R) -<br />

11~0 + LiBr GE 20 Nh NA 133 Matsuda 1980 Japan Japanese<br />

H20 + LiBr TE 27-41 0.0028-0.026 41.0-43.0 270 Zawacki<br />

1973 U.S.A. English<br />

H20 + LiBr TE 27-41 0.0028-0.026 40.0 271 Zawacki 1973 U.S.A. English<br />

R20 + LiBr GE 25-49 0.0028-0.026 40.0-43.0 41 Deemer 1972 U.S.A. English<br />

II2O + LiBr GE 25<br />

NA 40.0 6 50.0 103 Kashiwagi .I983 Japan English<br />

w<br />

P H20 + LiBr GE 25 NA 40.0-80.0 101 Kashiwagi 1984 Japan Japane s e<br />

N20 + LiBr GE 25 NA 40.0-80 -0<br />

99 Kashiwagi 1985 Japan Japanese<br />

A.2.11.<br />

Heat Transfer Rate<br />

H20 + LiBr GS 0-100 NA 30.0-100.0 121 Lower 1961 Germany German<br />

H20 + LiBr GS 0-100 NA 40.0-100.0 121 Lower 1961 Germany German<br />

H20 i- LiBr GS 30-120<br />

H20 + LiBr: GS 30-120<br />

Ray si l<strong>on</strong>e<br />

NA<br />

NA<br />

60.0 108 Knoche 1987 Germany Eng 1 ish<br />

60.9 108 Knoche 1987 Germany English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in VaDor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not 8vailahle


Table A. 2.0. (C<strong>on</strong>t. )<br />

Fluid System<br />

--<br />

Weight, %<br />

Data Temp. Press. Range, x (R) Reference<br />

Type Range, OC atin Y (R) No , Author Year Country Text<br />

1_1<br />

-<br />

NA 60.0 108 Rnoche 1987 Germany English<br />

H20 + LiBr:EG TE 56<br />

(4.5:1) (w)<br />

H20 + LiBr: GE NA<br />

RbF : CsF<br />

A,2.12.<br />

7<br />

4 N20 + LiBr<br />

To<br />

Thermal C<strong>on</strong>ductivity<br />

GTE 10-80<br />

NA 26.9-32.4 20 Riermann 1978 U.S.A. English<br />

NA 15.0-45.0 119 Ledding 1955 U.S.A. Enql i sh<br />

NA 39.9-86.9 251 Uemura 1963 Japan Japanese<br />

H20 + LiBr GTS 0- 100 NA 35.0-95.0 251 Uemura 1963 Japan Japanese<br />

H25 + LiBr TGE 18-80<br />

TS<br />

NA 40 .0-90. 0<br />

248 Uemura 1964 Japan English<br />

w20 4- LiBr TS 0-100 NA 35 0-95.0 232 Uemura<br />

1977 Japan<br />

Japanese<br />

H20 + LiBr GS 0-89 NA 40.0-100.0 121 Lower 1961 Germany<br />

German<br />

H20 + LiCl GTE 10-90 NA 59.4-90.0 74 Hasaba 1964 Germany Japanese<br />

H20 -+ LiCl GTS 5-100 NA 60.0-95.0 74 Hasaba 1964 Japan<br />

3 apanese<br />

X - Liquld phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.2.0.<br />

(Cant.)<br />

Data Temp. Press. Range,<br />

Fluid System Type Range, 'C atm<br />

Weight, X<br />

X (R)<br />

Y (R)<br />

-<br />

No . Author<br />

Reference<br />

Year Country<br />

I_<br />

Text<br />

H20 + LiCl TGE 20 NA<br />

62.0-89.9<br />

239 Uemura<br />

1967 Japan<br />

English<br />

H20 + LiCl TE 10-90 NA<br />

60.0-90.0<br />

239 Uenura<br />

1967 Japan<br />

English<br />

H20 + 'tic1 TS 5-100 NA<br />

60.0-95 -0<br />

239 Uemura<br />

1967 Japan<br />

English<br />

A.2.13.<br />

Refractive Index<br />

H20 + LiBr: TGE NA HA<br />

LiCl (2: 1 (M)<br />

?<br />

4 A.2.14. Entropy<br />

w<br />

40.0-100.0<br />

247 !lemma<br />

1970 Japan<br />

Japanese<br />

H20 + LiBr GS 0-120 2-700 (1)<br />

30.0-100.0<br />

248 Uemura<br />

1964 Japan<br />

English<br />

H20 + LiBr GS 0-120 2-700 (1)<br />

30.0-100.0<br />

77 Hasaba<br />

1964 Japan<br />

Japanese<br />

H20 + LiBr GS 0-120 2-700 (1)<br />

30.0-100.0<br />

232 Uemura<br />

19 7 7 Japan<br />

Japanese<br />

11~0 + LiBr P 0-250 0.1-15.5<br />

30.0-100.0<br />

80 Herold<br />

1987 U.S.A.<br />

English<br />

H20 + LiBr GS 0-140 0.001- 1.0<br />

30.0-100.0<br />

121 Lower<br />

1961 Germany<br />

German<br />

H20 + LiBr GTSP 0-100 0.001-1 .o<br />

30.0-100.0<br />

110 Koehler<br />

1987 U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s) M -<br />

(1) - mmHg (2) - mbar NA -<br />

P Pr [I by weight of A in VaDor Phase<br />

Mo : Le, W - Weight<br />

Nor : Available


n<br />

+-ex<br />

w X<br />

3<br />

+<br />

P<br />

P.<br />

cd<br />

Y<br />

h)<br />

1-3<br />

Pi<br />

0<br />

I<br />

cb<br />

c9<br />

;d<br />

0<br />

+<br />

r<br />

i-1.<br />

c3<br />

c-'<br />

N<br />

2<br />

e,<br />

I<br />

N<br />

0<br />

+<br />

cn<br />

I<br />

w<br />

0<br />

0<br />

r?<br />

c,<br />

W<br />

z<br />

0<br />

+<br />

N<br />

r<br />

P.<br />

t.d<br />

Y<br />

kl<br />

v)<br />

0<br />

I<br />

N<br />

0<br />

0<br />

0<br />

0<br />

0<br />

I<br />

cn<br />

0<br />

)-.<br />

l-4<br />

.<br />

z<br />

0<br />

-+<br />

h)<br />

ZT<br />

93<br />

5<br />

G)<br />

H<br />

cn<br />

I<br />

0<br />

0<br />

I<br />

N<br />

0<br />

0<br />

b-<br />

0<br />

0<br />

0<br />

N<br />

I<br />

.<br />

)-.<br />

cn<br />

0<br />

.<br />

9<br />

r<br />

i-1.<br />

id<br />

Y<br />

r?<br />

in<br />

0<br />

I<br />

N<br />

0<br />

c-l<br />

0<br />

0<br />

0<br />

h)<br />

I<br />

0<br />

c<br />

W<br />

0<br />

0<br />

I<br />

0<br />

0<br />

a<br />

.<br />

+<br />

.<br />

9<br />

CQ<br />

cj<br />

m<br />

d<br />

w<br />

m<br />

9<br />

h)<br />

0<br />

P *<br />

0<br />

0<br />

I<br />

\o<br />

cn<br />

8<br />

.<br />

*<br />

N cc<br />

0 w<br />

VI<br />

0<br />

I<br />

.<br />

Y<br />

0<br />

I<br />

co<br />

9<br />

.<br />

0<br />

I<br />

W<br />

VI<br />

.<br />

c3<br />

I<br />

0<br />

0<br />

0<br />

c<br />

2<br />

x-<br />

0<br />

I<br />

vs<br />

cn<br />

0<br />

.<br />

z<br />

P<br />

0<br />

0<br />

n<br />

c3<br />

0<br />

D<br />

R<br />

v<br />

N<br />

N<br />

-4<br />

h)<br />

c*,<br />

13<br />

N<br />

c.<br />

iD<br />

N<br />

W<br />

9<br />

W<br />

N<br />

U<br />

0 w<br />

(r m<br />

W<br />

d<br />

ID<br />

z<br />

Y<br />

nl<br />

c:<br />

e<br />

Y<br />

B,<br />

B<br />

w<br />

'c<br />

0<br />

E<br />

c3<br />

C<br />

U<br />

m<br />

(ar<br />

z<br />

m<br />

Y<br />

0,<br />

c<br />

m<br />

3<br />

Y<br />

e,<br />

c,<br />

a<br />

U<br />

e\<br />

c1<br />

u)<br />

U<br />

w<br />

)-.<br />

u)<br />

w<br />

U<br />

c,<br />

rQ<br />

cn<br />

+<br />

c1<br />

m<br />

U<br />

<<br />

c<br />

4<br />

m<br />

'd<br />

P,<br />

3<br />

4<br />

m<br />

a<br />

m<br />

3<br />

4<br />

ru<br />

b<br />

m<br />

3<br />

4<br />

PJ<br />

x<br />

P,<br />

3<br />

4<br />

pr<br />

d<br />

m<br />

3<br />

4<br />

Dp,<br />

3<br />

m<br />

3<br />

d<br />

cn<br />

in<br />

id<br />

.<br />

.<br />

r<br />

..<br />

Pi<br />

3<br />

P.<br />

m<br />

3<br />

"",<br />

;er<br />

G<br />

m<br />

m<br />

14.<br />

P,<br />

3


Table A.2.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

H20 + LiBr<br />

H20 + LiRr<br />

+ n-octanol<br />

Weight, X<br />

Data Temp. Press. Range, x (9) Reference<br />

Type Range, OC atm Y (R) No. Author Year Country Text<br />

GS 0-100 NA 40.0-100.0 121 Lower 1961 Germany German<br />

GE 20 NA 50.0 102 Kashiwagi 1985 Japan Japanese<br />

-<br />

-<br />

H20 + LiBr<br />

+ n-octanol<br />

GE 20 NA 50.0 100 Rashiwagi 1984 Japan<br />

Japanese<br />

H20 -+ LiBr<br />

+ n-octanol<br />

GE 20 NA 50.0 99 Kashiwagi 1985 Japan Japanese<br />

GTE 5-90 NA 60.8-90.3 74 Hasaba 1964 Japan Japanese<br />

GTS 5-1 00 NA 60 . 0-95 .O 74 Nasaba 1964 J aDan Japanese<br />

Y20 + LiCl<br />

TS 5-100 NA 60.0-95.0 239 Uemura 19 67 Japan<br />

English<br />

H20 4- LiI<br />

GTE 5-80 NA 37 . 7-88.0 246 TJemura<br />

1969 Japan Japanese<br />

H20 + LiI<br />

H20 + LiBr:<br />

ZnBr2 (1:2.6)(W)<br />

TS 0-80 NA 40.0-90.0 246 Uemura 1969 Japan Japanese<br />

TE 20-80 NA 22.0-70 .O 236 Uemura 1983 Japan J ap anese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Ahsorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


: m<br />

7-1<br />

4<br />

bo<br />

d<br />

w<br />

h<br />

c<br />

a<br />

a<br />

c3<br />

E<br />

.-i<br />

m<br />

0<br />

4<br />

a,<br />

rl<br />

E<br />

.d cu<br />

U<br />

m<br />

co<br />

74<br />

N<br />

0<br />

0<br />

0<br />

I<br />

Q<br />

0<br />

r-i<br />

h<br />

W<br />

N<br />

0<br />

0<br />

0<br />

I<br />

rl<br />

4<br />

0<br />

I<br />

0<br />

N<br />

1<br />

4<br />

m<br />

#<br />

k<br />

m<br />

“4<br />

d<br />

4-<br />

X<br />

0<br />

X<br />

V<br />

m<br />

a<br />

v)<br />

W<br />

c<br />

a<br />

a<br />

(d<br />

r,<br />

d<br />

(d<br />

a<br />

rr9<br />

3<br />

L n<br />

\o<br />

Cn<br />

-4<br />

rd<br />

k<br />

3<br />

R<br />

e,<br />

D<br />

VI<br />

*<br />

N<br />

0<br />

0<br />

Cn<br />

I<br />

0<br />

0<br />

4.<br />

n<br />

4<br />

v<br />

0<br />

0<br />

0<br />

m<br />

I<br />

0<br />

a<br />

8<br />

I<br />

8<br />

rl<br />

PI<br />

mE9<br />

Wc3<br />

k<br />

m<br />

7-i<br />

4<br />

+<br />

X<br />

0<br />

m<br />

U<br />

m<br />

4<br />

P<br />

2<br />

m<br />

w<br />

t-4<br />

w<br />

d<br />

w<br />

k<br />

0<br />

s<br />

U<br />

-2<br />

z 4<br />

h<br />

0<br />

a<br />

m<br />

3<br />

c<br />

d<br />

4<br />

u<br />

H<br />

A<br />

4<br />

v<br />

4.<br />

N<br />

0<br />

I<br />

CQ<br />

Q<br />

0<br />

6<br />

0<br />

0<br />

I<br />

0<br />

4<br />

4<br />

6<br />

I<br />

8<br />

.I<br />

eo<br />

VI<br />

I<br />

m<br />

H<br />

m<br />

m<br />

.<br />

0<br />

m<br />

8<br />

0 .<br />

0<br />

m<br />

P<br />

cu<br />

d<br />

P<br />

cd<br />

w<br />

w<br />

a PI<br />

w<br />

w<br />

Ec<br />

w<br />

c3<br />

k<br />

m<br />

k<br />

rl<br />

GI<br />

m<br />

k<br />

w<br />

‘d<br />

+a<br />

-c<br />

k<br />

m<br />

“d<br />

1-7<br />

c<br />

f<br />

22<br />

0<br />

tc<br />

u<br />

m<br />

A-76


Table A. 3.0. (C<strong>on</strong>t. )<br />

Fluid System<br />

CH3OH + LiBr<br />

Data<br />

BE<br />

T-l%<br />

Temp.<br />

Range, "C<br />

-10-170.5<br />

Weight, %<br />

Press. Range,<br />

X (R)<br />

atm<br />

Y (R)<br />

1.4-3070 (2) 39.7-74.7<br />

- NO<br />

185 Renz<br />

Author<br />

Ref e reme<br />

Year Country<br />

I__<br />

1981 Germany<br />

Text<br />

English<br />

CH3OH + LiBr<br />

TE<br />

-10-140<br />

1.4-1005.8 (2) 39.7-74.7<br />

182 Renz<br />

1980<br />

Germany<br />

German<br />

CH3OH + LiBr<br />

GS<br />

-20-1 60<br />

1-3000 (2)<br />

40-100<br />

185 Renz<br />

1981<br />

Germany<br />

English<br />

CH3OH + LiBr<br />

GS<br />

-20-140<br />

2-1000 (2)<br />

0-1 00<br />

182 Renz<br />

1980<br />

Germany<br />

German<br />

CH30H 3- LiBr<br />

GE<br />

-10-1 10<br />

0.002-0.8<br />

50-100<br />

58 Felli<br />

1979<br />

Italy<br />

English<br />

4<br />

4<br />

CH30H + LiBr<br />

CH3OH + LfBr<br />

TE<br />

GS<br />

35-100<br />

-20-100<br />

0.02-0.72<br />

0.05-1<br />

50<br />

20-60<br />

58 Felli<br />

48 Eichholz<br />

1979<br />

1982<br />

Italy<br />

Germany<br />

English<br />

German<br />

CH30H + LiBr<br />

TGEP<br />

20-100<br />

0.02-5<br />

69.3-100<br />

48 Eichholz<br />

1982<br />

Germany<br />

German<br />

CH3QH + LiBr<br />

GE<br />

20-100<br />

0-4<br />

69.3-100<br />

48 Eichholz<br />

1982<br />

Germany<br />

German<br />

CH3OH + ZnBr2<br />

GS<br />

-20-110<br />

5-1000 (2)<br />

26-100<br />

184 Renz<br />

1981<br />

Germany<br />

German<br />

GE<br />

-10-110<br />

0.006-1.6<br />

30-100<br />

58 Felli<br />

1979<br />

Italy<br />

English<br />

CR3OH + ZnBr2<br />

TGEP<br />

20-100<br />

0.05-1<br />

76.2-98.4<br />

48 Eichholz<br />

1982<br />

Germany<br />

German<br />

CH30H + ZnBr2<br />

GE<br />

20-1 00<br />

- 0-3.5<br />

76.2-98.4<br />

48 Eichholz<br />

1982<br />

Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absotbent(s) M - Mole, W - Weight<br />

NA - Not Available<br />

(1) - mmHg (2) - mbar


c<br />

Z S "<br />

M b r<br />

a<br />

c3<br />

c<br />

m<br />

-4<br />

9-4<br />

bD<br />

c<br />

w<br />

h<br />

C<br />

k<br />

a,<br />

0<br />

2i<br />

h<br />

cg<br />

m<br />

rl<br />

a,<br />

c<br />

u<br />

6<br />

c<br />

M<br />

co<br />

0<br />

rl<br />

0<br />

0<br />

0<br />

I<br />

Q<br />

0<br />

ll<br />

n<br />

hl<br />

v<br />

0<br />

0<br />

0<br />

N<br />

I<br />

m<br />

3<br />

Y<br />

I<br />

3<br />

v<br />

I<br />

I<br />

;<br />

><br />

I<br />

?<br />

I<br />

al<br />

m<br />

a<br />

s<br />

FL(<br />

k<br />

8<br />

a<br />

m<br />

P<br />

E:<br />

"4<br />

4<br />

h<br />

U<br />

C<br />

0<br />

V<br />

U<br />

0<br />

m<br />

&J<br />

m<br />

ui<br />

N<br />

.I<br />

m<br />

m<br />

0<br />

I<br />

e<br />

0<br />

0<br />

0<br />

.<br />

.<br />

m<br />

0<br />

I<br />

0<br />

m<br />

4<br />

w<br />

E-4<br />

hl<br />

k<br />

m<br />

e<br />

N<br />

+<br />

0<br />

c<br />

P<br />

r<br />

r<br />

\<br />

C<br />

l<br />

e<br />

ll<br />

P<br />

i<br />

F<br />

C il<br />

3<br />

0<br />

c<br />

L<br />

E<br />

c1<br />

c<br />

v<br />

c<br />

C<br />

C<br />

0<br />

C.<br />

U<br />

c a,<br />

m a<br />

U<br />

c<br />

N<br />

c<br />

I<br />

C<br />

U<br />

C<br />

J<br />

I-<br />

-!<br />

z<br />

3<br />

w<br />

c<br />

+ +<br />

1 5 :<br />

0<br />

u<br />

? zm<br />

x<br />

u<br />

A-78


%<br />

7-4<br />

rl<br />

M<br />

C<br />

w<br />

h<br />

rl<br />

a<br />

U<br />

H<br />

a,<br />

v)<br />

a,<br />

C<br />

a<br />

Q<br />

m<br />

r,<br />

h<br />

c<br />

m<br />

E<br />

a,<br />

aJ<br />

cs<br />

h<br />

c<br />

m<br />

e<br />

a,<br />

c3 (3<br />

.",<br />

.d<br />

rl<br />

M<br />

G a<br />

E<br />

c a,<br />

M<br />

cs<br />

4<br />

oc<br />

m<br />

4<br />

N<br />

h<br />

m<br />

4<br />

d r.4<br />

cb<br />

Q\<br />

06<br />

4<br />

H i.4<br />

nl 4<br />

00 m<br />

m o\<br />

4 4<br />

rl<br />

d<br />

r(<br />

aJ<br />

F<br />

m<br />

$4<br />

1<br />

s<br />

3<br />

/--.<br />

.<br />

u<br />

V<br />

W<br />

.<br />

0<br />

m<br />

-2<br />

a,<br />

ri<br />

n<br />

m<br />

I3<br />

p.<br />

In<br />

0<br />

\(3<br />

I<br />

0<br />

d<br />

d<br />

I<br />

c1<br />

0<br />

0<br />

.<br />

-3<br />

-3<br />

N<br />

0<br />

0<br />

cn<br />

I<br />

.<br />

c.<br />

C<br />

9<br />

fi<br />

ril<br />

W<br />

.<br />

m<br />

0<br />

9 m<br />

I<br />

co<br />

m<br />

m<br />

.<br />

r,<br />

u m<br />

c w<br />

cdu<br />

k c<br />

0,<br />

4<br />

I<br />

9<br />

02 .<br />

0<br />

h<br />

I<br />

0<br />

N<br />

V<br />

w<br />

pl<br />

H<br />

8<br />

+<br />

Ec<br />

0<br />

el<br />

rJ:<br />

V<br />

I l l<br />

h<br />

x w;<br />

A-7 9


u X<br />

a,<br />

E-r<br />

c<br />

v)<br />

+<br />

r-i<br />

M<br />

d<br />

W<br />

(1) a,<br />

cn<br />

aJ<br />

d<br />

(d<br />

a<br />

9<br />

1<br />

al<br />

0<br />

4 c c: c<br />

m m m<br />

cn a P Q<br />

c<br />

%tl<br />

ta<br />

ta<br />

P r, 9 "-,<br />

gl<br />

k<br />

ar<br />

ln<br />

w<br />

m m m<br />

Q r.<br />

t- h<br />

a!<br />

a'<br />

m 0- m o'\<br />

A .--I<br />

.<br />

4 ,-I<br />

A<br />

.<br />

U<br />

0<br />

m<br />

P<br />

cy<br />

l-4<br />

a<br />

E-c<br />

k<br />

a,<br />

s<br />

&4<br />

z<br />

a,<br />

tr<br />

# Q<br />

.<br />

.<br />

ch \a<br />

m to<br />

I I<br />

4 4<br />

4 Q<br />

N<br />

m<br />

m<br />

z<br />

h<br />

5<br />

3<br />

k<br />

2<br />

a!<br />

3<br />

.<br />

. .<br />

0 0<br />

0 0<br />

0<br />

9-4 0,<br />

I<br />

I<br />

6 -3<br />

0 0<br />

L17<br />

m<br />

n n<br />

H .4<br />

W W<br />

0 Q<br />

0 c<br />

0 In<br />

.--I<br />

1<br />

0<br />

hl<br />

I<br />

F(<br />

rd<br />

P<br />

c<br />

Sr-4<br />

c<br />

0 0<br />

$4<br />

2 r-4<br />

I<br />

I<br />

0 0<br />

n<br />

;r:<br />

.. w<br />

A-80


Table A.3.0.<br />

(C<strong>on</strong>t.)<br />

?<br />

03<br />

Fluid System<br />

CH30H + LiI:<br />

ZnBr2 (2:1)(M)<br />

CH30H + LiBr:<br />

LiCl (0.5:1)(M)<br />

CH3OH + LiCl:<br />

ZnBr2 (2:1)(M)<br />

CH3OH + H20:<br />

LiBr<br />

cI CH3OH + H20:<br />

LiBr<br />

C2H5OH + LiBr<br />

nata<br />

Type<br />

TP<br />

TE<br />

TE<br />

GS<br />

GS<br />

TE<br />

Weight, X<br />

Temp. Press. Range, X (R) Ref e rence<br />

Range, O C atm Y (R) No. Author Year Country Text<br />

20-70 30-769 (1) 56.8-85 3<br />

-<br />

-<br />

244 Uemura 1972 Japan Japanese<br />

30-89 0.039-0.786 67.8-80.0 1 4ker 1965 U.S.A. English<br />

30-115 0.030-1.055 41 .0-71.4 1 Aker 1965 U.S.A. English<br />

60 6 100 NA 0.0-100.0 108 Knoche 1987 Germany English<br />

-10-120 10-1000 (2) NA 108 Knoche<br />

1987 Germany German<br />

35-1 14 0.011-0.903 51.9-66.6 1 Aker 1965 U.Se.4. English<br />

C2H50H f LiRr<br />

GE<br />

28 0.024<br />

Sat. at 25OC 119 Ledding 1965 U.S.A. English<br />

C2H50H + LiBr<br />

TGEP<br />

20-70 26.3-475 (1) 50 5-90 0 233 Uemura 1975 Japan Japanese<br />

C2H5OH + LiC1<br />

GE<br />

26 0.024 Sat. at 25°C 119 Ledding 1965 U.S.A.<br />

English<br />

C2H50H + LiI<br />

TGEP<br />

29.9-72.38 12.24-384.57 (1) 50.7-94.7<br />

86 Iyoki 1982 Japan Japanese<br />

X Liquid Phase R Refrigerant c ppm by weight of A in Vapor Fhase<br />

Y Vapor Phase A - Absorbent(s) M Mole, W - Weight<br />

(1) - mmHg (2) - mbar<br />

NA - Not Available


u I<br />

FJ<br />

c<br />

0<br />

V<br />

v<br />

.<br />

6<br />

m<br />

P<br />

a<br />

I-7<br />

a<br />

m<br />

B<br />

6<br />

c\I 0<br />

hl<br />

0<br />

0<br />

ri<br />

0<br />

4<br />

I<br />

0<br />

4<br />

I<br />

-3<br />

!n<br />

a<br />

N<br />

I<br />

8<br />

hl<br />

I<br />

r-!<br />

rl<br />

I<br />

0E-c<br />

w<br />

L"<br />

kJ<br />

E-c<br />

c3<br />

W<br />

€.i<br />

N<br />

r-i<br />

u<br />

d<br />

N<br />

4"<br />

E<br />

aJ<br />

U<br />

m<br />

h<br />

m<br />

93<br />

v-c<br />

3<br />

r-i<br />

FI<br />

0<br />

z<br />

f<br />

hl<br />

c<br />

1<br />

k.<br />

I<br />

I<br />

I<br />

i<br />

I<br />

I<br />

E 5:<br />

8<br />

In<br />

3:<br />

hl<br />

u<br />

I l l<br />

c<br />

0<br />

X<br />

u<br />

m<br />

c<br />

A-8 2


~~ ~ ~~<br />

Table A. 3.0.<br />

(C<strong>on</strong>t.<br />

Fluid System<br />

CH30H + LiBr<br />

Data<br />

2€!'2<br />

TE<br />

Temp.<br />

Range, OC<br />

18 & 25<br />

Press. Range,<br />

atm<br />

NA<br />

41.7 & 46.1<br />

-<br />

-<br />

Reference<br />

No. Author Year Country Text<br />

164 Pavlopoulos 1954 Germany German<br />

CH3OH + LiBr<br />

GS<br />

0-70<br />

NA<br />

50 & 100<br />

181 Renz 1978 Germany German<br />

CH30H + LiBr<br />

TE<br />

15.5-100<br />

NA<br />

40.0-59.0<br />

183 Renz 1981 Germany<br />

German<br />

CH30H + LiCl<br />

TE<br />

18 & 25<br />

NA<br />

69.4 & 70.9<br />

164 Pavlopoulos 1954 Germany German<br />

CH30H + LiCl<br />

GTE<br />

0-30<br />

NA<br />

69.5<br />

158 Oosaba 1950 Japan Japanese<br />

3; CH30H + LiI<br />

03<br />

w<br />

CH30H + LiI<br />

TE<br />

TE<br />

-17-113<br />

18 & 25<br />

NA<br />

NA<br />

22.0-64.0<br />

36.9 & 41.1<br />

183 Renz . 1981 Germany German<br />

164 Pavlopoulos 1954 Germany German<br />

CH3OH + LiSCN<br />

TE<br />

9.3-90<br />

NA<br />

38.0-44.0<br />

183 Renz 1981 Germany German<br />

CH30H + ZnBr2<br />

GTE<br />

0-80<br />

NA<br />

18.9-32.9<br />

241 Uemura 1976 Japan Japanese<br />

CH30H + NaF<br />

m<br />

18 & 25<br />

NA<br />

99.9 & 99.9<br />

164 Pavlopoulos 1954 Germany<br />

German<br />

CH30H + NaCl<br />

TE<br />

18 & 25<br />

NA<br />

98.6 & 98.7<br />

164 Pavlopoulos 1954 Germany German<br />

CH30H + NaBr<br />

TE<br />

18 & 25<br />

NA<br />

85.2 & 86.0<br />

164 Pavlopoulos 1954 Germany<br />

German<br />

CH30H + NaI<br />

TE<br />

18 & 25<br />

NA<br />

54.6 & 58.1<br />

164 Pavlopoulos 1954 Germany German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


a,<br />

W<br />

k<br />

0<br />

s u<br />

3<br />

4<br />

z ;I<br />

u<br />

c<br />

0<br />

V<br />

v<br />

0<br />

.<br />

m<br />

-4<br />

aJ<br />

r-l<br />

P m<br />

w<br />

c<br />

m<br />

d<br />

I<br />

c<br />

A-84


Table A.3.0.<br />

(C<strong>on</strong>t.)<br />

Data Temp. Press. Range,<br />

Fluid System Type Range, OC atm<br />

_c<br />

CH30H + LiBr: GE -1 0-80<br />

Zn'Br2 (2:1)(M)<br />

NA<br />

28.0-60.0<br />

NO<br />

_I<br />

Author<br />

Reference<br />

Year Country Text<br />

-<br />

249 Uemura 1969 Japan 3 apanese<br />

CH30H + H20: GS -25-60<br />

LiBr<br />

NA<br />

0.0-100.0<br />

108 Knoche 1987 Germany German<br />

CH30H + LiI: TE -12-75<br />

ZnBr2 (2: 1) (M)<br />

NA<br />

34.1-40.7<br />

228 Uemura 1973 Japan German<br />

CK30H + Liz: GE -10-70<br />

3; ZnBr2 (2:1)(M)<br />

co<br />

cn<br />

C2HSOH + LiRr GE 0-90<br />

NA<br />

NA<br />

35.0-40.0<br />

51.0-7 7.0<br />

240 Uemura 1975 Japan J ap anew<br />

233 Uemura I9 75 Japan Japanese<br />

C2H5OH + LII GTE -17.73- NA<br />

196.33<br />

nC3H70H + LiRr GTE 0-40 NA<br />

25.8-68.2<br />

58.6<br />

86 Iyoki 1982 Japan Japanese<br />

158 Oosaba 1950 Japan Japanese<br />

A.3.4.<br />

Heat of Mixing<br />

CH30H + LiBr GE NA NA<br />

40 . 0-1 00.0<br />

245 Uemura<br />

1965 Japan<br />

Japanese<br />

CH30H -k LiRr TGE 25 & 40 NA<br />

45.0-100.0<br />

48 Eichholz<br />

1982 Germany<br />

Ge man<br />

X Liquid Phase R Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y Vapor Phase A Absorbent(s) M Mole, W - Weight<br />

(1) - mdg<br />

(2) - mbar NA - Mot Available


QJ<br />

u)<br />

W<br />

F:<br />

m<br />

za,<br />

m<br />

9<br />

C<br />

m<br />

P<br />

(d<br />

27<br />

d<br />

m<br />

a<br />

m<br />

9<br />

m<br />

P.<br />

(r\<br />

.-i<br />

m<br />

u3<br />

m<br />

F-4<br />

a,<br />

M<br />

m<br />

c<br />

pl<br />

rd<br />

k<br />

3<br />

4<br />

QJ<br />

=,<br />

(d<br />

k<br />

7<br />

E<br />

aJ<br />

3<br />

m<br />

m<br />

N<br />

m<br />

e<br />

N<br />

R<br />

hl<br />

e<br />

0<br />

V<br />

W<br />

c<br />

0<br />

0<br />

rl<br />

c<br />

4<br />

m<br />

I<br />

Q<br />

I<br />

C<br />

0<br />

cc)<br />

B<br />

e<br />

e<br />

H<br />

L n<br />

a,<br />

4<br />

rn<br />

m<br />

E-r<br />

L<br />

aJ<br />

br<br />

C<br />

m<br />

o r 6<br />

v1<br />

m<br />

e,<br />

k<br />

!L<br />

2 2<br />

c<br />

2 z<br />

c<br />

P<br />

0<br />

C<br />

I<br />

0<br />

4<br />

0<br />

4<br />

w<br />

C3<br />

h<br />

N<br />

k<br />

m<br />

G<br />

N<br />

+<br />

m<br />

0<br />

z<br />

V<br />

p7<br />

m<br />

m<br />

Fi<br />

cf<br />

E-<br />

F<br />

c.<br />

rn<br />

13<br />

€+<br />

w<br />

c9<br />

03<br />

c3<br />

rn<br />

L!J<br />

C<br />

k<br />

E:<br />

N<br />

m<br />

n<br />

22<br />

L<br />

Fz<br />

&<br />

-I-<br />

.I-<br />

U<br />

'd<br />

4<br />

+<br />

0<br />

X<br />

N<br />

f +<br />

T.<br />

0<br />

z<br />

u<br />

m<br />

hl<br />

A<br />

W<br />

x P-1 d<br />

N<br />

V<br />

A-5 6


Table A. 3.0.<br />

(C<strong>on</strong>t.<br />

Fluid System<br />

CH30H + LiBr<br />

Data<br />

TEpe<br />

TS<br />

Temp.<br />

Range, O c<br />

5-95<br />

Press. Range,<br />

atm<br />

NA<br />

Weight, %<br />

X (R)<br />

Y (R)<br />

55.0-95.0<br />

NO.<br />

L<br />

245<br />

Author<br />

Uemura<br />

Ref ere nc e<br />

- Year Country<br />

1965 Japan<br />

Text<br />

Japanese<br />

CH30H + LiBr<br />

GE<br />

5-90<br />

NA<br />

41.5-100.0<br />

185<br />

Renz<br />

1981<br />

Ge rmany<br />

English<br />

CH30H -f LiBr<br />

TEP<br />

5-90<br />

NA<br />

42.0-89.0<br />

183<br />

Renz<br />

1981<br />

Germany<br />

German<br />

CH30H + LiBr<br />

GS<br />

10-90<br />

NA<br />

40.0-100.0<br />

185<br />

Renz<br />

1981<br />

Germany<br />

German<br />

CH30H + LiBr<br />

GS<br />

10-90<br />

NA<br />

40.0-100.0<br />

183<br />

Rem<br />

1981<br />

Germany<br />

German<br />

GS<br />

10-90<br />

NA<br />

40.0-100.0<br />

182<br />

Renz<br />

1.980<br />

Gernany<br />

German<br />

TEP<br />

20-90<br />

NA<br />

26.0-98.0<br />

183<br />

Renz<br />

1981<br />

Germany<br />

German<br />

CH30H + LiI<br />

GS<br />

20-1 00<br />

NA<br />

20.0-100.0<br />

183<br />

Renz<br />

1981<br />

Germany<br />

German<br />

CH30H + ZnBr2<br />

GTE<br />

5-60<br />

NA<br />

40.0-94.0<br />

24 1<br />

Uemura<br />

1976<br />

Japan<br />

Japanese<br />

CH30H + ZnBr2<br />

TS<br />

5-60<br />

NA<br />

40.0-95.0<br />

24 1<br />

Ueuura<br />

1976<br />

Japan<br />

Japanese<br />

CH30H + LiSCN<br />

TEP<br />

20-90<br />

NA<br />

44.0-98.0<br />

183<br />

Renz<br />

1981<br />

Germany<br />

German<br />

CH30H + LiSCN<br />

GS<br />

20-90<br />

NA<br />

40.0-100.0<br />

183<br />

Renz<br />

1981<br />

Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Hole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


UJ<br />

aJ<br />

M<br />

m<br />

a, a,<br />

c<br />

E<br />

m (D<br />

a<br />

(D<br />

aJ<br />

u)<br />

a,<br />

c<br />

m<br />

a<br />

c<br />

(d<br />

E!<br />

&<br />

a,<br />

c3<br />

h<br />

c<br />

k<br />

a,<br />

W<br />

2<br />

4<br />

m<br />

m<br />

pl<br />

N<br />

c<br />

aJ<br />

p?<br />

a3<br />

r-4<br />

0<br />

0<br />

0<br />

I<br />

0<br />

0<br />

N<br />

.<br />

9-i<br />

.<br />

c<br />

a<br />

e<br />

m<br />

'1<br />

CI<br />

0<br />

c<br />

U<br />

5<br />

4<br />

2 4<br />

(B<br />

b<br />

E'<br />

a,<br />

5<br />

n<br />

U<br />

c<br />

0<br />

V<br />

W<br />

0<br />

b<br />

I<br />

0<br />

0<br />

P .<br />

4<br />

a,<br />

Fi<br />

P<br />

a<br />

r- R<br />

W<br />

c.l<br />

2<br />

c<br />

z<br />

0<br />

0<br />

0<br />

nl I<br />

m<br />

0<br />

cI\<br />

I<br />

8<br />

4<br />

0<br />

0<br />

m<br />

I<br />

0<br />

0 c3<br />

I<br />

I<br />

e, v)<br />

03<br />

7-4<br />

N<br />

c2<br />

03<br />

I<br />

6<br />

0<br />

\B<br />

I<br />

Ln<br />

m<br />

W<br />

€i cn<br />

c3<br />

Czl<br />

E-4<br />

c7<br />

cn<br />

c3<br />

wv,<br />

c7r-<br />

X N<br />

Q k<br />

FlFa<br />

x c<br />

V N<br />

A-88


Table A.3.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Press. Range, x (R) Ref ere nce<br />

-<br />

Fluid System Type Range, OC atm y (R) No. Author Year Country Text<br />

CH30H + LiRr GS -30-140 0.001-5 40.0-100.0 48 Eichholz 1982 Germany German<br />

CH3OH + ZnBr2 GS 0-120 2-760 (1) 20.0-100.0 241 Uemura 1976 Japan Japanese<br />

CH30H + LiI: GS -60-1 20 2-2000 (1) 20.0-100.0 228 TJemura 1973 Japan German<br />

ZnBr2 (2:1)(M)<br />

-<br />

-<br />

CH3OH + LiI:<br />

ZnBr2 (2: 1 ) (M)<br />

GS<br />

-60-120 2-2000 (1) 30.0-100.0 240 Uemura 1975 Japan Japanese<br />

7 CH3OH + LiBr: GS<br />

03 ZnBrz (2:1)(M)<br />

a<br />

C2H50H + LiBr GS<br />

-30-120 2-2000 (1) 15.0-100.0 249 Uemura<br />

15169 Japan Japanese<br />

0-120 2-760 (1) 30.0-100.0 233 Uemura 1975 Japan Japanese<br />

-29.85- 0.1-4000 (2) 20.0-100.0 86 Iyoki 1982 Japan Japanese<br />

130.15<br />

54-120 1-2 0.0-100.0 34 Bosnjakovic 1931 Germany German<br />

18-107 1.6-4 10.0-97 .O 34 Bosnjakovic 1931 Germany German<br />

0-100 NA 0.0- 100.0 34 Bosnjakovic 1931 Germany Ge man<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mhar NA - Not Available


e<br />

U<br />

r:<br />

0<br />

U<br />

.<br />

v<br />

.<br />

0<br />

rn<br />

k<br />

91<br />

4<br />

P<br />

m<br />

H<br />

u<br />

X<br />

0,<br />

H<br />

h<br />

k<br />

u<br />

c<br />

3<br />

0<br />

a,u<br />

V<br />

c<br />

k<br />

a , '<br />

k<br />

0<br />

5<br />

3<br />

81<br />

.<br />

2<br />

a,<br />

E+<br />

d)<br />

rn<br />

al<br />

G<br />

m<br />

a<br />

(d<br />

'7<br />

c:<br />

m<br />

a<br />

m<br />

3<br />

m<br />

a<br />

m<br />

r-4<br />

Q<br />

k<br />

a,<br />

5<br />

E!<br />

m<br />

4<br />

N<br />

r.<br />

0<br />

03<br />

I<br />

0<br />

In<br />

Ln<br />

-4<br />

z<br />

0<br />

03<br />

I<br />

0<br />

4<br />

CL<br />

w<br />

E+<br />

k<br />

'ri<br />

I4<br />

d-<br />

Ec<br />

0<br />

T<br />

U<br />

m<br />

m<br />

.d<br />

6"<br />

m<br />

p.<br />

m<br />

'7<br />

F:<br />

m<br />

a<br />

a<br />

'7<br />

m<br />

h<br />

m<br />

cl<br />

m<br />

k<br />

3<br />

9<br />

m<br />

m<br />

c\I<br />

z<br />

r-4<br />

m<br />

m<br />

I<br />

m<br />

m<br />

v-4 .<br />

2<br />

m<br />

\D<br />

I<br />

In<br />

d<br />

!&<br />

k?<br />

F4<br />

k<br />

m<br />

.d<br />

I4<br />

+<br />

X<br />

0<br />

5:<br />

U<br />

m<br />

N<br />

c<br />

u)<br />

*vi<br />

rl<br />

M<br />

d<br />

w<br />

h<br />

C<br />

m<br />

a,<br />

c3<br />

E<br />

N<br />

00<br />

m<br />

cl<br />

E<br />

a,<br />

N<br />

(d<br />

k<br />

a,<br />

c<br />

I4<br />

a,<br />

m<br />

9<br />

d<br />

0<br />

Ln<br />

4<br />

.<br />

h<br />

W<br />

N<br />

a?<br />

d<br />

I<br />

hl<br />

m<br />

I-.<br />

4<br />

w<br />

CI,<br />

k<br />

p?<br />

'ti<br />

4<br />

f<br />

X<br />

0<br />

m<br />

E<br />

a,<br />

v)<br />

4<br />

v z z<br />

a,<br />

vlcu<br />

m m<br />

c m<br />

PIC<br />

!L<br />

U<br />

I l l<br />

A-90


Table A. 3.0. (C<strong>on</strong>t. )<br />

Fluid System<br />

CH30H + LiBr:<br />

ZnBr<br />

Data<br />

Type<br />

TE<br />

Weight, %<br />

Temp. Press. Range, X (R)<br />

Range, OC atm Y (R)<br />

100-200 0.1-38 (1)<br />

28.0<br />

- No.<br />

Author<br />

-<br />

Reference<br />

Year Country<br />

109 Koebel 1981 Germany<br />

Text<br />

German<br />

A. 3.9. Viscosity<br />

CH30H + LiBr<br />

TGEC<br />

5-95<br />

NA<br />

49.0-100.0<br />

245 Uemura 1965 Japan<br />

Japanese<br />

CH30H + LiBr<br />

TS<br />

5-95<br />

NA<br />

55.0-95.0<br />

245 Uemura 1965 Japan<br />

Japanese<br />

?<br />

a<br />

c1<br />

CH3OH + LiBr<br />

CH~OH + LiBr<br />

GE<br />

TEP<br />

NA<br />

10-90<br />

10-1050 (1)<br />

NA<br />

60.0-95.0<br />

43.0-82.0<br />

245 Uemura 1965 Japan<br />

183 Renz 1981 Germany<br />

Japanese<br />

German<br />

CH30H + LiBr<br />

GS<br />

10-90<br />

NA<br />

40.0-30.0<br />

183 Renz 1981 Germany<br />

German<br />

C'd3OH + Liz<br />

TEP<br />

20-90<br />

NA<br />

26.0-58.0<br />

183 Renz 1981 Germany<br />

German<br />

CH30H + LiI<br />

GS<br />

20-90<br />

NA<br />

20.0-60.0<br />

183 Renz 1981 Germany<br />

German<br />

CH30H + LiSCN<br />

TEP<br />

20-90<br />

NA<br />

40.0-72.0<br />

183 Renz 1981 Germany<br />

German<br />

CH3OH + LiSCN<br />

GS<br />

20-90<br />

NA<br />

40.0-80.0<br />

183 Renz 1981 Germany<br />

German<br />

CH30H + ZnBr2<br />

GTE<br />

5-60<br />

NA<br />

40.0-94.0<br />

241 'Jernura 1969 Japan<br />

Japane s e<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s1 M -<br />

(1) - mmHg (2) - mbar NA -<br />

ppm by weight of A in Vapor Phase<br />

Mole, W - Weight<br />

Not Ava i 1 ab le


aJ<br />

m<br />

aJ<br />

C<br />

fll<br />

a<br />

m<br />

c-,<br />

tu aJ Q)<br />

m m m<br />

0) 0) c C 9) c:<br />

C C (D (D C m<br />

fll (D<br />

(D<br />

a a E E a E<br />

(D (D aJ<br />

aJ m aJ<br />

+J +I c3 LQ 9 a<br />

G<br />

(D<br />

a m<br />

Q<br />

m<br />

a<br />

m<br />

.-I<br />

c<br />

tu<br />

a<br />

m<br />

r,<br />

m<br />

\D<br />

m<br />

rl<br />

3;<br />

C<br />

c (D<br />

(D E<br />

e k<br />

m e,<br />

9 W<br />

m<br />

a m<br />

h<br />

C<br />

2<br />

b<br />

aJ<br />

c3<br />

4<br />

a7<br />

m<br />

.-i<br />

C<br />

(D<br />

a<br />

m<br />

c-,<br />

m<br />

h<br />

a\<br />

d<br />

c<br />

(D<br />

a<br />

m<br />

",<br />

k<br />

0<br />

c u<br />

3<br />

c<br />

z 4<br />

m<br />

k<br />

3<br />

E<br />

aJ<br />

=,<br />

d<br />

e<br />

N<br />

0<br />

In<br />

m<br />

I<br />

0<br />

0<br />

4<br />

(D m m OY<br />

k $4 k w<br />

3<br />

N N 3<br />

2<br />

e<br />

2<br />

C c:<br />

aJ 0)<br />

e<br />

aJ<br />

aJ E<br />

5 3 3<br />

0<br />

m<br />

I<br />

C<br />

m<br />

hl<br />

G<br />

ln<br />

2 w 3<br />

0 0 0 0 0<br />

. . . .<br />

a C 0 b?<br />

m m m m<br />

I<br />

I<br />

I I<br />

0 Q 0 r-<br />

.<br />

Q<br />

N<br />

0<br />

N<br />

03<br />

e<br />

0<br />

0<br />

0<br />

d<br />

.<br />

I<br />

0<br />

m<br />

e<br />

aJ<br />

o m<br />

s<br />

P.<br />

k<br />

0<br />

Q<br />

m<br />

P<br />

C<br />

'rl<br />

c<br />

c<br />

z<br />

4<br />

z<br />

I l l<br />

c<br />

u r z<br />

n<br />

u o<br />

c v<br />

mu<br />

k C<br />

ala<br />

WP<br />

0<br />

9<br />

1<br />

m<br />

0<br />

\s,<br />

I<br />

m<br />

wrom<br />

aJPD<br />

a?4 e<br />

I l l<br />

n<br />

u<br />

v3<br />

E+<br />

cn<br />

W<br />

N<br />

k<br />

m<br />

G<br />

N<br />

+<br />

z<br />

0<br />

m<br />

CJ<br />

I l l<br />

A<br />

x *z<br />

A-92


Table A. 3.0.<br />

(C<strong>on</strong>t.<br />

Weight, %<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System & Range, OC atm Y (R) No. Author Year Country Text<br />

C2~50H + LiBr TGE 5-60 NA 60.0-95.0 233 Uemura 1975 Japan Japanese<br />

-<br />

-<br />

A.3.11.<br />

Heat Transfer Rate<br />

CH30H + H20: GS 5-100 NA<br />

LiBr<br />

NA 108 Knoche 1987 Germany German<br />

X - Liquid Phase R - Refrigerant c - ppn by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.4.0.<br />

AMINES BINARY AND MULTICOHF'ONNENT ABSORPTION FLUIDS PROPERTIES DATA<br />

A. 4.1. Vapor-Liquid Equilibrium<br />

Data Temp.<br />

Fluid System Type Range, 'C<br />

--<br />

CH3NH2 -+ NaSCN TEP 25- 120<br />

Weight, %<br />

Press. Range,<br />

x (R)<br />

atm<br />

Y (R)<br />

0.486-26.1 46.0-64.7<br />

Reference<br />

EO. Author Year Country Text<br />

7<br />

-<br />

194 Rush<br />

1967 U.S.A. Eng bi sh<br />

CH3NH2 + NaSCN GS 15-95<br />

1.38-8.27 49.6-68.5<br />

18<br />

Biermann<br />

1978 U.S.A.<br />

English<br />

CH3NH2 -+ LiSCN TEP 26-141<br />

0.064-13.2 43.8-79.5<br />

126<br />

Mac r i ss<br />

1970 U.S.A.<br />

English<br />

CB3NH2 + LiSCN GS 49-142<br />

B .38-8.2 7 48.1-62.9<br />

18<br />

'Bierrnann<br />

1978 U.S.A.<br />

English<br />

7 CH3MB2 + LiSCN GE 20<br />

u3<br />

z.<br />

CH3NH2 + LiN03 GE<br />

20<br />

0.9 0.65<br />

0.9<br />

0.45<br />

180<br />

180<br />

Re nz<br />

Re nz<br />

1982 Germany<br />

1982 Germany<br />

English<br />

English<br />

CH3NH2 + LiSCN GS 20-60<br />

NA<br />

60-68<br />

27<br />

Bokelmann<br />

1983 Germany<br />

EngP is h<br />

CK3NH2 -1- LiSCN GS 2 0-6 0<br />

NA 60-68<br />

46<br />

Ehrnke<br />

1983 Germany<br />

Eng 1 i sh<br />

48.3-8.27 44.0<br />

19<br />

Sierrnann<br />

1978 U.S.A.<br />

English<br />

1.38-6.89 34.4-66.5<br />

19 Biermann<br />

1978 U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c - pprn by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.4.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System Type Range, OC atm Y (R) No. Author Year Country Text<br />

-<br />

-<br />

CH NH2 + TE 65-157 1.38-8.27 19.7-37.3 19 Riermann<br />

Co?SCN)2<br />

I_._<br />

1978 U.S.A. English<br />

CH3NH2 f CUSCN TE 63-139 1.38-8.27 21.0-40.9 19 Biermann 1978 U.S.A. English<br />

CH NH2 +<br />

Cuf SCN) 2<br />

TE<br />

50-105<br />

4.83-8.27<br />

39.4-51.5<br />

19 Biermann<br />

1978 U.S.A.<br />

Eng 1 ish<br />

CH3NH2 f H20<br />

P<br />

NA<br />

NA<br />

NA<br />

257<br />

Uemura<br />

1967 Japan<br />

Japanese<br />

3;<br />

rD<br />

UI<br />

CHrjNH2 f H20<br />

CH3NH2 + H20<br />

GS<br />

GS<br />

-40-1 20<br />

-30-160<br />

0.1-5.0<br />

0.2-8.0<br />

0.0-100.0<br />

0.0-1 00.0<br />

138<br />

138<br />

Mehl<br />

Mehl<br />

1935 Germany<br />

1935 Germany<br />

German<br />

German<br />

CH3NH2 + H20<br />

GS<br />

0-70<br />

NA<br />

0- 100<br />

181<br />

Renz<br />

1978 Germany<br />

German<br />

CH3NH2 + EG<br />

TE P<br />

-10-180<br />

0.22-10 (2)<br />

10-40<br />

47<br />

Ehmke<br />

1984 Germany<br />

German<br />

CH3NH2 + EG<br />

GTS<br />

-20-1 80<br />

0.2-10 (2)<br />

10-100<br />

47<br />

Ehmke<br />

1984 Germany<br />

Ge man<br />

CH3NH2 + EG<br />

GS<br />

-20-180<br />

0.2-10 (2)<br />

10-100<br />

31<br />

Bokelmann<br />

1985 Germany<br />

German<br />

CH~NH~ + EG<br />

GE<br />

40<br />

NA<br />

8.1-66.7<br />

190<br />

Robers<strong>on</strong><br />

1966 U.S.A.<br />

English<br />

CH3NH2 + EG<br />

GS<br />

20-60<br />

NA<br />

25-35<br />

27<br />

Bo ke lmann<br />

1983 Germany<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.4.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

CH3NI-I2 + EG<br />

CH3NH2 + TEG<br />

CH3NH2 + TEG<br />

CH3NH2 + TEG<br />

CH3NH2 + TEG<br />

Data<br />

Type<br />

P<br />

GS<br />

GE<br />

GE<br />

GS<br />

GS<br />

Weight, %<br />

Temp. 'Press. Range, x (N Reference<br />

Range, O C atm Y (R) No. Author Year Country Text<br />

u_<br />

-<br />

20-60 NA 25-35 46 Ehmke 1983 Germany Eng 1 ish<br />

40 & 49 NA 2.7-39.0 190 Robers<strong>on</strong> 1966 U.S.A. English<br />

20-60 0.9 (2) 0.1-0.20 180 Renz 1982 Germany English<br />

20-60 NA 10-15 27 Bokelmann 1983 Germany English<br />

20-60 NA 10-15 45 Ehmke 1983 Germany Eng 1 ish<br />

7 CH3NH2 + MEDEG G<br />

Lo<br />

40 NA 14.9-81.5 190 Robers<strong>on</strong><br />

1966 U.S.A. English<br />

20-60 0.9 (2) 0 15-0 35 180 Renz 1982 German English<br />

CH3NH2 + 1,4<br />

BDL<br />

CH3NH2 + 1,4<br />

B DL<br />

CH3NH2 -+ 1,4<br />

BDL<br />

GE<br />

GS<br />

GS<br />

40 NA 5.7-58.0 190 Robers<strong>on</strong> 1966 U.S.A. English<br />

20-60 NA 20-30 27 Bokelmann 1983 Germany Eng 1 ish<br />

20-60 NA 20-30 46 Ehmke 1983 Germany English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbenr(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.4.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

CH3NH2 + (GLY)<br />

Data<br />

X?E<br />

GS<br />

Weight, X<br />

Temp. Press. Range, X (R) Reference<br />

Range, 'C atm Y (R) NO Author Year Country<br />

-<br />

-<br />

20-60<br />

0.9 (2)<br />

0.15-0.40 180 Renz 1982 Germany English<br />

Text<br />

GS<br />

20-60<br />

NA<br />

20-35 27 Sokelmann 1983 Germany English<br />

CR3NH2 + GLY<br />

GS<br />

20-60<br />

NA<br />

20-35 46 Ehmke 1983 Germany English<br />

GE<br />

40<br />

NA<br />

2.4-35.9 190 Robers<strong>on</strong> 1966 U.S.A. English<br />

U<br />

CH3NH2 +<br />

NaSCN:LiSCN<br />

(4:1)(W)<br />

CH3NH2 +<br />

NaSCN :LiSCN<br />

(1.53: 1 )(W)<br />

TE<br />

TE<br />

39-136<br />

48-148<br />

1.38-7.58<br />

1.38-7.58<br />

30.6-53.4 19 Siermann 1978 U.S.A. English<br />

26.4-54.3 19 Biermann<br />

1978 U.S.A. Eng 1 i sh<br />

GE<br />

TGS<br />

20-200<br />

0.7-20 (2)<br />

0- 100 177 Radermacher 1981 Germany<br />

0-100<br />

English<br />

GS<br />

-20-200<br />

0.5-30 (2)<br />

0-100 176 Radermacher 1981 Germany<br />

Eng 1 ish<br />

CH3NH2 + H20:<br />

LiBr (2 : 3) (W)<br />

GS<br />

-30-300<br />

0.5-30 (2)<br />

0-100 178 Radermacher 1982 Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s) M -<br />

(1) - mmHg (2) - nbar NA -<br />

ppm by weight of A in Vapor Phase<br />

Mole, W - Weight<br />

Not Available


x h 3..<br />

d c h A 3.<br />

d d d<br />

m e ru m m<br />

ru<br />

k<br />

E<br />

E<br />

W<br />

k k<br />

W a, W<br />

c c3<br />

a,<br />

c3 (3<br />

W a,<br />

t-4 a,<br />

-?<br />

E!<br />

W .9<br />

E<br />

s<br />

Y<br />

s<br />

e<br />

w w<br />

0<br />

m<br />

c ci<br />

n<br />

u<br />

c<br />

0<br />

W<br />

r. h C 0<br />

u<br />

m v7 4 9‘<br />

I I I<br />

I<br />

0 0 0 C<br />

e -3 el e?<br />

0<br />

e<br />

k<br />

W<br />

rl<br />

,-,=<br />

m<br />

P<br />

a,<br />

u)<br />

a<br />

c<br />

!L<br />

k<br />

0<br />

d<br />

a<br />

3<br />

c<br />

*rl<br />

c<br />

0 0 0 0 0<br />

9 0 \o 0<br />

I I I I I<br />

0 Q 0 0 0<br />

N N N N<br />

c 0<br />

a 0<br />

I<br />

I<br />

0 0<br />

h) N<br />

..<br />

k<br />

Fp<br />

-4<br />

4<br />

+<br />

..<br />

k<br />

Fc<br />

-ri<br />

b.4<br />

+<br />

..<br />

cp)<br />

zc<br />

2-A<br />

+<br />

N<br />

z<br />

2<br />

cp)O<br />

8 x-<br />

..<br />

0 v3<br />

c3 (3<br />

A- 98


%<br />

.I4<br />

t-i<br />

M<br />

C<br />

w<br />

e,<br />

UJ<br />

Q)<br />

C<br />

cd<br />

FL<br />

((I<br />

5<br />

rl<br />

M<br />

C<br />

w<br />

P<br />

v)<br />

3<br />

. P<br />

5<br />

m<br />

E<br />

z<br />

P<br />

e, m<br />

QJ<br />

.<br />

c<br />

cd<br />

a<br />

((I<br />

-J<br />

a)<br />

fi<br />

m<br />

d<br />

co<br />

fi<br />

m<br />

rl<br />

UJ<br />

UJ<br />

m<br />

m<br />

k<br />

5<br />

D :<br />

m<br />

4 m<br />

4<br />

m<br />

d<br />

A .<br />

d<br />

d<br />

.<br />

v)<br />

I<br />

4<br />

.<br />

E:<br />

e?<br />

c\l<br />

ln<br />

I<br />

ln<br />

#<br />

.<br />

.<br />

d<br />

c<br />

m<br />

J<br />

I<br />

0<br />

e<br />

LI<br />

C<br />

0<br />

V<br />

W<br />

00 0 a-<br />

.<br />

d<br />

h<br />

h<br />

h<br />

I<br />

.<br />

e<br />

m<br />

I<br />

m<br />

e<br />

(v<br />

.<br />

.<br />

do<br />

u.<br />

I<br />

d<br />

e<br />

4<br />

e4<br />

.<br />

ln<br />

c\l<br />

.<br />

0<br />

J .<br />

P<br />

aJ<br />

rl<br />

P<br />

m<br />

H<br />

.<br />

b<br />

n<br />

4<br />

W<br />

0<br />

b<br />

h<br />

4 co<br />

. rn<br />

Ir) -4<br />

I<br />

I<br />

m<br />

h<br />

J<br />

m<br />

do<br />

0 CY<br />

0<br />

0<br />

0<br />

I<br />

m<br />

9<br />

0<br />

.<br />

d<br />

.<br />

0<br />

0<br />

I<br />

m<br />

a?<br />

a<br />

0<br />

4<br />

.<br />

0<br />

0<br />

I<br />

m<br />

43<br />

.<br />

v-l<br />

0<br />

0<br />

.<br />

e<br />

I<br />

m<br />

a<br />

\o<br />

0<br />

. 0<br />

0<br />

U<br />

u.<br />

0 eJ<br />

UJ<br />

v'l<br />

.<br />

4 -4<br />

0<br />

0<br />

4<br />

0<br />

0,<br />

0<br />

0<br />

4<br />

0<br />

0<br />

?-I I I<br />

0 In<br />

U<br />

m<br />

w<br />

r3<br />

I l l<br />

A-99


P<br />

cn<br />

EJ<br />

r-4<br />

c<br />

(17<br />

?<br />

cr:<br />

A<br />

4"<br />

m<br />

.-I<br />

r-r.<br />

rnrn<br />

N c v<br />

w<br />

rc)<br />

ln<br />

I<br />

0<br />

a,<br />

$4<br />

3<br />

U<br />

a<br />

k<br />

a,<br />

a,<br />

E-<br />

c<br />

0<br />

7-l<br />

u<br />

a<br />

N<br />

-I4<br />

?-I<br />

r-4<br />

m<br />

CI<br />

v1<br />

h<br />

b<br />

u<br />

x<br />

I l l<br />

A<br />

A-100


Weight, Z<br />

Data Temp. Press. Range, x (R)<br />

Fluid System Type Range, 'C atm y (a)<br />

CH3NH2 + Y2O GS NA NA 0-60<br />

C2H5NH2 + H20 GTE 7 & 12.4 NA 1.1-70.3<br />

CH3NH2 + LiSCN PC 27-127 0.064-13.2 41 -8-65.7<br />

Reference<br />

NO Author Year Country Text<br />

_I_<br />

-<br />

257 Uemura 1967 Japan Japanese<br />

73 Hasaba 1960 Japan Japane s e<br />

126 Macriss 1969 U.S.A. English<br />

A.4.5.<br />

Liquid-Phase Densities<br />

CH3NH2 + H20 GE 0-50 NA<br />

10-40<br />

257 Uemura 19 67 Japan<br />

Japanese<br />

3; CH3NH2 + H20 GTS 0-50 NA 5-35<br />

P<br />

0<br />

P CH3NH2 + LiSCN TE 31-132 NA 41.8-65 7<br />

257 IJemura 1967 Japan<br />

126 Macriss 1970 U.S.A.<br />

Japanese<br />

English<br />

CH3NH + H 0: TGS 30-1 80 NA<br />

LiRr ?2:3)?W)<br />

0-100<br />

177 Radermacher 1981 Germany<br />

English<br />

CH3NH + H 0: TS 30-180 NA<br />

LiBr ?2: 3 > b<br />

0-100<br />

178 Radermacher 1982 Germany<br />

German<br />

C2H5NH2 + H20 TEP 2-55 NA 8.1-68.4<br />

C2HgNH2 + 1120 TS 0-60 NA 5-70<br />

C2H5NH-2 + H20 TS 2, 7, 40 NA 0-1 00<br />

73 Hasaba 1960 Japan<br />

73 Hasaba 1960 Japan<br />

73 Hasaba 1960 Japan<br />

Japanese<br />

Japanese<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


I_<br />

Table A.4.0.<br />

(C<strong>on</strong>t.)<br />

A.4.6.<br />

Vapor-Liquid Phase Enthalpies<br />

Weight, X<br />

Data Temp. Press. Range, X (R) - Reference<br />

Fluid System Type Ranqe, O C atm<br />

No.<br />

Year Country Text<br />

- Y (R) - Author -<br />

CR3NN2 + H20 GS -40-180 0.2-10 0-100 257 Uemura 1967 Japan Japanese<br />

C2H5NH2 + 1120 GS -20-160<br />

7-7600 (1) 0-1 00 256 TJenura 1966 Japan Jap ane s e<br />

CH3NH + H 0: GS -30-2 10 0.4-20 (2) 0-100 177 Radermacher 1981 Germany Fnglish<br />

LiBr ?2 : 3)?W)<br />

5;<br />

CH3NH -+ H 0:<br />

LiBr ?2:3)7w)<br />

GS -30-210 0.4-20 (2) 0-100 178 Xadermacher 1982 Germany English<br />

F<br />

0<br />

A.4.7.<br />

Specific Heat<br />

CH3NH2 + H20 GS NA NA 0- 100 257 Uemura 1 9 6 7 Jap an 3 apane se<br />

CH3NH2 -+ H20 10-80 NA 10-90 257 IJemura 1967 Japan Japanese<br />

CH3NH2 + 820 GE 0-50 NA<br />

5-30 257 Uemura 1967 Japan Japanese<br />

CH3NHf HpO: TGS 30-150 NA<br />

LiBr 2 3) W) GE<br />

0-100 177 Radermacher 1981 Germany<br />

English<br />

0-100 178 Radermacher 1982 Germany Ge rmari<br />

X - Liquid Phase X - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) !I - Mole, W - WeiRht<br />

(1) - mmHg (2) - mbar NA - Vot Available


Table A.4.0.<br />

(C<strong>on</strong>t.)<br />

I__<br />

Data Temp.<br />

Fluid System Type Range, "C<br />

CH3NH + H 0: GS 30-200<br />

LiBr ?2:3)?W)<br />

Weight, %<br />

Press. Range,<br />

X (R)<br />

atm<br />

Y (R)<br />

NA 0-100<br />

Reference<br />

No. Author Year Country Text<br />

I<br />

-<br />

176 Sadermacher 1981 Germany English<br />

NA<br />

8.1-68.4<br />

73 Hasaba 1960 Japan Japanese<br />

10-55<br />

NA<br />

5-70<br />

73 Hasaba 1960 Japan Japanese<br />

C2H5NH2 + H20 GE 25 & 40<br />

NA<br />

8.1-68.4<br />

73 TIasaba 1960 Japan Japanese<br />

A.4.9.<br />

Viscositv<br />

C~HI~NH~ + H20 GTE 0-50<br />

C2H5NH2 + H20 TS 0-so<br />

NA 5-30<br />

0.064-13.2 41.8-65 7<br />

NA 7.966-70.25<br />

NA 5- 70<br />

257 TJemura 1967 Japan Japanese<br />

126 Macriss 1970 U.S.A. English<br />

75 Hasaba 1961 Japan Japanese<br />

75 Hasaba 1961 Japan Japanese<br />

A.4.12.<br />

Thermal C<strong>on</strong>ductivity<br />

CH3NH2 i- H20 TEP 4.8-92<br />

CH3NH2 + H20 GE 5-40<br />

NA 3.1-39<br />

NA 10-35<br />

257 Uemura 1967 Japan Japsnes e<br />

257 Uemura 1967 Japan Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, lJ - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.4.0. (C<strong>on</strong>t. 1<br />

Welght, %<br />

Data Tenp. Press. Range, x (R) Reference<br />

Fluid System Type Range, "C atm Y (R) .- NO - Author Year - Country Text<br />

CH3NH2 + H20 TGS 5-40 NA<br />

5-35 257 Uemura 1967 Japan Japanese<br />

C2H5NH2 + €120 GTE 5-50 NA 9.074-48.970 251 Uemura 1963 Japan Japanese<br />

C2H5NH2 + I120 GTS 5-60 NA 0-60 251 IJemura 1963 Japan Japanese<br />

A.4.15.<br />

Surface Tensi<strong>on</strong><br />

CH3NH2 + H29 GE 5-50<br />

NA<br />

5-38 257 Uemura 1967 Japan<br />

Japanese<br />

3; CFI3NH2 + A20 TGS 0-40<br />

P<br />

0<br />

* CzHgNH2 + H20 TE 0-60<br />

NA<br />

NA<br />

5-35 257 Uemura .19 67 Japan<br />

8.43-58.86 75 Hasaba 1967 Japan<br />

Japanese<br />

Japanese<br />

CZH5NH2 + K20 TGS 0-60<br />

NA<br />

5-60 75 Nasaba<br />

19 6 1 Japan<br />

Japanese<br />

X - 'Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.5.0.<br />

SULFUR DIOXIDE BINARY AND MULTICOMPONENT ABSORPTION FLUIDS PROPERTIES DATA<br />

A. 5.1. VaDor-Liauid Eauilibrium<br />

Data Temp.<br />

Fluid System Type Range, OC<br />

SO2 + DMETEG TE 25-93<br />

so2 + DMF TE 25-93<br />

Press. Range,<br />

atm<br />

0.042-20.3<br />

0.096-18.7<br />

Weight, %<br />

X (R)<br />

Reference<br />

Y (R) -<br />

NO Author Yeas Country<br />

_I_<br />

Text<br />

5.1-78.3 4 Albright 1963 U.S.A. English<br />

16.1-83.4 4 Albright 1963 U.S.A. English<br />

so2 + DMA TE 25-93<br />

0.021-14.4<br />

7.9-7 1.2<br />

4 Albright 1963 U.S.A. English<br />

so2 + 2- TE 25-93<br />

Octan<strong>on</strong>e<br />

1.14-19.4<br />

2 3.2-74.5 4 Albright 1963 U.S.A.<br />

English<br />

0<br />

wl<br />

so2 + Ethyl TE 25-93<br />

laurate<br />

SO2 + Nitro- TE 25-93<br />

benzene<br />

1.45-19.6<br />

1.32-19.9<br />

16.8-61.3 4 Albsight 1963 U.S.A. English<br />

21.2-73.7 4 Albright 1963 U.S.A. English<br />

SO2 + n-Heptyl TE 25-93<br />

alcohol<br />

2.04-20.1<br />

22.3-73.1<br />

4 Albright 1963 U.S.A. English<br />

A.5.4.<br />

Heat of Mixing<br />

so2 + DMETEG GSC 25-95<br />

NA<br />

0.0-100.0 4 Albright 1963 U.S.A.<br />

Eng li s h<br />

so2 + DMF GSC 25-95<br />

NA<br />

0.0- 100.0<br />

4 Albright 1963 U.S.A.<br />

English<br />

so2 + DMA G SC 25-95 NA<br />

0.0-100.0 4 Albright 1963 U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A.6.0.<br />

REFRIGERANT 22 BINARY AND MULTICOMPONENT ABSORPTION FLUIDS PROPERTIES DATA<br />

A.6.1.<br />

Fluid System<br />

_I<br />

Vapor-Liquid Equilibrium<br />

--<br />

Data<br />

Temp.<br />

Range, "C<br />

--__I<br />

.-<br />

Press. Range,<br />

atm<br />

Weight, %<br />

X (R)<br />

Y (R)<br />

- No. Author<br />

Reference -<br />

- Year Country<br />

Text<br />

R22 + DXETEG<br />

GTEP<br />

20-90<br />

0.08-7.65<br />

0-23.64<br />

2 20<br />

Suzuki<br />

1973<br />

Japan<br />

Japanese<br />

R22 + DMETEG<br />

TGS<br />

-20-200<br />

0.5-25<br />

10-100<br />

47<br />

E hrnk e<br />

1984<br />

Germany<br />

German<br />

R22 + DMETEG<br />

TEP<br />

0-200<br />

0.5-25<br />

10-100<br />

47<br />

Ehmke<br />

1984<br />

Germany<br />

German<br />

R22 + DMETEG<br />

GC<br />

10-150<br />

6.34 & 17.91<br />

10-9 0<br />

159<br />

Oouchi<br />

1985<br />

Japan<br />

Japanese<br />

7<br />

P<br />

1122 + DMETEG<br />

0 R22 + DMETEG<br />

o\<br />

GS<br />

GC<br />

30-100<br />

NA<br />

2-22<br />

0-50<br />

30-50<br />

0-100<br />

159<br />

146<br />

Oouchi<br />

Morel<br />

1985<br />

1983<br />

Japan<br />

France<br />

Japanese<br />

French<br />

R22 + DMETEG<br />

TE<br />

24-135<br />

0.965-20.5<br />

8.4-7 9.9<br />

35<br />

Buclez<br />

1959<br />

U.S.A.<br />

Eng 1 ish<br />

R22 + DMETEG<br />

TE<br />

38-107<br />

0.276-1.38<br />

a. 1-3.9<br />

3<br />

Al brigh t<br />

1962<br />

U.S.A.<br />

English<br />

R22 + DMETEG<br />

GS<br />

28-1 77<br />

0.345-21.5<br />

6.7-63.2<br />

132<br />

Mas trangelo<br />

1959<br />

U.S.A.<br />

English<br />

R22 6 DMETEG<br />

GS<br />

28-86<br />

0-9.31<br />

0.0-roo. 0<br />

216<br />

Sims<br />

1972<br />

U.S.A.<br />

English<br />

R22 + DMETEG<br />

GS<br />

-40- I80<br />

0.63-40 .O<br />

0.0-100.0<br />

116<br />

La t ys hev<br />

1969<br />

U.S.S.R.<br />

Russian<br />

R22 + DMETEG<br />

C TS<br />

24-121<br />

0-31.9<br />

0.0-100.0<br />

124<br />

Mac ri ss<br />

1964<br />

U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A In Vapor Phase<br />

'I! - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - fiunHg (2) - rnbar NA - Not Available


Table A.6.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Type<br />

Weight, %<br />

Temp. Press. Range, x (R)<br />

Range, OC atm Y (R)<br />

No.<br />

I<br />

Author<br />

Reference<br />

Year Country<br />

II<br />

Text<br />

R22 + DMETEG<br />

GE<br />

-110 - -30 NA<br />

10.0-90.0<br />

113<br />

Kriebel<br />

1965<br />

Germany<br />

German<br />

R22 + DMETEG<br />

GE<br />

0- 120 1<br />

0-23.64<br />

220<br />

Suzuki<br />

1973<br />

Japan<br />

Japanese<br />

R22 + DMETEG<br />

GE<br />

20-70 1 .0<br />

10-30<br />

27<br />

Bokelmann<br />

1983<br />

Germany<br />

English<br />

R22 + DMETEG<br />

GS<br />

0-150<br />

1.0<br />

0-100<br />

181<br />

Renz<br />

1978<br />

Germany<br />

German<br />

R22 + DMETrEG<br />

T EP<br />

-20-200<br />

0.5-25<br />

10-100<br />

47<br />

Ehmke<br />

1984<br />

Germany<br />

German<br />

?<br />

P<br />

R22 + DMETrEG<br />

2 R22 + DMETrEG<br />

GS<br />

GS<br />

-20-200<br />

-20-200<br />

0.5-20<br />

0.5-25<br />

0-100<br />

10-100<br />

26<br />

32<br />

Boke lmann<br />

Bokelmann<br />

1.983<br />

1985<br />

Germany<br />

Germany<br />

Eng 1 ish<br />

English<br />

R22 + DMEDEG<br />

TE<br />

0-30<br />

0.069-1.03<br />

5.6-24.9<br />

173<br />

Pod011<br />

1982<br />

U.S.A.<br />

Eng 1 ish<br />

R22 + DMEDEG<br />

GEP<br />

GS<br />

-20-200<br />

0.1-50<br />

14-100<br />

8<br />

And o<br />

1983<br />

Japan<br />

Japanese<br />

R22 + DMEDEG<br />

GS<br />

-20-200<br />

0-30<br />

10-100<br />

8<br />

Ando<br />

1983 Japan<br />

Japanese<br />

R22 + DMEDEG<br />

GEP<br />

GS<br />

-2 0-2 00<br />

0.1-50<br />

14-100<br />

7<br />

And o<br />

1983 Japan<br />

Japanese<br />

R22 + DMEDEG<br />

GS<br />

-20-200<br />

0-30<br />

10-100<br />

7<br />

Ando<br />

1983 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s1 M -<br />

(1) - mmHg (2) - mbar NA -<br />

ppm by weight of A in Vapor Phase<br />

Mole, W - Weight<br />

Not Available


I_<br />

Table A.6.0.<br />

(C<strong>on</strong>t.1<br />

Fluid System<br />

R22 + DMEDEG<br />

Data<br />

Type<br />

GEP<br />

Temp.<br />

Range, "C<br />

II_<br />

-20-200<br />

Weight, %<br />

Press. Range, X (R) Reference<br />

atm Y (R) No. Author Year Country Text:<br />

-<br />

0.1-50 20-100 9 Ando 1983 Japan Japanese<br />

R22 -k DMEDEG<br />

GS<br />

-20-200<br />

0-30 10-100<br />

9 Ando 1983 Japan Japanese<br />

R22 + METrPG<br />

GS<br />

2 0- 30<br />

0-9.31 0.0-100.0 215 Sims 1972 U.S.A. English<br />

R22 -t IBA<br />

GS<br />

-70-200<br />

0.016-20 0-100 215 Sellerio 1966 Italy German<br />

R22 f IBA<br />

P<br />

NA<br />

NA NA 250 Uemura 1968 Japan Japanese<br />

?<br />

I-<br />

R22 + IBA<br />

R22 f DMF<br />

GS<br />

GTEP<br />

0-1 20<br />

16.15-48.95<br />

0-40,000 (1) 0-100 250 Uemura 1968 Japan Japanese<br />

179-743 (1) 7.25-27.05 250 Uemura 1968 J apan Japanese<br />

R22 f DMF<br />

GS<br />

GP<br />

0-120<br />

0-40,000 (1) 0- 100 250 Uemura 1968 Japan 3 apa ne s e<br />

R22 + DMF<br />

P<br />

NA<br />

NA 1-100 10 Ando<br />

1 98 2 Japan Japanese<br />

R22 + DMF<br />

GS<br />

-50-200<br />

0.1-30 0-100 10 Ando 1982 Japan Japanese<br />

R22 -+ DMP<br />

TE<br />

38-121<br />

1.38-19.9 20.8-67.7 222 Thierne 1961 U.S.A. English<br />

R22 + DMF<br />

TE<br />

38- 104<br />

0.483-2.00 7.8-9.0 3 Albright 1962 U.S.A. English<br />

X - Liquid Phase R - Refrigerant c - ppn by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


~<br />

Table A.6.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Type<br />

Temp.<br />

Range, OC<br />

-<br />

Press. Range,<br />

atm<br />

Weight, %<br />

X (R)<br />

Y (R)<br />

-<br />

~~~<br />

NO<br />

Author<br />

Reference<br />

Year Country<br />

uI_<br />

Text<br />

R22 + DMF<br />

GTE<br />

20-60<br />

755-765 (1) 8.5-17.6<br />

212<br />

Seliverstov<br />

1970 U.S.S.R.<br />

English<br />

R22 + DMF<br />

TE<br />

-20-50<br />

740 (1) 12.9-46.8<br />

130<br />

Makitra<br />

1979 U.S. S.R.<br />

Russian<br />

R22 + DMF<br />

GE<br />

20-70<br />

1 .o 10-30<br />

27<br />

Bokelmann<br />

1983 Germany<br />

English<br />

R22 + DEF<br />

TE<br />

38-104<br />

1.79-17.1 25.8-75.7<br />

22 2<br />

Thieme<br />

1961 U.S.A.<br />

English<br />

R22 + DMA<br />

TE<br />

0-30<br />

0.103-1.10 9.4-34.1<br />

173<br />

Podoll<br />

1982 U.S.A.<br />

English<br />

8<br />

P<br />

R22 + DMA<br />

0 R22 + DMH<br />

\o<br />

TE<br />

TE<br />

20-101 0.621-19.7 25.1-73.4<br />

0-30 0.103-1.03 7.2-23.7<br />

3<br />

173<br />

A1 bright<br />

Podoll<br />

1962 U.S.A.<br />

1982 U.S.A.<br />

English<br />

English<br />

R22 + DMH<br />

GS<br />

0-150 -30-70a 22.9-50.7<br />

18<br />

Bi e rmann<br />

1978 U.S.A.<br />

Eng 1 ish<br />

R22 + TMf<br />

GS<br />

0-1 50 -30-70a 2 5.0-55.0<br />

18<br />

B i e r mann<br />

1978 U.S.A.<br />

English<br />

R22 + Dimethyl<br />

phthalate<br />

TGEP<br />

20-60 754-765 (1) 5.4-1 3.8<br />

202<br />

Seliverstov<br />

1964 U.S.S.R.<br />

Eng 1 ish<br />

R22 + Diethyl<br />

ph t ha1 a t e<br />

TGEP<br />

20-60 754-755 (1) 7.8-1 7.2<br />

202 Seliverstov<br />

1964 U. S. S O R.<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


0<br />

.<br />

a<br />

-4<br />

W<br />

d<br />

P i-a<br />

H<br />

-+ .<br />

d<br />

hl<br />

. I<br />

0<br />

m<br />

n<br />

4<br />

W<br />

m<br />

h<br />

I<br />

e<br />

ul<br />

h<br />

n<br />

-3<br />

c' v 0<br />

0<br />

0<br />

a2.<br />

r-i 0<br />

I I<br />

c d<br />

. .<br />

C 0 0<br />

.<br />

h<br />

e<br />

\D<br />

I<br />

l-4<br />

h<br />

a .<br />

0<br />

.r-i<br />

8<br />

0<br />

d<br />

I<br />

c<br />

0<br />

I l l<br />

-4<br />

v c z<br />

z-<br />

a,<br />

€-<br />

0<br />

a<br />

I<br />

0<br />

N<br />

I l l<br />

P.<br />

w<br />

c.!J<br />

b<br />

l-i<br />

+ - + + + + a<br />

I l l<br />

n<br />

X * d<br />

W<br />

A-110


Fluid System<br />

R22 -t DMSO<br />

R22 + TMS<br />

Weight, X<br />

Data Temp. Press. Range, X (R)<br />

Reference<br />

Type Range, "C atm y (R) -<br />

No. Author Year Country Text<br />

._<br />

TEC 25-80 0.94-27.48 17-100 146 Morel 1983 France French<br />

GS 0-150 NA 50.0-74.0 18 Biermann 1978 U.S.A. English<br />

R22 + Pentanedi<strong>on</strong>e<br />

TE 24-121 1.3 1-2 1.5 14.9-76.1 35 Ruclez<br />

1959 U.S.A. English<br />

R22 + Acetophen<strong>on</strong>e<br />

TE 24-107 1 . 86-17.3 14.0-62.1 35 Buclez 1959 U.S.A.<br />

English<br />

R22 + Renzz<br />

aldehyde<br />

v<br />

R22 + Valeric<br />

acid<br />

R22 + Linoleic<br />

acid<br />

~ 2 + 2 (TAN)<br />

TE 24-93 2.34-20.6 16.8-46.1 35 Buclez 1959 U.S.A. English<br />

TE 24-93 2.34-19.0 14.1-62.3 35 Suclez 1959 U.S.A. English<br />

TE 24-107 2.41-7.65 6.0-18.7 35 Buclez 1959 U.S.A. English<br />

TE 24-121 1.72-2 1.0 9.2-53.8 172 Pluche 1959 U.S.A. English<br />

R22 + TAN<br />

GE 24-121<br />

1 . 7-21 e 0 9.2-53.8 2 Albrirght 1960 1J.S.A. Engl i.sh<br />

R22 + TAN<br />

GTE 20-60 755-765 (1) 3.4-6.6 212 Seliverstov 1970 U.S.S.R. Fng 1 ish<br />

X - Liquld Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Vole, W - Weight<br />

(1) - mmg (2) - mbar NA - N or Available


n<br />

U<br />

C<br />

0<br />

U<br />

W<br />

0<br />

a<br />

4<br />

aJ<br />

rl<br />

P<br />

m<br />

E-J<br />

L<br />

aJ<br />

M<br />

c<br />

lu<br />

9<br />

. a<br />

rn<br />

m<br />

a,<br />

k<br />

F<br />

u<br />

a *<br />

E a<br />

SbL<br />

H G<br />

m<br />

Fu:<br />

0<br />

.",<br />

*d<br />

d<br />

bc<br />

C<br />

w<br />

4<br />

(I!<br />

=<br />

m<br />

In<br />

cn<br />

d<br />

.<br />

a<br />

s<br />

V<br />

3<br />

r-i<br />

P<br />

N<br />

I-.<br />

4<br />

m<br />

m<br />

9<br />

I<br />

m<br />

.<br />

d<br />

4<br />

\D<br />

4<br />

N<br />

I<br />

N<br />

m<br />

4<br />

d<br />

d<br />

hl<br />

I<br />

4-<br />

cu<br />

w<br />

I<br />

rl<br />

h<br />

a,<br />

4<br />

ca,<br />

u<br />

+ m<br />

r-i<br />

N m<br />

N X<br />

d o<br />

5<br />

-d<br />

d<br />

w<br />

C<br />

w<br />

P(<br />

W<br />

(A<br />

*.-,<br />

t<br />

-3<br />

9<br />

Q'<br />

p-1<br />

3<br />

0<br />

u<br />

rn<br />

k<br />

al<br />

><br />

d<br />

d<br />

aJ<br />

(I!<br />

N<br />

C<br />

N<br />

c.!<br />

9<br />

N<br />

I<br />

c<br />

hl .<br />

P-4<br />

n<br />

4<br />

v<br />

In<br />

\D<br />

r.<br />

I<br />

-3<br />

In<br />

I-.<br />

0<br />

rg<br />

I<br />

a<br />

N<br />

R<br />

w<br />

c<br />

b<br />

n<br />

rlcn<br />

LIP<br />

5-<br />

P<br />

-r+<br />

a<br />

I=lu<br />

m<br />

+ u<br />

m<br />

NP<br />

N a J<br />

ozm<br />

h m<br />

Frl .<br />

cn<br />

m .<br />

E2<br />

m<br />

9<br />

cp<br />

d<br />

3<br />

0<br />

u<br />

rn<br />

k<br />

z<br />

"d<br />

rl<br />

aJ<br />

I/?<br />

u2<br />

C<br />

h!<br />

0<br />

0<br />

0<br />

I<br />

0<br />

0<br />

4<br />

.<br />

C<br />

N<br />

r-l<br />

I<br />

0<br />

0 .<br />

PPI<br />

00<br />

I<br />

N<br />

hl<br />

w?<br />

c3<br />

m<br />

m<br />

13<br />

+<br />

N<br />

N<br />

Fr:<br />

w .<br />

v?<br />

cn<br />

=, .<br />

m<br />

\o<br />

m<br />

l-i<br />

2<br />

U<br />

m<br />

k<br />

a<br />

><br />

"d<br />

r-<br />

aJ<br />

w<br />

U<br />

c<br />

cu<br />

Lp<br />

\c<br />

Lp,<br />

I<br />

m<br />

m<br />

.<br />

-3<br />

C<br />

hl<br />

I<br />

0 .<br />

4<br />

PPI<br />

oc<br />

I<br />

(u<br />

N<br />

L.<br />

E+<br />

w?<br />

m<br />

a<br />

+<br />

hl<br />

N<br />

Fr:<br />

.<br />

Fr: .<br />

cn<br />

(A<br />

3<br />

0<br />

m<br />

.<br />

.<br />

d<br />

3<br />

0<br />

U<br />

m<br />

k<br />

aJ<br />

?<br />

*d<br />

d<br />

9)<br />

I/?<br />

N<br />

N<br />

4<br />

G<br />

r-<br />

I<br />

-3<br />

d<br />

.<br />

A<br />

d<br />

v<br />

In<br />

9<br />

I-.<br />

I<br />

In<br />

In<br />

P.<br />

0<br />

9<br />

I<br />

0<br />

N<br />

B2<br />

w<br />

c3<br />

w?<br />

0<br />

a<br />

4-<br />

N<br />

N<br />

d<br />

c<br />

v:<br />

z<br />

L2.J<br />

CP<br />

r.<br />

4<br />

m<br />

a d<br />

v:<br />

e<br />

9<br />

cu<br />

d<br />

9<br />

C<br />

0<br />

I<br />

Q<br />

0<br />

d<br />

.<br />

d<br />

m<br />

0-<br />

I<br />

0<br />

.<br />

0<br />

m<br />

I<br />

0<br />

N<br />

cn<br />

0<br />

I<br />

r-4<br />

h<br />

U<br />

73<br />

P<br />

dd<br />

P O<br />

u<br />

+d<br />

P<br />

N k<br />

N r J<br />

Fr:v<br />

a,<br />

rn<br />

ca<br />

s:<br />

PJ<br />

k<br />

0<br />

0.<br />

m<br />

P<br />

r:<br />

c<br />

.d<br />

w u<br />

o s<br />

A-112


Table A.6.0.<br />

(C<strong>on</strong>t.)<br />

Weight, X<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, O C atm Y (R) No. Author Year Country Text<br />

R22 + NMP GE 20-70 1 .O 10-30 27 Rokelmann 1983 Germany English<br />

R22 + Dicumyl- TGEP 20-60 754-765 (1) 5.2-1 1.8 202 Seliverstov 1964 U.S.S.R. English<br />

methane<br />

-<br />

-<br />

R22 + Oleic TGEP 20-60 754-765 (1) 7.7-12.6<br />

acid<br />

202 Seliverstov 1964 U.S.S.R. English<br />

*<br />

R22 + Methyl TGEP 20-60 754-765 (1) 5.2-1 1.8<br />

benzoate<br />

202 Seliverstov 1964 U.S.S.R. English<br />

A 1222 + Propyl TGEP 2g-60 754-765 (1) 5.5-14.0 202 Seliverstov 1464 U.S.S.R. English<br />

P<br />

benzoate<br />

R22 + Butyl TGEP 20-60 754-765 (1) 6.4-15.3 202 Seliverstov 1964 1J.S.S.R. Eng 1 ish<br />

benzoate<br />

R22 + Benzyl TGEP 20-60 754-765 (1) 5.4-1 3.2 202 Seliverstov 1964 U.S.S.R. English<br />

acetate<br />

R22 + Methyl TGEP 20-60 754-765 (1) 4.0-8.0 202 Seliverstov 1964 U.S.S.R. Eng 1 ish<br />

salicylate<br />

R22 + HMPT GE 20-70 1.0 10-30 27 Bokelmann 1983 Germany English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) W - Mole, W - Weight<br />

(1) - mmHg (2) - mbar Nh - Not Available


Table 4.6.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Press. Range, x (Y) Reference<br />

Fluid System Type Range, OC atm Y (R) -. NO Author Year<br />

I___<br />

Country Text<br />

R22 + ETFE GE 20-70 1 .O 10-30 27 Rokelmann 1983 Germany English<br />

R22 + DBP:DMF GS 20 fi 80 0.5-15.0 10-50 213 Seliverstov 1970 U.S.S.R. Russian<br />

R22 + DBP:DMF TE 20-60 NA 2.8-13.5 221 Seliverstov 1970 U.S.S.R. Russian<br />

R22 + DBP:DMF TE 20-80 1.8-16.3 12.9-47.1 211 Seliverstov 1971 U.S.S.R. Russian<br />

R22 -k DMETEG: TE 38-121 2.13-36.1 14.4-63.5 81 Yesselberth 1965 U.S.A. English<br />

3;<br />

Benzyl alcohol<br />

(1:1)(M)<br />

P<br />

P<br />

C- A.6.3. Corrosi<strong>on</strong><br />

Weight, %<br />

Data Temp. Corrosi<strong>on</strong> x (R) Ref e rence<br />

Fluid System Type Range, OC Inhibitor, wt % Y (R) No. Author Year Country Text<br />

- _1___1_<br />

--<br />

R22 + DMETEG TE 121 NA 50.0 (Volume) 49 Eiseman 1959 U.S.A. English<br />

R22 -+ DMETEG TE 180 WP - 0.5 WA 159 Oouchi 1985 Japan Japanese<br />

E? - 0.5<br />

BO - 0.5<br />

EPC - 0.5<br />

_AGE - 0.5<br />

-<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - nbar NA - Not Available


2<br />

c 2 m<br />

( d . a<br />

-5<br />

-4<br />

rl<br />

bo<br />

C<br />

w<br />

B<br />

.<br />

m<br />

3<br />

rJ<br />

9<br />

m<br />

.<br />

fi<br />

U<br />

d<br />

0<br />

V<br />

W<br />

.<br />

0<br />

9<br />

P<br />

a,<br />

l-i<br />

P<br />

(d<br />

w<br />

!.4<br />

0<br />

5<br />

4<br />

z 4<br />

M<br />

I<br />

mmmmmrr,<br />

. . . . a .<br />

000000<br />

1 1 1 1 1 1<br />

3<br />

0<br />

U<br />

m w - 3<br />

m a 0<br />

4 N<br />

0<br />

4 z d S<br />

4<br />

U<br />

s bo<br />

.d<br />

!4<br />

.c<br />

d 4<br />

m<br />

0<br />

0<br />

0<br />

4<br />

I<br />

0<br />

.<br />

0<br />

4<br />

z<br />

k<br />

0<br />

a<br />

(d<br />

P<br />

C<br />

.A<br />

4<br />

u-l<br />

m<br />

I<br />

u-l<br />

rJ<br />

w<br />

CJ<br />

rn U<br />

c9<br />

E<br />

w<br />

E<br />

+<br />

N<br />

N<br />

d<br />

c3<br />

w<br />

ti<br />

+<br />

N<br />

N<br />

Pd<br />

A-11s


n<br />

u<br />

c<br />

0<br />

V<br />

W<br />

.<br />

0<br />

u3<br />

4<br />

a,<br />

4<br />

P<br />

m<br />

r--l<br />

W<br />

m<br />

cu<br />

d<br />

(d<br />

a<br />

rd<br />

Q<br />

c<br />

m<br />

(d<br />

'7<br />

m<br />

m<br />

cn<br />

4<br />

0<br />

C<br />

c<br />

cn<br />

0<br />

0<br />

I<br />

0<br />

4<br />

c<br />

z<br />

2<br />

w<br />

SI<br />

z:<br />

!2<br />

D<br />

R<br />

c<br />

N<br />

c\I<br />

d<br />

c<br />

-4<br />

4<br />

bo<br />

r:<br />

w<br />

FL:<br />

m<br />

m<br />

3<br />

4<br />

UJ rn<br />

.<br />

.-I<br />

><br />

0<br />

u<br />

m<br />

k<br />

a,<br />

><br />

-4<br />

d<br />

a<br />

m<br />

m<br />

0<br />

N<br />

0<br />

0<br />

0<br />

I<br />

0<br />

0<br />

el<br />

-4<br />

2<br />

0<br />

m<br />

V<br />

E+<br />

p1<br />

W<br />

a<br />

4-<br />

N<br />

N<br />

a!<br />

d<br />

(d<br />

.d<br />

m<br />

ill<br />

3<br />

d<br />

.<br />

d<br />

CA<br />

m<br />

3<br />

9<br />

a<br />

.<br />

.<br />

2<br />

><br />

0<br />

U<br />

[I)<br />

4<br />

$<br />

.A<br />

d<br />

a,<br />

m<br />

h<br />

0<br />

N<br />

Q<br />

m<br />

I<br />

0<br />

-J<br />

I<br />

(v<br />

.-.I<br />

0<br />

I-.<br />

I<br />

0<br />

N<br />

cl)<br />

FI.<br />

ml<br />

P<br />

i<br />

N<br />

N<br />

Cd<br />

W<br />

v)<br />

e,<br />

d<br />

m<br />

n<br />

(d<br />

'7<br />

c<br />

ld a<br />

m<br />

t,<br />

00<br />

9<br />

m<br />

4<br />

(d<br />

k<br />

2<br />

a,<br />

r-\<br />

+<br />

0<br />

vl<br />

N<br />

0<br />

9<br />

I<br />

0<br />

i2<br />

4<br />

z<br />

w<br />

a<br />

2<br />

H<br />

+<br />

N<br />

N<br />

Pi<br />

k 0 k<br />

wv)a<br />

QPP<br />

FL:4 e<br />

I l l<br />

A-11.6


Table A.6.0.<br />

(C<strong>on</strong>t.1<br />

Weight, %<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, O C atm Y (R) NO, Author Year Country Text<br />

R22 + DMF C NA NA NA 226 Tyagi 1976 Japan English<br />

R22 + DMA C NA NA NA 226 Tyagi 1976 Japan English<br />

R22 + DEF C NA NA NA 226 Tyagi 1976 Japan English<br />

-<br />

--<br />

R22 + DBS GTC 22-82 NA 10-90 210 Seliverstov 1968 U.S.S.R.<br />

English<br />

R22 + DBS TE 22-82 NA 0-100 210 Seliverstov 1968 U.S.S.R. Eng 1 ish<br />

?<br />

+<br />

P<br />

4<br />

R22 + DBS GS 22-82 NA 0-100 210 Seliverstov ,1968 U.S.S.R. English<br />

R22 + DDP TC<br />

NA<br />

NA<br />

NA 212 Seliverstov 1970 U.S.S.R. English<br />

R22 + DCP TC NA<br />

NA<br />

NA 212 Seliverstov 1970 U.S.S.R. English<br />

R22 + DOP TC NA NA NA 212 Seliverstov 1970 U. S. S.R. English<br />

R22 + DOS TC NA HA NA 212 Seliverstov 1970 U.S.S.R. English<br />

R22 + TAN TC NA NA NA 212 Seliverstov 1970 U.S.S.R. Eng 11 sh<br />

A.6.5.<br />

Liquid-Phase Densities<br />

R22 + DMETEG TGE 20-90 NA 0-23.64 220 Suzuki 1973 Japan Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


0.5-25<br />

I_<br />

Author<br />

Table A.5.0.<br />

(C<strong>on</strong>t.1<br />

Data Temp. Press. Range,<br />

-<br />

Fluid System Type Range, “C arm<br />

R22 + DElETEG TGS -70-80 NA<br />

Weight, %<br />

x (R)<br />

y (R)<br />

0.0-100 .o<br />

No.<br />

113<br />

Kriebel<br />

Re f e rence -<br />

- Year Country Text<br />

1965 Germany German<br />

R22 + DMETrEG GS 20-200 0-25<br />

0-100<br />

47<br />

Ehmke<br />

1984<br />

Germany<br />

German<br />

R22 + DMETrEG TEP 20-90 0-25<br />

0-100<br />

47<br />

Ehmke<br />

1984<br />

Germany<br />

German<br />

R22 f IBA G TE 10-80 NA<br />

0-22.55<br />

250<br />

Uemura<br />

1968<br />

Japan<br />

Japanese<br />

R22 + IBA TS 10-80 NA<br />

0-25<br />

2 50<br />

Uemura<br />

1968<br />

Japan<br />

Japanese<br />

?<br />

P<br />

R22 + DMF GTE 5-50 NA<br />

m i--’ R22 + DMF GTS 5-50 “A<br />

0-29.4<br />

0-30<br />

260<br />

260<br />

Uemura<br />

Uemura<br />

1967<br />

1967<br />

Japan<br />

Japan<br />

Japanese<br />

Japanese<br />

A.6.6. Vapor-Liquid-Phase ‘Enthalpies<br />

R22 + DMETEG GS 9-200 0.5-20<br />

0- 100<br />

114 Latyshev<br />

1968 U.S.S.R.<br />

Russian<br />

R22 + DMETEG GS -90-70 0.1-20<br />

0- 100<br />

113 Rriebel<br />

1965 Germany<br />

German<br />

R22 + DNETEG TES 24-121 a. 38-47.3<br />

0.0-100.0<br />

124 Macriss<br />

1964 U.S.A.<br />

English<br />

R22 -+ DMETEG GS 0-200 0.5-20<br />

0-100<br />

117 Latyshev<br />

1969 U.S.S.R.<br />

Xus s tan<br />

R22 + DMETrEG GS 0-200 ~<br />

0- 100<br />

31 Bokelmann<br />

I985 Germany<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mHg (2) - mbar NA - Not Available


Table A.6.0.<br />

(Cant.)<br />

Fluid System<br />

Weight, %<br />

Data Temp. Press. Range, x (R><br />

Type Range, *C atm<br />

Y (R) NO e<br />

I_ Author _L<br />

Reference -<br />

Year Country<br />

Text<br />

R22 + DMEDEG<br />

GP<br />

-40-180<br />

0.1-50<br />

0-100<br />

8<br />

Ando<br />

1983 Japan<br />

Japanese<br />

R22 + DMEDEG<br />

GP<br />

-20-180<br />

0.1-50<br />

0-100<br />

7<br />

Ando<br />

1983 Japan<br />

Japanese<br />

R22 + DMEDEG<br />

GP<br />

-20-200<br />

0.1-50<br />

0-1 00<br />

9<br />

Ando<br />

1983 Japan<br />

J ap ane s e<br />

R22 + DMEDEG<br />

P<br />

NA<br />

NA<br />

NA<br />

135<br />

Mat s hush i t a<br />

1985 Japan<br />

English<br />

R22 + IBA<br />

GS<br />

-1 5- 100<br />

0.2-30<br />

0-100<br />

2 50<br />

Uemura<br />

1968 Japan<br />

Japanese<br />

4<br />

P<br />

P<br />

u3<br />

R22 + DBP<br />

R22 + DBP<br />

GS<br />

GTS<br />

0-200<br />

20-80<br />

0.5-20<br />

2-14<br />

0-100<br />

0-50<br />

117<br />

207<br />

Latyshev .<br />

Seliverstov<br />

1969 U.S.S.R.<br />

1966 U.S.S.R.<br />

Russian<br />

Russian<br />

R22 + DMMP<br />

GP<br />

0-150<br />

0-30<br />

0-100<br />

268<br />

Yar<strong>on</strong><br />

1985 Israel<br />

English<br />

R22 + DBS<br />

GS<br />

20-80<br />

1-13<br />

0-50<br />

205<br />

Seliverstov<br />

1968 U.S.S.R.<br />

Russian<br />

R22 + DMF<br />

GS<br />

-1 5-100<br />

0.5-25<br />

0-100<br />

250<br />

Uemura<br />

1968 Japan<br />

Japanese<br />

R22 + DMF<br />

P<br />

NA<br />

NA<br />

NA<br />

135<br />

Matshushi ta<br />

1985 Japan<br />

English<br />

8.6.7. Specific Heat<br />

R22 + DMETEG<br />

GSE<br />

20-180 ~<br />

WA<br />

23.39<br />

159 Oouchi 1985 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - I.snHg (2) - mbar NA - Not Available<br />

A in Vapor Phase


OZT-v<br />

E<br />

h,<br />

+<br />

U<br />

;z<br />

m<br />

U<br />

M<br />

0<br />

z z n<br />

P<br />

P<br />

0<br />

LJl<br />

Q<br />

I<br />

w n<br />

0<br />

0<br />

?<br />

CT<br />

0<br />

4<br />

P,<br />

TI<br />

(u<br />

3<br />

rn<br />

Ei<br />

M<br />

t c;<br />

8,<br />

Ti PI<br />

s<br />

(D<br />

ul<br />

(D


~~<br />

~<br />

Table A.6.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

R22 + DMH<br />

Data<br />

Type<br />

TE<br />

Weight, %<br />

Temp. Press. Range, X (R)<br />

Range, O C atm Y (R)<br />

0-25 NA 10.0-20.0<br />

- No.<br />

Author<br />

173 Podoll<br />

Reference<br />

Year Country<br />

II_<br />

1982 U.S.A.<br />

Text<br />

English<br />

R22 + DBP<br />

GE<br />

0-50 NA NA<br />

115 Latyshev<br />

1969 U. S.S.R.<br />

Russian<br />

A. 6.8. Stability<br />

R22 + DMEDEG<br />

GE<br />

100-240<br />

NA<br />

NA<br />

8 Ando<br />

1983 Japan<br />

Japanese<br />

R22 + DMETEG<br />

GE<br />

100-240<br />

NA<br />

NA<br />

8 Ando<br />

1983 Japan<br />

Japanese<br />

3;<br />

P<br />

R22 + DMETEG TE<br />

tQ w R22 + DMETEG TE<br />

250-350<br />

NA<br />

NA<br />

NA<br />

5.0 (Volume)<br />

NA<br />

49 Eiseman<br />

28 Bokelmann<br />

1959 U.S.A.<br />

1983 Germany<br />

English<br />

English<br />

R22 + DMF<br />

GE<br />

100-240<br />

NA<br />

NA<br />

8 Ando<br />

198 3 Japan<br />

Japanese<br />

R22 + DMA<br />

GE<br />

100-240<br />

NA<br />

NA<br />

8 Ando<br />

1983 Japan<br />

Japanese<br />

A.6.9.<br />

Viscosity<br />

R22 + DMETEG<br />

TGEP<br />

20-90<br />

NA<br />

0-23.64<br />

220 Suzuki<br />

1 9 7 3 Japan<br />

Japanese<br />

R22 + DMETEG<br />

CS<br />

20-90<br />

NA<br />

0-80<br />

60 Fukuda<br />

1983 Japan<br />

Japanese<br />

R22 + DMETrEG<br />

TEP<br />

20-50<br />

NA<br />

0-50<br />

47 Ehmke<br />

1984 Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(2) - mbar NA - Not Available<br />

(1) - mHg


Table A.6.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System - Type Range, "C atm Y (R) No. Author Year Country Text<br />

1__1<br />

R22 +<br />

DMETrEG GS 20-90 NA 0-50<br />

-<br />

47 Ehmke<br />

1984 Germany German<br />

1222 i- IBA GTE 10-70 NA 0-22.65 250 Uemura 1968 Japan Japanesl<br />

R22 + IBA TS 10-70 NA 0-25 250 Uenura 1963 Japan Japanesl<br />

?<br />

P<br />

N<br />

R22 + DMF GTE 5-50 NA 0-33 260 Uemura 1967 Japan J a p a ne s 1<br />

R22 -1- DMF GTS 5-50 NA 0-30 260 Uenura 1967 Japan Jap ane SI<br />

A.6.11.<br />

Heat Transfer Rate<br />

t\) R22 + DMETEG GE 6-100 NA NA 160 Oouchi 1983 Japan Japanesl<br />

A. 5.13. Ref ractive Index<br />

X22 i. DMETEG TGE 25-60 NA 0-23.64 220 Suzuki 1973 Japan Japanest<br />

R22 + IBA TGE 20 NA 0-31.25 250 IJemura 1968 Japan Japanesc<br />

R22 f DMF TGE 20 N.4 0-38.45 260 Uemura<br />

A.6.14.<br />

--<br />

Entropy<br />

1967 Japan Japanest<br />

822 f DBS TE 22-32 NA 10-90 210 Seliverstov 1968 U.S.S.R. English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(§) :4 - Mole, W - Weight<br />

(1) - mag (2) - nbar NA - Not Available


Table A.6.0.<br />

(COnt.1<br />

Weight, %<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, 'C atm Y (R) NO Author Year Co_untJy Text<br />

R22 + DBS GS 42.5-82 NA 0- 100 210 Seliverstov 1968 U.S.S.R. English<br />

-<br />

-<br />

A.6.15.<br />

Surface Tensi<strong>on</strong><br />

R22 + DMF GTE 5-50 NA 0-31.9 260 Uemura 1967 Japan Ja pane s e<br />

R22 + DMF GT S 5-50 NA 0-30 260 Uemura 1967 Japan Japanese<br />

R22 + IBA GTE 30 NA 0-15.9 250 Uenura 1968 Japan Japanese<br />

w<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mdig (2) - mbar NA - Not Available


v)<br />

W<br />

a,<br />

(I)<br />

rd<br />

c<br />

!&<br />

k<br />

Q<br />

a<br />

P<br />

rl<br />

N<br />

r<br />

a,<br />

bll<br />

l%<br />

ecB<br />

U<br />

.(B<br />

m<br />

in<br />

a,<br />

$4<br />

Pi<br />

I l l<br />

CJ<br />

c<br />

Z<br />

H<br />

a,<br />

ma,<br />

a m<br />

s m<br />

A-124


Table A.7.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Type<br />

Weight, X<br />

Temp. Press. Range, X (R)<br />

Range, OC atm Y (R)<br />

Ref e rence<br />

No. Author Year Country<br />

-<br />

Text<br />

R21 + DMF<br />

P<br />

NA<br />

NA<br />

NA<br />

242 Uemura 1973 Japan<br />

Japanese<br />

R21 + DMF<br />

PC<br />

NA<br />

NA<br />

NA<br />

12 Badarinara- 1982 England<br />

yana<br />

English<br />

R21 + DEF<br />

TE<br />

38-121<br />

0.896-7.03<br />

28.1-74 . 1<br />

222 Thieme 1961 U.S.A.<br />

English<br />

R21 + DFlA<br />

TE<br />

0-30<br />

0.011-0.221<br />

12.5-38.8<br />

173 Podoll 1982 U.S.A.<br />

English<br />

?<br />

P<br />

t4<br />

in<br />

R21 + DMH<br />

R21 + DMH<br />

R21 + NMP<br />

TE<br />

GS<br />

GS<br />

0-30<br />

0-150<br />

0-150<br />

0.0067-0.221<br />

0.165-20.8<br />

NA<br />

6.6-30.1<br />

23 -0-55.O<br />

25 .O-5 1 .O<br />

173 Podoll 1982 U.S.A.<br />

18 Riemann 1978 1J.S.A.<br />

18 Riermann 1978 U.S.A.<br />

English<br />

English<br />

English<br />

R21 + Diethyloxalate<br />

TE<br />

24-12 1<br />

0.276-7.24<br />

22.0-68.5<br />

172 Pluche 1959 U.S.A.<br />

English<br />

R21 + Diethylma<br />

1 o na t e<br />

TE<br />

24-121<br />

0.414-7.03<br />

30.0-66.3<br />

172 Pluche 1959 U.S.A.<br />

English<br />

R21 + Diethyladipate<br />

TE<br />

24-121<br />

0.276-7.10<br />

23.2-60.7<br />

172 Pluche 1959 U.S.A.<br />

English<br />

R21 + Diethyladipate<br />

GE<br />

24-121<br />

0.27-7.0<br />

23.0-6 1.0<br />

2 Albright 1960 U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c -<br />

Y - Vapor Phase A - Absorbent(s) M -<br />

(1) - mmHg (2) - mbar NA -<br />

ppm by weight of<br />

Mole, W - Veiqht<br />

Not Available<br />

A . in Vapor Phase


P 4<br />

.<br />

CI, cn<br />

3 3<br />

P<br />

m<br />

5<br />

.<br />

4 4<br />

.<br />

v) Cr<br />

3 LJ<br />

. .<br />

4 4.<br />

m v?<br />

.<br />

c C'<br />

3<br />

4 d<br />

In<br />

cp<br />

LT<br />

CCI<br />

k<br />

0 a<br />

m<br />

3<br />

,cI<br />

u<br />

F:<br />

Q<br />

U<br />

W<br />

c?<br />

r-<br />

P<br />

aJ<br />

d<br />

F<br />

m<br />

b<br />

I<br />

.<br />

. . . .<br />

s-4 D- c h d<br />

CCI 4 0 P-l I-.<br />

\o r- h h e<br />

I<br />

I I I I<br />

0 m pl m ex?<br />

oc I-. m m C<br />

d c) C! c.l rl<br />

06 I<br />

a<br />

b<br />

N<br />

0<br />

.<br />

m<br />

m<br />

I<br />

m<br />

9<br />

in.<br />

0<br />

-5<br />

N<br />

h<br />

I<br />

\Q<br />

h<br />

hl<br />

0<br />

.<br />

m<br />

e<br />

I-.<br />

I<br />

9<br />

b<br />

el<br />

oc<br />

.<br />

7-<br />

8<br />

In<br />

I-.<br />

I<br />

-5<br />

4<br />

0<br />

.<br />

m<br />

rn<br />

m<br />

hl<br />

3 -5<br />

h<br />

0<br />

\c<br />

I<br />

0<br />

03<br />

-5<br />

6<br />

.<br />

m<br />

0<br />

b<br />

I<br />

9<br />

OI<br />

02<br />

c<br />

A-126


Table A. 7.0. (C<strong>on</strong>t. )<br />

Fluid System<br />

Data<br />

Type<br />

Temp.<br />

Range, OC<br />

Press. Range,<br />

atm<br />

Reference<br />

-<br />

No. Author Year Country Text<br />

R21 + Acetophen<strong>on</strong>e<br />

TE<br />

24-121 0.276-7.58<br />

18.5-7 1.7 35 Buclez 1959 U.S.A. English<br />

R21 + Benzaldehyde<br />

R21 + Ethyllaurate<br />

TE<br />

TE<br />

24-121 0.276-7.79 17.7-75.1 35 Buclez 1959 U.S.A. English<br />

38-107 0.290-1.60 11.2-24.0 3 Albright 1962 U.S.A. English<br />

R21 + Diethyloxalate<br />

TE<br />

?<br />

P<br />

p3<br />

., R21 + Diethyl- TE<br />

adipate<br />

38-107 0.234-1.48 12.8-13.4 3 Albright 1962 U.S.A. Eng 1 i s h<br />

38-107 0.248-1.55 13.0-13.8 3 Albright 1962 U.S.A. Eng 1i s h<br />

R21 + Nitrobenzene<br />

GE<br />

52 1.03-3.10 17.3-77.0 222 Thieme 1961 U.S.A. English<br />

R21 + Aniline GE 52 1.24-3.10<br />

21.6-81.6<br />

222 Thieme 1961 U.S.A. Eng 1 ish<br />

R21 + Dimethyl<br />

aniline<br />

GE<br />

52 1.24-3.45<br />

17.5-77.3<br />

222 Thieme 1961 U.S.A. English<br />

R21 + M-Chloro<br />

aniline<br />

GE<br />

52 2.07-3.45 16.8-76.3 222 Thieme 1961 U.S.A. English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHq (2) - mbar NA - Not Available


Y<br />

V<br />

c<br />

QJ<br />

c<br />

v3<br />

D<br />

c c .c c<br />

m<br />

rl<br />

M<br />

d<br />

. 4 Q<br />

LT<br />

.<br />

='<br />

m m m<br />

*d *d -d<br />

d r-l r-i<br />

M b@ bo<br />

I*!<br />

c c c c<br />

w w zr'r<br />

. .<br />

cn cn<br />

.<br />

G 5<br />

. cn<br />

.<br />

4 c<br />

cn<br />

5 =,<br />

4<br />

hl<br />

I-<br />

m<br />

I-<br />

c\1 c\1<br />

A<br />

u c<br />

0<br />

V<br />

v<br />

r?<br />

0<br />

c\1<br />

-1 hl<br />

N N<br />

N N<br />

\o 4<br />

4 W<br />

k k<br />

a, a,<br />

4-1 rcI<br />

a, a,<br />

0 0<br />

c 6<br />

r-i &<br />

PI 73<br />

Y Y<br />

N N<br />

m<br />

N<br />

t-. I-<br />

l-4 N<br />

c<br />

r<br />

e<br />

z<br />

N<br />

In<br />

m<br />

I<br />

00<br />

cp:<br />

rl<br />

cn<br />

r--<br />

r.<br />

0<br />

rl<br />

I<br />

90<br />

l-7<br />

C<br />

c<br />

I l l<br />

W w I' C3<br />

w<br />

c3<br />

w<br />

b<br />

01<br />

P i<br />

h<br />

u<br />

U<br />

0<br />

-44<br />

+- v ..<br />

I l l<br />

n<br />

x*;<br />

A-128


Table A.7.0.<br />

(C<strong>on</strong>to)<br />

A.7.4.<br />

Heat of Mixing<br />

Weight, %<br />

Data Temp. Press. Range, X (R)<br />

Fluid System Type Range, O C atm Y (R)<br />

R21 + DMETEG GE 3 NA 4.9-89.8<br />

-<br />

Reference<br />

No. Author Year Country Text<br />

L__<br />

274 Zellhoeffer 1938 U.S.A. English<br />

R21 + DMETEC C NA NA NA<br />

226 Tyagi 19 7 6 Japan<br />

English<br />

R21 + DMETrEG C NA NA NA<br />

R21 + DMEDEG TEC 25 NA 10.7-29.0<br />

226 Tyagi 1976 Japan English<br />

173 Podoll 1982 U.S.A. Eng 1 ish<br />

?<br />

P<br />

iD<br />

R21 + DMF GS 10<br />

N R21 + DMF P NA<br />

WA<br />

NA<br />

0- 100<br />

NA<br />

242 Uemura 1973 Japan Japanese<br />

12 Badarinara- 1982 England English<br />

yana<br />

R21 + DMH TEC 25 NA 12.8-33.9<br />

173 Podoll 1982 1J.S.A. Eng 1 ish<br />

R21 + DMA TE 25 NA 10.1-19.0<br />

173 Podoll 1982 U.S.A.<br />

English<br />

R21 + ETL C NA NA NA<br />

R21 + DE0 C NA NA NA<br />

226 Tyagi 1976 Japan Eng 1 ish<br />

226 Tyagi 1976 Japan English<br />

R21 + DEA C NA NA NA<br />

226 Tyagi 19 7 6 Japan<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


Table A. 7.0. (C<strong>on</strong>t. 1<br />

Weight, %<br />

Data Temp. Press. Range, X (R)<br />

Reference -<br />

Fluid System - Type Range, OC atm Y (R) No. Author Year Country Text<br />

R21 + DEF C NA NA NA 226 Tyagi 1975 Japan Eng 1 ish<br />

__<br />

-<br />

-<br />

A.7.5.<br />

Liquid-Phase Densities<br />

R21 + DMF GTE 5-80 NA 0-81.7 250 Uenura 1967 Japan Japanese<br />

R21 + DMF GTS 5-80 NA 0-80 260 Tjemura 1967 Japan Japanese<br />

A.7.6. Vamr-Liauid-Phase Enthaloies<br />

?<br />

P<br />

R21 f DMETEG P NA NA NA 267 Yar<strong>on</strong><br />

,1985 Israel English<br />

R21 -k DMETEG GP 0-150 1-26 0-1 00 267 Yar<strong>on</strong> 1985 Israel English<br />

R21 -+ DMF GP -1 0- 120 0.01-12<br />

0-80 12 Badarinara- 1982 England English<br />

yana<br />

A. 7.7 Specific Heat<br />

R29 + DMF P NA<br />

NA<br />

NA 242 Uemura 197 3 Japan<br />

Japanese<br />

R21 + DMEDEG TE 0-25<br />

NA<br />

10.0-50.0 173 Podoll 1982 U.S.A.<br />

English<br />

R21 + DMA TE 0-25<br />

N A<br />

10.0-50.0 173 Podoll 1982 U.S.A.<br />

English<br />

X - Liquid 'Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

P - Vapor Phase A - Absorbent(s) M - Mole, 1.: - Weight<br />

(1) - mHg (2) - mbar NA - N ot Available


Table A.7.0.<br />

(C<strong>on</strong>t.)<br />

Weight, %<br />

Data Temp. Press. Range, x (R) Reference<br />

Fluid System Type Range, OC atm y (R) No. Author - Year Country Text<br />

LI<br />

R21 + DMH TE 0-25 NA 10.0-50.0 173 Podoll<br />

1982 U.S.A. English<br />

A.7.8.<br />

Stability<br />

R21 + DMETEG TE , 250 NA 50.0 (Volume) 49 Eiseman 1959 U.S.A. English<br />

A.7.9.<br />

Viscosity<br />

R21 + DMF GTE 5-50<br />

NA<br />

0-7 9 260 Uemura 19 6 7 Japan<br />

Ja pane s e<br />

R21 + DMF GTS 5-50<br />

?<br />

r<br />

w A.7.13. Refractive Index<br />

NA<br />

0-80 260 Uemura . 1967 Japan<br />

Japanese<br />

R21 + DMF GTE 20<br />

NA 0-74.61 260 Uemura 1967 Japan Japanese<br />

A.7.15.<br />

Surface Tensi<strong>on</strong><br />

NA<br />

0-72.7 260 Uemura 1967 Japan<br />

Japanese<br />

R21 + DMF GTS 5-50<br />

NA<br />

0-70 260 Uemura 1967 Japan<br />

Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


4<br />

Ec<br />

4<br />

a<br />

m<br />

a<br />

H<br />

E2<br />

J<br />

P4<br />

z<br />

0<br />

w<br />

E-l<br />

a,<br />

0<br />

m<br />

2<br />

rlrl<br />

m h l<br />

h l h l<br />

.-i<br />

N<br />

N<br />

P-!<br />

m<br />

N<br />

aJ<br />

m<br />

(d<br />

c<br />

P4<br />

Ll<br />

0<br />

a<br />

id<br />

P<br />

u<br />

H<br />

ir<br />

.<br />

I--1<br />

52<br />

a<br />

2<br />

u7<br />

e<br />

9<br />

P-!<br />

I<br />

m<br />

03<br />

4<br />

rr)<br />

d rn<br />

I<br />

m<br />

. a<br />

I<br />

In<br />

e<br />

m<br />

.4<br />

I<br />

00<br />

e<br />

hl<br />

m<br />

h<br />

I<br />

m<br />

0<br />

m<br />

I<br />

0<br />

a<br />

4<br />

I<br />

0<br />

0<br />

r-<br />

I<br />

a<br />

--I<br />

4<br />

Q 0<br />

z 9 9<br />

I I<br />

0 0<br />

rl 4<br />

w<br />

E l<br />

PI<br />

c3<br />

W<br />

c3<br />

+<br />

hl<br />

rr)<br />

4<br />

M<br />

+<br />

N<br />

u-l<br />

d<br />

+ i" +<br />

N<br />

rn<br />

A<br />

M<br />

N<br />

m<br />

W w<br />

ul m<br />

4<br />

p:<br />

A-1.32


Table A.8.0.<br />

(C<strong>on</strong>t.)<br />

A.8.7.<br />

Specific Heat<br />

Data Temp. Press. Range,<br />

Fluid System<br />

-<br />

Type Range, "C atm<br />

R152 + DMF TEP 5-40 NA<br />

Weight, %<br />

X (R)<br />

y (R)<br />

-<br />

Reference<br />

No. Author Year Country Text<br />

-<br />

0- 1 3.45 221 Tange 19 7 4 Japan Japanese<br />

R152 + DMF GS 0-50 NA<br />

0-20 231 Uemura<br />

1973 Japan Japanese<br />

R152 + DMF P NA NA<br />

NA<br />

231 Uemura 1 9 7 3 Japan Japanese<br />

A.8.9.<br />

Viscosity<br />

R152 + DMF GE 10-60 NA<br />

? TS<br />

P<br />

W<br />

W<br />

R152 -t DMF GEC NA 10-2000 (1)<br />

R152 + DMF GS 10-60 NA<br />

0-20 221 Tange 1974 Japan Japanese<br />

5-20 221 Tange 1974 Japan Japanese<br />

0-20 231 Uemura 19 7 3 Japan Japanese<br />

A.8.13.<br />

Refractive Index<br />

R152 + DMF GTE 20<br />

NA<br />

0-25<br />

221 Tange<br />

1974 Japan Japanese<br />

R152 + DMF GE 20<br />

NA<br />

0-3 5<br />

221 Tange<br />

1974 Japan Japanese<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


-,<br />

.<br />

LJ<br />

0<br />

a?<br />

-d<br />

A-134


Table A.9.0.<br />

REFRIGERANT 12 BINARY AND MULTICOMPONENT ABSORPTION FLUIr)S PROPERTIES DATA<br />

A.9.1.<br />

Vapor-Liquid Equilibrium<br />

Data Temp.<br />

Fluid System Type Range, 'C<br />

R12 + DMETEG TE 38-121<br />

R12 + DMA TE 38-121<br />

R12 + DMF TFI -20-50<br />

Press. Range,<br />

3.52-41.6<br />

4.90-36.8<br />

740 (1)<br />

Weight, %<br />

X (R)<br />

Re f e re n c e<br />

Y (Q) NO Author Year Country Text<br />

-<br />

11.1-78.0 81 Hesselberth 1965 U.S.A. English<br />

23.1-84.5 81 Hesselberth 1965 U.S.A. Eng 1 i s h<br />

1.8-16.4 130 Makitra 1979 U.S.S.R. English<br />

R12 + Dicumyl GTEP 20-60<br />

methane<br />

754-765 (1)<br />

4.2-8. a 202 Selivers tov 1964 U. S. S. R.<br />

English<br />

7 R12 + Oleic GTEP 20-60<br />

P<br />

w<br />

VI<br />

acid<br />

R12 + Methyl GTEP 20-60<br />

benzoate<br />

R12 + Propyl GTEP 20-60<br />

benzoate<br />

R12 + Butyl GTEP 20-60<br />

benzoate<br />

R12 + Dimethyl GTEP 20-60<br />

phthalate<br />

754-765 (1)<br />

754-765 (1)<br />

754-765 (1)<br />

754-765 (1)<br />

754-765 (1)<br />

2.4-10.9 202 Seliverstov 1964 U.S. S. R. English<br />

2.05-5.4 202 Seliverstov 1964 U.S.S.R. English<br />

2.7-9.0 202 Seliverstov 1964 U. S. S. R. English<br />

2.64-9.4 202 Seliverstov 1964 U.S.S.R. English<br />

1.28-4.2 202 Seliverstov 1964 U.S.S.R. English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


n<br />

+.I<br />

C<br />

0<br />

V<br />

W<br />

a,<br />

m<br />

m<br />

c P.<br />

k<br />

0<br />

a<br />

cd<br />

3<br />

C<br />

Ti<br />

4<br />

w u<br />

"5<br />

U 2- a,<br />

c cud<br />

M5 P<br />

0<br />

A-136


Table A.9.0.<br />

(C<strong>on</strong>t.)<br />

Weight, Z<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, "C atm Y (R) No. Author Year Country Text<br />

R12 + R22: TE 38-121 4.27-40.0 1.7-54.5 81 Hesselberth 1965 U.S.A. English<br />

DMETEG:Benzyl 18.0-86.6<br />

alcohol (1: 1) (M)<br />

9.4. Heat of Mixing<br />

R12 + DMF TE -20-50 740 (1) 1.8-16.4 130 Makitra 1979 U.S.S.R. qngl i s h<br />

-<br />

I<br />

X - TAquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

( I) - mmHg (2) - mbar NA - Not Available


H<br />

n<br />

GI<br />

P-<br />

P<br />

%<br />

+<br />

d<br />

4<br />

z<br />

H<br />

m<br />

c<br />

m<br />

m<br />

F-4<br />

k<br />

0<br />

F:<br />

u<br />

3<br />

0<br />

z<br />

2<br />

"4<br />

P(<br />

M<br />

C<br />

W<br />

h<br />

c<br />

(d<br />

a,<br />

c3<br />

m<br />

m<br />

cn<br />

E<br />

4<br />

c<br />

c<br />

m<br />

E<br />

74<br />

aJ<br />

s<br />

0<br />

m<br />

h<br />

N<br />

e<br />

m<br />

e<br />

1<br />

m<br />

r\l<br />

7-4<br />

00<br />

8<br />

0<br />

m<br />

I<br />

0<br />

m<br />

w<br />

H<br />

c3<br />

Eil<br />

H<br />

w<br />

2:<br />

a<br />

1-<br />

ca<br />

m<br />

m<br />

4<br />

d<br />

2:<br />

v)<br />

-11<br />

7.4 M<br />

d<br />

W<br />

h<br />

C<br />

m<br />

e<br />

k<br />

aJ<br />

c3<br />

m<br />

a3<br />

cn<br />

4<br />

c<br />

C<br />

rl<br />

aJ<br />

3<br />

0<br />

e"<br />

OD<br />

N<br />

e<br />

rl<br />

4-<br />

I<br />

rn<br />

N<br />

4<br />

a3<br />

0<br />

0<br />

m<br />

I<br />

0<br />

N<br />

W<br />

H<br />

c3<br />

w<br />

E-r<br />

li!<br />

a"<br />

+<br />

a<br />

m<br />

m<br />

d<br />

4<br />

s<br />

u<br />

d<br />

aJ<br />

k<br />

F,<br />

aJ<br />

V<br />

c<br />

m<br />

k<br />

zrl<br />

d<br />

m<br />

m<br />

1<br />

"0<br />

c<br />

m<br />

7-4<br />

rl<br />

0<br />

I%<br />

.-4<br />

r-4<br />

m<br />

0<br />

0<br />

I<br />

a<br />

4<br />

0<br />

I<br />

a<br />

4<br />

4<br />

.<br />

a<br />

Q<br />

N<br />

I<br />

8<br />

CA<br />

c3<br />

P,<br />

E<br />

f<br />

m<br />

m<br />

m<br />

4<br />

d<br />

.c<br />

v)<br />

-4<br />

74<br />

M<br />

c<br />

W<br />

h<br />

c<br />

m<br />

E<br />

k<br />

a<br />

(3<br />

PI<br />

m<br />

m<br />

d<br />

c<br />

C<br />

e"<br />

?I<br />

d<br />

a,<br />

F4<br />

co<br />

hl<br />

4<br />

u-!<br />

In<br />

I<br />

h<br />

m<br />

hl<br />

m<br />

0<br />

69<br />

h<br />

I<br />

0<br />

m<br />

W<br />

H<br />

PI<br />

2:<br />

z<br />

+<br />

(d<br />

m<br />

m<br />

ffi<br />

1<br />

?c<br />

VJ<br />

-d<br />

v-4<br />

M<br />

c:<br />

F-l<br />

h<br />

d<br />

m<br />

a,<br />

W<br />

m<br />

M<br />

a\<br />

E<br />

4<br />

d<br />

d<br />

m<br />

E<br />

rl<br />

a<br />

A<br />

8<br />

F4<br />

h<br />

N<br />

cn<br />

00<br />

u-!<br />

I<br />

a .<br />

h<br />

d<br />

m<br />

0 .<br />

a<br />

h<br />

I<br />

0<br />

m<br />

u<br />

E+<br />

2<br />

n<br />

1-<br />

(D<br />

m<br />

m<br />

4<br />

p:<br />

a,<br />

v,<br />

m<br />

dz<br />

D4<br />

I l l<br />

A-138


~<br />

Table A. 10.0.<br />

(Cant.)<br />

Weight, %<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type atm Y (R) No. Author Year Country Text<br />

R133a + DMF TE 30-70 0.8<br />

17.0-58.9<br />

D_<br />

28 Bokelmann<br />

-<br />

1983<br />

Germany<br />

English<br />

R133a + DEF TE 20-70 0.8<br />

22.3-62.4<br />

27 Bokelmann<br />

1983<br />

Ge many<br />

English<br />

R133a + DEF TE 20-70 0.8<br />

22.3-62.4<br />

28 Bobelmann<br />

1983<br />

Germany<br />

Eng 1 ish<br />

R133a + HMPT TE 30-80 0.8<br />

23.7-43.4<br />

27 Bokelmann<br />

1983<br />

Germany<br />

English<br />

R133a + HMPT TE 20-80 0.8<br />

23.7-51.3<br />

28 Bokelmann<br />

1983<br />

Germany<br />

English<br />

?<br />

P<br />

a<br />

u<br />

R133a + TBP TE 30-70 0.8<br />

R133a + TBP<br />

TE 30-70 0.8<br />

16.5-38.0<br />

16.5-38.0<br />

27 Bokelmann<br />

28 Bokelmann<br />

1983<br />

1983<br />

Germany<br />

Germany<br />

English<br />

English<br />

A.10.4.<br />

Heat of Mixing<br />

R133a + NMP GS NA NA<br />

0-100<br />

191 Rolland<br />

1981<br />

France<br />

French<br />

A. 10.5. Liquid-Phase Densities<br />

R133a + NMP GS 0-1 60 NA<br />

0-100<br />

191 Rolland<br />

1981<br />

France<br />

French<br />

R133a + ETFE TEP -60-250 NA<br />

0.0-60.0<br />

5 Allen<br />

1979<br />

U.S.A.<br />

English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - nbar HA - Not Available


c<br />

L)<br />

d<br />

a,<br />

k<br />

E<br />

a,<br />

V<br />

C<br />

m<br />

k<br />

F.l<br />

--I<br />

CQ<br />

Cn<br />

.+<br />

a<br />

d<br />

(d<br />

4<br />

rl<br />

0<br />

d<br />

- 4 - 4<br />

cu<br />

v1<br />

rrJ<br />

i2<br />

k<br />

0<br />

a,<br />

ra<br />

P<br />

c<br />

d<br />

4<br />

n<br />

u<br />

d<br />

0<br />

V<br />

W<br />

0<br />

0<br />

L n d<br />

I I<br />

a 0<br />

a o<br />

.<br />

0<br />

0 0<br />

U l 4<br />

0 L<br />

I<br />

0<br />

Q<br />

4<br />

Q<br />

a,<br />

r-4<br />

.tY m<br />

€+<br />

8<br />

0<br />

8<br />

h<br />

h<br />

4<br />

I<br />

e<br />

CJ<br />

w<br />

€i<br />

w<br />

F<br />

H<br />

W<br />

+<br />

a<br />

m<br />

m<br />

d<br />

cl?<br />

0<br />

0<br />

N<br />

I<br />

6<br />

VI<br />

t3<br />

2<br />

z<br />

-I-<br />

ra<br />

m<br />

m<br />

d<br />

d<br />

h<br />

N<br />

rl<br />

I<br />

h<br />

I<br />

P4<br />

W<br />

€+<br />

w<br />

k.4<br />

E-l<br />

W<br />

+<br />

rrJ<br />

m<br />

rc)<br />

d<br />

d<br />

Q<br />

00<br />

4<br />

W<br />

I-I<br />

P.4<br />

c<br />

z<br />

-I-<br />

crl<br />

r-l<br />

m<br />

4<br />

d 0<br />

Ba<br />

d<br />

W<br />

E-l<br />

c?<br />

W<br />

k<br />

€i<br />

w<br />

c<br />

(3<br />

+<br />

m<br />

el<br />

m<br />

7-4<br />

d<br />

I<br />

A-140


Table A. 10.0. (C<strong>on</strong>t. )<br />

A. 10.15. Surface Tensi<strong>on</strong><br />

Weight, %<br />

Data Temp. Press. Range, X (R)<br />

Reference<br />

Fluid System Type Range, atm Y (R) No. Author Year Country Text<br />

OC<br />

R133a + NMP GS 0-160 NA 0-50 191 Rolland 1981 France French<br />

A. 10.16. Toxicity<br />

R133a + ETFE TE NA NA 0.0, 100.0 150 T4urphy 1982 U.S.A. English<br />

A. 10.17. Flamnability<br />

-<br />

5;<br />

P<br />

CI<br />

i-<br />

R133a + ETFE TE 10.3-24.1<br />

NA 0.0-100.0 150 Murphy 1.982 U.S.A. English<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(2) - mbar NA - Not Available<br />

(1) - mmHg


n<br />

a<br />

d<br />

nf<br />

E?<br />

$4<br />

a,<br />

c3<br />

h<br />

d<br />

m<br />

a,<br />

c3<br />

e<br />

m<br />

m<br />

E<br />

4<br />

F:<br />

C<br />

rp<br />

E!<br />

d<br />

a,<br />

s<br />

0<br />

m<br />

m<br />

N<br />

0<br />

0<br />

I<br />

0<br />

d<br />

n<br />

hl<br />

W<br />

0<br />

0<br />

0<br />

In<br />

I<br />

0<br />

Ln<br />

0<br />

a<br />

N<br />

I<br />

0<br />

N<br />

I<br />

w w<br />

E-IW<br />

CI,<br />

w<br />

E-I<br />

w<br />

x<br />

L3<br />

+<br />

m<br />

m<br />

N<br />

4<br />

13G %<br />

.d<br />

d<br />

bo<br />

C<br />

w<br />

h<br />

C<br />

m<br />

a<br />

h7<br />

m<br />

00<br />

02<br />

E<br />

4<br />

d<br />

d<br />

2<br />

d<br />

a,<br />

s<br />

0<br />

m<br />

CJ<br />

N<br />

m<br />

m<br />

I<br />

0<br />

n<br />

N<br />

W<br />

0<br />

0<br />

0<br />

m<br />

I<br />

Q<br />

4<br />

0<br />

0<br />

N<br />

I<br />

0<br />

hl<br />

I<br />

m<br />

c3<br />

2<br />

E+<br />

W<br />

z<br />

+<br />

m<br />

m<br />

c\I<br />

4<br />

r-t:<br />

n<br />

5<br />

-74<br />

r-l<br />

tu?<br />

C<br />

w<br />

h<br />

c<br />

m<br />

a,<br />

c3<br />

m<br />

03<br />

m<br />

2<br />

d<br />

51"<br />

d<br />

a,<br />

2-4<br />

0<br />

c4<br />

hl<br />

m<br />

In<br />

m<br />

I<br />

0<br />

n<br />

N<br />

W<br />

0<br />

0<br />

0<br />

Ln<br />

I<br />

0<br />

4<br />

0<br />

0<br />

hl<br />

I<br />

0<br />

N<br />

I<br />

VI<br />

c3<br />

0<br />

w<br />

E-r<br />

w<br />

z<br />

P<br />

+<br />

m<br />

m<br />

hl<br />

a:<br />

d<br />

.",<br />

-4<br />

d<br />

M<br />

F:<br />

W<br />

d<br />

m<br />

a,<br />

c3<br />

m<br />

a,<br />

m<br />

E<br />

rl<br />

!z<br />

d<br />

e"<br />

7-4<br />

a,<br />

&<br />

0<br />

m<br />

r-<br />

N<br />

4<br />

m<br />

Ln<br />

I<br />

h<br />

hl<br />

d<br />

m<br />

m<br />

0 .<br />

0<br />

h<br />

I<br />

Q<br />

N<br />

W<br />

w<br />

c3<br />

w<br />

$4<br />

w<br />

w<br />

r:<br />

+<br />

a<br />

m<br />

hl<br />

4<br />

n<br />

p:<br />

k<br />

0<br />

0.<br />

a<br />

P<br />

c<br />

A-142


n<br />

u<br />

C<br />

0<br />

V<br />

W<br />

0 .<br />

4<br />

d<br />

P<br />

a,<br />

rl<br />

P<br />

cd<br />

H<br />

C<br />

0<br />

4<br />

m<br />

0<br />

F.l<br />

$4<br />

0<br />

u<br />

.<br />

rl .<br />

4<br />

4<br />

B<br />

a d<br />

H<br />

w<br />

H<br />

+<br />

cd<br />

rl<br />

hl<br />

4<br />

d<br />

C<br />

2<br />

.<br />

rn<br />

v)<br />

QJ<br />

k<br />

p-r<br />

0<br />

0<br />

0<br />

m<br />

co<br />

\D<br />

I<br />

.<br />

0<br />

4<br />

0<br />

hl<br />

I<br />

4<br />

hl<br />

PI<br />

E<br />

E-c<br />

W<br />

+<br />

a<br />

rl<br />

c\I<br />

A<br />

pr:<br />

I l l<br />

I l l<br />

n<br />

xwn;=<br />

A-143


h<br />

c:<br />

m - 4<br />

E .<br />

b r n<br />

a J .<br />

c 3 3<br />

h<br />

d<br />

8<br />

P<br />

m<br />

k<br />

al<br />

cJ) 3<br />

-3 m<br />

rr) a2<br />

m Q\<br />

al<br />

u)<br />

m<br />

..c<br />

P.4<br />

n<br />

u<br />

c<br />

0<br />

W<br />

v<br />

0<br />

4<br />

aJ<br />

d<br />

P m<br />

B<br />

a<br />

4<br />

I<br />

0<br />

6<br />

0<br />

0 0<br />

0 0<br />

.-I 3-4<br />

I I<br />

0 0<br />

0<br />

4 B<br />

N<br />

I<br />

4.<br />

N<br />

2 1<br />

h<br />

r.<br />

-=i<br />

I--(<br />

N<br />

0<br />

<strong>on</strong><br />

I<br />

Q<br />

rn<br />

k<br />

m w<br />

z B<br />

-6<br />

m<br />

r7<br />

N<br />

4<br />

(1:<br />

w<br />

La<br />

w<br />

+ + +<br />

m<br />

p?<br />

N<br />

7-4<br />

ffi<br />

8-144


Table A.12.0.<br />

FLUORO-ALCOHOL BINARY AND MULT'ICOMPONENT ABSORPTION FLUIDS PROPERTIES DATA<br />

A.12.1.<br />

Vapor-Liquid Equilibrium<br />

Data Temp.<br />

Fluid System Type Range, O C<br />

TFE + DMETEG TGE 73-1 91<br />

TFE + DMETEG GS -10-200<br />

Press. Range,<br />

atm<br />

Weight, %<br />

X (R)<br />

Y (R)<br />

725 (1) 0-100<br />

74-100<br />

0.01-1.5 0-100<br />

74-100<br />

Reference<br />

No. Author Year Country Text<br />

_.<br />

-<br />

201 Seher 1983 Germany Ge rman<br />

201 Seher 1983 Germany German<br />

TFE + DMETEG GS -10-210<br />

0.008-2 0-100<br />

200 Seher<br />

1985 Germany<br />

Ge r ma n<br />

TFE + DMETEG GS 15-225<br />

0.01-1 0-100<br />

200 Seher<br />

,1985 Germany<br />

German<br />

TFE -I- DMETEG GE 40- 190<br />

960 & 200 (2) 0-1 00<br />

200 Seher<br />

1985 Germany<br />

Ge rman<br />

TFE + DMETEG T3 20-80<br />

0.02-0.38 2.9-57.4<br />

27 Bokelmann<br />

1983 Germany<br />

English<br />

TFE f DMETEG GS 0<br />

65-1000 (2) 40-90<br />

153 Nowaczyk<br />

1885 Germany<br />

English<br />

TFE + DMETrEG TE 20-80<br />

0.02 0.7-29.9<br />

27 Bokelmann<br />

1983 Germany<br />

English<br />

TFE + XMP TE 20-80<br />

0.02-0.38 14.0-70.0<br />

27 Bokelmann<br />

1983 Germany<br />

English<br />

TFE + NMP TEP -2 0 -20 0<br />

1-915 (2) 0-100<br />

29 Bokelmann<br />

1984 Germany<br />

German<br />

TFE + NMP GTS -20-200<br />

1-1000 (2) 0-100<br />

29 Rokelmann<br />

1984 Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, kT - Weight<br />

(1) - mdg (2) - mbar NA - Not Available


-.<br />

U<br />

F‘<br />

Q<br />

W<br />

W<br />

0<br />

N<br />

d<br />

4<br />

a,<br />

ri<br />

D<br />

id<br />

f-c<br />

k<br />

0<br />

..c<br />

u<br />

3<br />

I 4<br />

b? I<br />

d<br />

(d<br />

e<br />

4<br />

a,<br />

c3<br />

C<br />

(d<br />

*I<br />

k<br />

a,<br />

N<br />

4.J<br />

-4<br />

m<br />

3<br />

4<br />

ln<br />

a\<br />

*1<br />

(-4<br />

a,<br />

M<br />

k<br />

a,<br />

B<br />

m<br />

k<br />

“4<br />

c3<br />

In<br />

\D<br />

iz)<br />

03<br />

N<br />

I<br />

ul<br />

*<br />

d<br />

hl<br />

In<br />

h<br />

co<br />

0<br />

I<br />

rn<br />

h<br />

Bo<br />

0<br />

.<br />

0<br />

m<br />

I<br />

0<br />

0<br />

F-4<br />

7-4<br />

w<br />

H<br />

c.3<br />

J<br />

N<br />

Fol<br />

+<br />

w<br />

k<br />

E-a<br />

A-146


Table A.12.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

Data<br />

Temp.<br />

Range, OC<br />

Press. Range,<br />

atm<br />

Weight, %<br />

X (R)<br />

Reference<br />

Y (R) No. Author Year Country Text<br />

10 UII<br />

TFE + DMPU GS 0<br />

65-1000 (2)<br />

40-90 153 Nowaczyk 1986 Germany English<br />

TEE -k DMPU GS -20-200 1-1000 (2) 20-100 153 Nowaczyk 1986 Germany English<br />

TP3 + DMEU GS 0<br />

65-1000 (2) 43-90 153 Nowaczyk 1986 Germany English<br />

TFE f NMC GS 0 65-1000 (2) 40-90 153 Nowaczyk 1986 Germany Engl ish<br />

HFIP f QUN GTE 100-200 1.6029-1.6175 24.3-71.3 55 Girsberger 1951 Switzerland German<br />

RFIP + QUE GT E 110-190<br />

3;<br />

i--'<br />

f HPIP + DMPU GS 10<br />

I. 0940-1.0998 21.6-62.3 65 Girsberger . 1951 Switzerland German<br />

250-1500 (2)<br />

20-80 153 Nowaczyk 1985 Germany English<br />

RPIP f DMEU GS 10 250-1500 (2) 20-80 153 Nowaczyk 1986 Germany English<br />

MFIP + NMC CS 10 250-1500 (2) 20-80 153 Nowaczyk 6985 Germany English<br />

HFIP + NFM GS 10<br />

250-1500 (23 20-80 153 Nowaczyk 1986 Germany English<br />

BFIP -t DMETEG GS 10 250-1500 (2) 20-80 153 Nowaczyk 1986 Germany English<br />

HFIP f SL GS 10<br />

250-1500 (2) 20-80 153 Nowaczyk 1986 Germany English<br />

HFIP + PC GS 10 250-1500 (2) 20-80 153 Nowaczyk 1986 Germany English<br />

X - Liquid Phase R - Refrigerant c - Dpm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


n<br />

u<br />

d<br />

0<br />

V<br />

.<br />

W<br />

Q<br />

N<br />

.<br />

.-4<br />

2<br />

@J<br />

ri<br />

P<br />

m<br />

€-i<br />

%<br />

"4<br />

l-4<br />

bo<br />

c:<br />

M<br />

h<br />

d<br />

(d<br />

E<br />

L<br />

a,<br />

c1<br />

9<br />

c-0<br />

m<br />

--I<br />

4!<br />

h<br />

N<br />

u<br />

s<br />

0<br />

z<br />

m<br />

In<br />

rl<br />

0<br />

03<br />

I<br />

c,<br />

c.l<br />

h<br />

N<br />

U<br />

0<br />

O<br />

m<br />

I<br />

0<br />

u7<br />

N<br />

4<br />

0<br />

,+<br />

cn<br />

u<br />

w<br />

+<br />

m<br />

w<br />

FL(<br />

X<br />

w<br />

x<br />

01<br />

A-148<br />

P)<br />

m<br />

m<br />

.r:<br />

n.4<br />

L<br />

0<br />

a<br />

e(l<br />

3<br />

c


Table A. 12.0. (C<strong>on</strong>t. )<br />

A.12.4.<br />

Heat of Mixing<br />

Weight, %<br />

Data Temp. Press. Ranqe, X (R) Reference<br />

Fluid System Type Range, O C atm y (R) No. Author Year Country Text<br />

--<br />

TFE + DMETEG GE 20 NA 0-100 200 Seher 1985 Germany German<br />

TFE + DMPU GS 30 NA 0-100 153 Nowaczyk 1986 Germany English<br />

TFE + NMP ES 30 NA 0-100 153 Nowaczyk 1986 Germany English<br />

HFIP + DMETEG GS 30 NA 0-100 153 Nowaczyk 1986 Germany English<br />

KFIP + NFM GS 30 NA 0-100 153 Nowaezyk 1?S6 Germany Eng 1 ish<br />

?<br />

r<br />

c A. 12.5. Liquid-Phase Densities<br />

Lo<br />

TFE + DMETEG GS 20-70 NA 0-100 208 Seher 1485 Germany German<br />

TFE -+ DXETEG GS 0-200 NA 0-100 200 Seher 1985 Germany German<br />

-<br />

TPE i- NMP TEP 20-90<br />

GS<br />

NA 0-100 29 Bokelmann 1984 Germany German<br />

TPE + TEG GS 20-70 NA 0-1 08 200 Seher 1955 Germany Ge rman<br />

HFIP + QUN TE 20 NA 20-75 65 Girsberger 1951 Switzerland German<br />

X - Liquid Phase R - Refrigerant c - ppiii by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, t,r - Veight<br />

(1) - mmHg (2) - mbar NA - Not Available


h<br />

U<br />

r:<br />

0<br />

V<br />

W<br />

0<br />

N<br />

,.-I<br />

Q<br />

a,<br />

vi<br />

P<br />

ca<br />

H<br />

h<br />

k<br />

U<br />

d<br />

1 3<br />

0<br />

a,u<br />

U<br />

h<br />

G<br />

ca<br />

e<br />

k<br />

a,<br />

c3<br />

h<br />

C<br />

m<br />

a,<br />

(-?<br />

E<br />

h<br />

d<br />

rg<br />

0<br />

k<br />

a,<br />

c3<br />

h<br />

d<br />

rg<br />

e<br />

L-r<br />

a,<br />

c,<br />

L-r<br />

0<br />

2=<br />

U<br />

3<br />

3<br />

h<br />

N<br />

CJ<br />

nl<br />

3<br />

Q<br />

z<br />

k<br />

a,<br />

%<br />

v)<br />

-2<br />

N<br />

U<br />

td<br />

?<br />

Q<br />

z<br />

."h<br />

N<br />

U<br />

m<br />

3<br />

0<br />

e<br />

I<br />

H<br />

d<br />

ca<br />

a,<br />

t3<br />

2<br />

h<br />

d<br />

ca<br />

a,<br />

t3<br />

E<br />

s-s<br />

00<br />

en<br />

m<br />

N<br />

c<br />

z a,<br />

rn<br />

ca<br />

s<br />

Ck<br />

k<br />

0<br />

a<br />

iu<br />

3<br />

d<br />

c<br />

"ti<br />

I l l<br />

4<br />

v z z<br />

A-150


a,<br />

m<br />

a<br />

c<br />

/-.<br />

U<br />

c<br />

0<br />

V<br />

W<br />

.<br />

0<br />

c\)<br />

.<br />

Fi<br />

4<br />

P4<br />

LI<br />

0<br />

a<br />

m<br />

3<br />

d<br />

.d<br />

c<br />

A-151


c<br />

m<br />

a d<br />

rl<br />

M<br />

F:<br />

w<br />

B<br />

v)<br />

3<br />

cn<br />

In<br />

m<br />

r-4<br />

0<br />

r-l<br />

a,<br />

M<br />

c<br />

(8<br />

k<br />

u<br />

in<br />

2<br />

hl<br />

m<br />

4<br />

In<br />

b<br />

\o<br />

I<br />

m<br />

In .<br />

F.i<br />

e<br />

co<br />

I<br />

N<br />

rn<br />

In<br />

0<br />

.<br />

h<br />

h<br />

rl<br />

I<br />

In<br />

m<br />

W<br />

I-(<br />

c9<br />

u<br />

E-l<br />

!z<br />

n<br />

-+<br />

m<br />

a<br />

N<br />

L2<br />

aJ<br />

VJ<br />

a<br />

E:<br />

(8<br />

a<br />

m<br />

rs<br />

c<br />

(8<br />

a<br />

m<br />

'7<br />

m<br />

co<br />

m<br />

4<br />

0<br />

a<br />

s<br />

a3<br />

a<br />

VJ<br />

aJ<br />

d<br />

m<br />

a<br />

(8<br />

9<br />

c<br />

m<br />

a<br />

(d<br />

",<br />

m<br />

a<br />

m<br />

r-4<br />

0<br />

'd<br />

C<br />

4<br />

02<br />

a<br />

m<br />

2<br />

a<br />

a<br />

m<br />

9<br />

d<br />

(8<br />

a<br />

(d<br />

9<br />

m<br />

m<br />

o\<br />

d<br />

0<br />

a<br />

4<br />

M<br />

0)<br />

m<br />

a,<br />

d<br />

(8<br />

a<br />

a<br />

t-7<br />

c<br />

CPI<br />

a<br />

m<br />

3<br />

m<br />

00<br />

m<br />

d<br />

0<br />

a<br />

4<br />

a<br />

w<br />

x<br />

Q)<br />

E=.<br />

3<br />

k<br />

u<br />

E:<br />

?<br />

0<br />

aJv<br />

a<br />

2<br />

cn<br />

w<br />

W<br />

cn<br />

a<br />

H<br />

5<br />

d<br />

h<br />

Q)<br />

m<br />

(8<br />

s<br />

!L<br />

k<br />

0<br />

c<br />

u<br />

3<br />

4<br />

z 4<br />

k<br />

0<br />

a<br />

KJ<br />

3<br />

e<br />

z<br />

c<br />

4.<br />

N<br />

d<br />

P<br />

2<br />

4<br />

4<br />

'N<br />

d<br />

0<br />

4<br />

hl<br />

0<br />

e<br />

hl<br />

1<br />

0<br />

0<br />

Q<br />

4<br />

N<br />

I<br />

0<br />

0<br />

0<br />

e<br />

N<br />

I<br />

0<br />

0<br />

m<br />

d<br />

I<br />

0<br />

0<br />

4 r 4 4 r-4<br />

Q<br />

m<br />

rl<br />

4<br />

a<br />

4<br />

P<br />

m<br />

E-c<br />

w<br />

c9<br />

W<br />

c3<br />

W<br />

c3<br />

W<br />

c3<br />

W<br />

F-c<br />

c3<br />

W<br />

n<br />

c3<br />

w<br />

F-c<br />

w<br />

r<br />

a<br />

..<br />

c<br />

s!<br />

a<br />

9<br />

.T N<br />

d<br />

ec<br />

-+<br />

4<br />

N<br />

r4<br />

d<br />

+<br />

4,<br />

hl<br />

d<br />

d<br />

+<br />

hl<br />

4<br />

d<br />

A-152


Table A.14.0.<br />

REFRIGERANTS 31, 30, 11, 13, 134, 142 AND 143A BINARY AND MULTICOMPONENT<br />

ABSORPTION FLUIDS PROPERTIES DATA<br />

A.14.1.<br />

Vapor-Liquid Equilibrium<br />

Weight, %<br />

Data Temp. Press. Range, X (R)<br />

Fluid System Type Range, OC atm y (a)<br />

R11 + DMETEG TE 25-121 0.345-6.07 19.8-62.8<br />

R11 + DMETEG GE 25-1 2 I 0.34-6.1 20.0-63.0<br />

Ref e r enc e<br />

No. Author Year Country Text -<br />

35 Buclez 1959 U.S.A. English<br />

2 Albright 1960 U.S.A. English<br />

R11 + 2- TE 25-121 0.414-5.86 27.9-71.5<br />

oc t an<strong>on</strong>e<br />

35 Buclez<br />

1959 U.S.A.<br />

English<br />

R11 + Linoleic TE 25-121 0.414-5.52 15.8-54.5<br />

? acid<br />

F<br />

ul<br />

i*, R11 + Diethyl TE 25-107 0.621-7.45 38.9-71.6<br />

mal<strong>on</strong>ate<br />

R11 + n-heptyl TE 38-93 0.965-5.93 44.5-77.4<br />

alcohol<br />

R13 + DMF TE -20-50 740 (1) 0.3-1.6<br />

35 Suclez 1959 U.S.A. English<br />

172 Pluche 1959 U.S.A. Eng 1 ish<br />

172 Pluche 1959 U.S.A. English<br />

130 Makitra 1979 U. S. S.R. English<br />

R31 + DMETEG TE 35-177 1.52-8.96 4.7-39.8<br />

R30 + DMETEG GS 27-177 0.138-1.31 4.1-14.1<br />

132 Mastrangelo 1959 U.S.A.<br />

52 Ellingt<strong>on</strong> 1957 U.S.A.<br />

English<br />

Eng 1 ish<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Ijeight<br />

(1) - m dg (2) - mbar NA - Not Available


h<br />

u<br />

c<br />

0<br />

0<br />

v<br />

0<br />

e<br />

r-4<br />

2<br />

a,<br />

rc<br />

P<br />

m<br />

w<br />

u<br />

x<br />

a,<br />

H<br />

I 4<br />

0<br />

a -<br />

ea,<br />

a,hc<br />

E-cc<br />

m<br />

p:<br />

0<br />

E<br />

v)<br />

'A<br />

r-!<br />

M<br />

c<br />

k'<br />

cr: .<br />

m<br />

cn .<br />

s<br />

e<br />

9<br />

m<br />

rl<br />

3<br />

0<br />

U<br />

v)<br />

b<br />

a,<br />

3<br />

T4<br />

rl<br />

a<br />

cn<br />

N<br />

C<br />

N<br />

e2<br />

b<br />

I<br />

m<br />

9<br />

.<br />

4<br />

n<br />

4<br />

v<br />

ln<br />

5,<br />

h<br />

I<br />

*<br />

LA<br />

h<br />

0<br />

9<br />

I<br />

C<br />

N<br />

a<br />

Erll<br />

(3<br />

E-'<br />

I<br />

h<br />

u<br />

.A<br />

c2<br />

7-4<br />

5<br />

c 2<br />

a<br />

NS<br />

e4J<br />

.+a,<br />

d E<br />

c<br />

v)<br />

7-1<br />

vi<br />

bJ3<br />

E:<br />

w<br />

3<br />

0<br />

u<br />

ul k<br />

a,<br />

3<br />

*Ti<br />

t-4<br />

QJ<br />

v?<br />

c-4<br />

c<br />

hl<br />

e<br />

4- .<br />

&I<br />

I<br />

4- .<br />

Q\<br />

0<br />

co<br />

I<br />

0<br />

N<br />

eL.<br />

w<br />

c1<br />

w<br />

I l l<br />

c<br />

azz<br />

A<br />

A-154


Table A. 14.0.<br />

(C<strong>on</strong>t.<br />

Weight, %<br />

Data Temp. Press. Range, x (R)<br />

Reference<br />

Fluid System Type Range, O C atm y (R) No. Author Year Country Text<br />

R142 + Benzl TGEP 20-60 754-765 (1) 6.0-15.6 202 Seliverstov 1964 U.S.S.R. English<br />

acetate<br />

R142 + Dibutyl TGEP 20-60 754-765 (1) 13.8-30.5 202 Seliverstov 1964 U. S.S.R. English<br />

sebacate<br />

R142 + Methyl TGEP 20-60 754-765 (1) 6.0-13.6 202 Selivers tov 1964 U. S. S.R. English<br />

salicylate<br />

-<br />

A.14.4.<br />

Heat of Mixing<br />

4 R13 + DMF TE -20-50<br />

P<br />

Ln<br />

Ln<br />

A. 14.8. Stability<br />

R134 + NMP TE 180<br />

R143a + NMP TE 180<br />

740 (1)<br />

NA<br />

NA<br />

0.3-1.6 130 Makitra 1979 U. S. S.R. English<br />

NA 17 Bertocchio 1985 France French<br />

NA 17 Bertocchio 1985 France F r e iic h<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


c,<br />

x<br />

a,<br />

€4<br />

a,<br />

ma,<br />

mu)<br />

I E;<br />

.c<br />

m<br />

-7-4<br />

r?<br />

M<br />

c<br />

M<br />

c,<br />

.ti<br />

r-4<br />

bn<br />

c<br />

w<br />

3<br />

k<br />

U<br />

!z<br />

3<br />

0<br />

aJv<br />

U<br />

C<br />

a,<br />

R<br />

5<br />

cf .<br />

cn<br />

m<br />

3<br />

.<br />

H<br />

FCr<br />

4<br />

r-4<br />

rl<br />

m<br />

e?<br />

h<br />

m<br />

rl<br />

cT\<br />

h<br />

m<br />

7-4<br />

a,<br />

v)<br />

a<br />

s<br />

PI<br />

k<br />

0<br />

(L<br />

m<br />

3<br />

$2<br />

c<br />

m<br />

a,<br />

a d<br />

m<br />

E<br />

m<br />

&<br />

LI<br />

44<br />

o w<br />

44<br />

-.a<br />

0<br />

m<br />

rl<br />

0<br />

m<br />

4<br />

0<br />

m<br />

4<br />

0<br />

m<br />

rl<br />

C<br />

-4<br />

m<br />

m<br />

I<br />

4<br />

0<br />

0<br />

0<br />

I<br />

m<br />

un<br />

0<br />

0<br />

0<br />

r-+<br />

n<br />

d<br />

v<br />

0<br />

4<br />

h<br />

n<br />

4<br />

W<br />

Q<br />

e<br />

r. A<br />

rl<br />

U<br />

0<br />

4<br />

h<br />

"<br />

I<br />

Q<br />

d<br />

0 . .<br />

. o o o<br />

0<br />

0<br />

b<br />

co<br />

m<br />

9<br />

c7 0<br />

m<br />

I<br />

0<br />

N<br />

I<br />

0<br />

m<br />

I<br />

0<br />

N<br />

I<br />

ril<br />

I<br />

CA<br />

r.4<br />

I---(<br />

I<br />

N<br />

0<br />

rl<br />

w<br />

w<br />

w<br />

w<br />

w<br />

E-+<br />

w<br />

E-+<br />

W<br />

w<br />

u<br />

w<br />

W<br />

w<br />

r-l<br />

D<br />

ed<br />

€4<br />

X<br />

z<br />

0<br />

a<br />

r<br />

R<br />

a<br />

r<br />

a<br />

A-156


Table A.16.O.<br />

OTHER BINARY AND MULTICOMPONENT ABSORPTION FLUIDS PROPERTIES DATA<br />

A.16.1.<br />

Vapor-Liquid Equilibrium<br />

Weight, %<br />

Data Temp. Press. Range, X (R) Reference<br />

Fluid System Type Range, "C atm Y (R) No. Author Year Country Text<br />

Hexane + TDK GTE 100-1 90 1.0352-1.0426 3.45-26.1 65 Girsberger 1951 Switzerland German<br />

CH3CN + LiCl TE 18 & 25 NA 99.8 & 99.9 164 Pavlopoulos 1954 Germany German<br />

-<br />

-<br />

C~I~CN + LiBr<br />

TE<br />

18 & 25<br />

NA<br />

91.9 & 92.4<br />

164 Pavlopoulos 1954 Germany<br />

German<br />

CH3CN + LiI<br />

TE<br />

18 & 25<br />

NA<br />

39.4 & 40.5<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CH~CN + NaF<br />

?<br />

P<br />

-4 CH3CN + NaCI<br />

TE<br />

TE<br />

18 & 25<br />

18 ti 25<br />

NA<br />

NA<br />

99.9 & 99.9<br />

99.9 ti 99.9<br />

164<br />

164<br />

Pavlopoulos<br />

Pavlopoulos<br />

1954<br />

1954<br />

Germany<br />

Germany<br />

German<br />

German<br />

CH~CN + NaBr<br />

TE<br />

18 & 25<br />

NA<br />

99.9<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CH3CN + NaI<br />

TE<br />

18 & 25<br />

NA<br />

80.0 & 80.6<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CH~CN + KF<br />

TE<br />

18 & 25<br />

NA<br />

99.9 & 99.9<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CH3CN 3. KCI<br />

TE<br />

18 & 25<br />

NA<br />

99.9<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CH~CN + KBr<br />

TE<br />

18 & 25<br />

NA<br />

99.9<br />

164<br />

Pavlopoulos<br />

1954<br />

Ge rrnany<br />

German<br />

CH3CN 3. KI<br />

TE<br />

18 & 25<br />

NA<br />

97.9<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s1 M - Mole, W - Weight<br />

(1) - mHg (2) - mbar NA - Not Available


Table A.16.0.<br />

(C<strong>on</strong>t.)<br />

Fluid System<br />

CK3CN i- RbCl<br />

Data<br />

TY Pe<br />

TE<br />

Temp.<br />

Range, OC<br />

18 & 25<br />

Press. Range,<br />

atm<br />

NA<br />

Weight, %<br />

x (R)<br />

-f (R)<br />

99.9<br />

- No. Author<br />

164 Pavlopoulos<br />

Reference<br />

- Year Country Text<br />

1954 Germany German<br />

CH3CN -+<br />

RbBr<br />

TE<br />

18 & 25<br />

NA<br />

99.9 & 99.9<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CH3CN -k RbI<br />

TE<br />

18 & 25<br />

NA<br />

98.2 & 98.4<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CH3CN -+ CSCl<br />

TE<br />

1-3 6 25<br />

EA<br />

99.9<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

Ge man<br />

CH3CN i- CsBr<br />

TE<br />

18 6 25<br />

NA<br />

99.9 6 99.9<br />

164<br />

PaVloQOulOs<br />

1954<br />

Germany<br />

German<br />

?<br />

I-<br />

&<br />

CMjCN f CST<br />

CBOOH -!- LiCl<br />

TE<br />

TE<br />

18 6 25<br />

ra & 25<br />

NA<br />

NA<br />

99.1 6 99.3<br />

78.7 & 79.4<br />

164<br />

164<br />

Pavlopoulos '1954<br />

Paill 0 ~ 0 OS ~ 1<br />

1954<br />

Germany<br />

Germany<br />

Gerlo-an<br />

German<br />

TE<br />

18 & 25<br />

NA<br />

54.3 6 55.6<br />

164<br />

Pavlo poul os<br />

1954<br />

Ge many<br />

Ge rma~<br />

CHOOH i- ti1<br />

TE<br />

18 6 25<br />

NA<br />

40.7 & 41.8<br />

i 64<br />

Pavlopsulos<br />

1954<br />

Ge many<br />

Ge rman<br />

CBOOH f NaZ1<br />

TE<br />

18 5 25<br />

NA<br />

5.2<br />

164<br />

Pav lo pod o s<br />

1954<br />

Germany<br />

GerE3aX-I<br />

TE<br />

18 6 25<br />

NA<br />

83.8 & 83.8<br />

I64<br />

Pavlopoulos<br />

4954<br />

Germany<br />

German<br />

CHOOH 4- Nal<br />

TE<br />

18 & 25<br />

NA<br />

61.7 ti 62.1<br />

164<br />

Pavlopoulos<br />

1954<br />

Germany<br />

German<br />

CROON 9 KC1<br />

TE<br />

18 SI 25<br />

NA<br />

83.9 SI 84.0<br />

164<br />

Pav l o Q 0 ul 0 s<br />

1954<br />

Germany<br />

German<br />

X - Liquid Phase R - Refrigerant c - P Q ~ by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent(s) M - Mole, W - Weight<br />

41) - mmHg (2) - mbar NA - Not Available


Data Temp.<br />

Fluid System Type Range, "C<br />

-<br />

Pres s . Range,<br />

atm<br />

NO e<br />

-I_<br />

Author<br />

Reference<br />

Year Country Text -<br />

CHOOH + KRr TE 18 & 25<br />

NA<br />

51.5 & 81.7<br />

164 Pavlopoulos 1954 Germany German<br />

CHOOH + KI TE 18 & 25<br />

NA<br />

73.9 & 74.1<br />

164 Pavlopoulos 1954 Germany<br />

German<br />

CHOOJI + RbCl TE 18 & 25<br />

NA<br />

62.5 & 64.1<br />

164 Pavlopoulos 1954 Germany German<br />

CHOOH + RbBr TE ia & 25<br />

NA<br />

56.4 & 67.1<br />

164 Pavlopoulos 1954 Germany German<br />

CIIOOH + RbI TF 1% 64 25<br />

??A<br />

58.0 & 68.5<br />

164 Pavlopoulos 1954 Germany<br />

German<br />

?<br />

P<br />

cn<br />

u3<br />

CHOOH + CsCl TE 18 & 25<br />

CROOR + CsRr TE 18 & 25<br />

CHOOH + CsI TE 18 & 25<br />

NA<br />

NA<br />

NA<br />

43.5 & 48.3<br />

53.5 & 59.2<br />

77.5 6( 78.1<br />

164 Pavlopoulos ,1954 Germany German<br />

154 Pavlopoulos 1954 Germany German<br />

164 Pavlopoulos 1954 Germany Gerrcan<br />

A.16.4.<br />

Heat of Mixing<br />

Benzene + TE 30<br />

Cyclohexane<br />

NA<br />

16.0-81.2<br />

217 Sosnkowska 1965 Poland English<br />

t-Butyl Alcohol GTEP 30 & 50<br />

+ Benzene<br />

NA<br />

28.6-92.6<br />

217 Sosnkowska 1965 Poland EngiiSh<br />

X - Liquid Phase R - Refrigerant c - ppm by weight of A in Vapor Phase<br />

Y - Vapor Phase A - Absorbent($) M - Mole, W - Weight<br />

(1) - mmHg (2) - mbar NA - Not Available


n<br />

u c<br />

0<br />

L'<br />

v<br />

A-160

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!