12.02.2014 Views

Introduction — The MJO

Introduction — The MJO

Introduction — The MJO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Introduction</strong> to the Madden-Julian Oscillation<br />

IR satellite animation (<strong>MJO</strong> event develops 20 October 2009)<br />

<strong>MJO</strong> index, Fall 2009<br />

Courtesy: M. Wheeler


Road Map<br />

• <strong>Introduction</strong> — <strong>The</strong> <strong>MJO</strong> and its environment<br />

• What initiates the <strong>MJO</strong>?<br />

• What maintains the <strong>MJO</strong>?<br />

• <strong>The</strong> <strong>MJO</strong> in global climate models


Road Map<br />

• <strong>Introduction</strong> — <strong>The</strong> <strong>MJO</strong> and its environment<br />

• What initiates the <strong>MJO</strong>?<br />

• What maintains the <strong>MJO</strong>?<br />

• <strong>The</strong> <strong>MJO</strong> in global climate models


Tropical Weather 101<br />

• Small Coriolis force ➞<br />

strong gradients cannot persist ➞<br />

small variations in temperature and<br />

pressure<br />

Long-term mean January<br />

1000-500 hPa thickness<br />

• Latent heating is of primary importance<br />

• Balanced locally (adiabatic cooling) and<br />

globally (radiative cooling)<br />

• Local heating perturbations are<br />

communicated through tropical<br />

atmosphere via equatorial waves<br />

RICO field experiment, Caribbean Sea, 2005


Tropical Weather 101<br />

• Equatorial waves are often classified by their spatial scale and frequency/period:<br />

Equatorial Rossby wave (n=1)<br />

L<br />

L<br />

Kelvin wave<br />

H<br />

L<br />

Matsuno 1966<br />

Matsuno 1966


Tropical Weather 101<br />

• Another equatorial wave type: <strong>The</strong> Madden-Julian Oscillation (<strong>MJO</strong>)<br />

“We stumbled upon an apparent long-period<br />

oscillation in the station pressure and zonal<br />

wind components at Canton Island.”<br />

- Madden and Julian 1971<br />

Heating<br />

Gill 1980


What is the <strong>MJO</strong>?<br />

• <strong>MJO</strong> dominates equatorial atmospheric variability on<br />

intraseasonal timescales (20-100 days)<br />

• Disturbance propagates eastward at ~5 m/s from Indian into<br />

Pacific Ocean<br />

• Convective signal dissipates near 180°E, dynamical signal<br />

(“dry” Kelvin wave) continues eastward at ~30 m/s<br />

Regressed OLR and 850 hPa wind anomalies


Background & Motivation 1: Impacts<br />

<strong>The</strong> <strong>MJO</strong> strongly influences...<br />

• Regional and global weather and climate patterns:<br />

• Asian, Australian monsoons<br />

• ENSO<br />

• Teleconnections - midlatitude weather, tropical cyclone distribution/frequency,<br />

polar oscillations<br />

• Earth’s rotation rate<br />

(length of day)<br />

Arctic Oscillation<br />

Rossby wave trains<br />

Asian Monsoon<br />

• Atmospheric and oceanic<br />

chemistry:<br />

<strong>The</strong> <strong>MJO</strong><br />

Slow moist Kelvin-Rossby wave<br />

Australian Monsoon<br />

(in northern summer)<br />

(ENSO)<br />

Fast dry Kelvin Wave<br />

• Ozone<br />

• Aerosols<br />

Rossby wave trains<br />

Antarctic Oscillation<br />

• Chlorophyll<br />

Tropical Cyclone<br />

Storm<br />

Courtesy: Kate Thayer-Calder, adapted from Lin et al. 2006


Background & Motivation 2: Challenges<br />

ECMWF Analysis & Forecast,<br />

200 hPa Velocity Potential<br />

• Inability to accurately and consistently<br />

reproduce <strong>MJO</strong> in GCMs<br />

• Inadequate understanding of key<br />

mechanisms<br />

• Initiation, eastward propagation, scale<br />

interactions, tropical-extratropical<br />

interactions, topographic effects<br />

• Limited predictive skill (< 15 days)<br />

Courtesy: Moncrieff, Tompkins<br />

• Lack of in situ measurements<br />

2003 radiosonde stations, NCDC


Road Map<br />

• <strong>Introduction</strong> — <strong>The</strong> <strong>MJO</strong> and its environment<br />

• What initiates the <strong>MJO</strong>?<br />

• What maintains the <strong>MJO</strong>?<br />

• <strong>The</strong> <strong>MJO</strong> in global climate models


What Triggers <strong>MJO</strong> Convection?<br />

Main question: When does convection become organized, and how does this occur?<br />

Potential triggers<br />

1. Extratropical forcing Matthews and Kiladis 1999<br />

2. Circumnavigating signal Knutson and Weickmann 1987, Matthews 2008<br />

3. Stochastic forcing Yu and Neelin 1994<br />

4. Discharge-recharge mechanism* Bladé and Hartmann 1993,<br />

Kemball-Cook and Weare 2001


Road Map<br />

• <strong>Introduction</strong> — <strong>The</strong> <strong>MJO</strong> and its environment<br />

• What initiates the <strong>MJO</strong>?<br />

• What maintains the <strong>MJO</strong>?<br />

• <strong>The</strong> <strong>MJO</strong> in global climate models


<strong>MJO</strong> Maintenance and Propagation<br />

Main questions<br />

1. How is <strong>MJO</strong> convection maintained against dissipation?<br />

An area favorable for convection must be established/maintained.<br />

2. How and why does the <strong>MJO</strong> move eastward?<br />

That “convection-friendly” area must lead and accompany the <strong>MJO</strong>.


<strong>MJO</strong> Maintenance and Propagation<br />

Primary building blocks of <strong>MJO</strong> instability theory<br />

1. Conditional Instability of the Second Kind associated with<br />

large-scale waves (wave-CISK)<br />

2. Convection-wind-evaporation feedback


<strong>MJO</strong> Maintenance and Propagation<br />

(1) WAVE-CISK<br />

• Cooperation between localized convective heating and its environmental<br />

circulation


<strong>MJO</strong> Maintenance and Propagation<br />

(2) WIND-INDUCED SURFACE HEAT EXCHANGE (WISHE)<br />

• Secondary circulation superimposed onto background easterly flow<br />

generates larger evaporative fluxes to east of convection and promotes<br />

eastward progression of convection<br />

Adapted from Straub and Kiladis 2003


<strong>MJO</strong> Maintenance and Propagation<br />

“Updated” wave-CISK:<br />

Frictional convergence feedback<br />

Wave-CISK component<br />

Height: 3000 m<br />

Height: 500 m<br />

BL drying<br />

BL moistening<br />

Frictional convergence<br />

component<br />

V<br />

Coriolis<br />

Coriolis<br />

V<br />

Friction<br />

Pressure<br />

gradient<br />

Pressure<br />

gradient


<strong>MJO</strong> Maintenance and Propagation<br />

<strong>The</strong> “right answer” regarding an explanation of how <strong>MJO</strong><br />

convection is maintained and propagates eastward likely<br />

involves elements of many proposed theories:<br />

Convection-wind-evaporation<br />

feedback (WISHE)<br />

Wave-CISK<br />

Frictional convergence<br />

feedback<br />

Discharge-recharge<br />

mechanism<br />

Stratiform instability


Road Map<br />

• <strong>Introduction</strong> — <strong>The</strong> <strong>MJO</strong> and its environment<br />

• What initiates the <strong>MJO</strong>?<br />

• What maintains the <strong>MJO</strong>?<br />

• <strong>The</strong> <strong>MJO</strong> in global climate models


<strong>The</strong> <strong>MJO</strong> in GCMs<br />

Kim et al. 2009<br />

Key factors: mean state, rain vs. column moistening, % stratiform rain

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!