19.02.2014 Views

Explicit simulations of convection on an equatorial beta-plane

Explicit simulations of convection on an equatorial beta-plane

Explicit simulations of convection on an equatorial beta-plane

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Explicit</str<strong>on</strong>g> <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong><br />

<strong>an</strong> <strong>equatorial</strong> <strong>beta</strong>-pl<strong>an</strong>e<br />

Stef<strong>an</strong> Tulich<br />

CIRES, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Colorado, Boulder CO, USA<br />

Collaborator: George Kiladis (NOAA ESRL)<br />

Funding: NSF ATM-0806553


Historical Background<br />

• The paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> radiative-c<strong>on</strong>vective equilibrium<br />

(RCE) has proven invaluable in studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the tropical<br />

climate system<br />

M<strong>an</strong>abe <strong>an</strong>d Strickler (1964)


Nearly 30 years later<br />

• Held et al. (1993): RCE with explicit 2D moist<br />

<str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g><br />

• Model setup:<br />

26 km<br />

SST = 303 K<br />

640 km


Nearly 30 years later<br />

• Held et al. (1993): RCE with explicit 2D moist<br />

<str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g><br />

• Simulati<strong>on</strong> with z<strong>on</strong>al-me<strong>an</strong> u-wind allowed to vary:<br />

A QBO-like oscillati<strong>on</strong>!


Nearly 30 years later<br />

• Held et al. (1993): RCE with explicit 2D moist<br />

<str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g><br />

• Simulati<strong>on</strong> with z<strong>on</strong>al-me<strong>an</strong> u-wind set to zero:


Ten years ago<br />

• Grabowski <strong>an</strong>d M<strong>on</strong>crieff, 2001: Large-scale org<strong>an</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tropical <str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g> in 2D explicit <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g><br />

• Model Setup:<br />

25 km<br />

SST = 303 K<br />

20,000 km


Ten years ago<br />

• Grabowski <strong>an</strong>d M<strong>on</strong>crieff, 2001: Large-scale org<strong>an</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tropical <str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g> in 2D explicit <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g><br />

• Model Setup:<br />

25 km Background u-wind nudged to -10 m/s<br />

20,000 km


Ten years ago<br />

• Grabowski <strong>an</strong>d M<strong>on</strong>crieff, 2001: Large-scale org<strong>an</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tropical <str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g> in 2D explicit <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g><br />

• Model Setup:<br />

25 km Cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 K/day<br />

20,000 km


Grabowski <strong>an</strong>d M<strong>on</strong>crieff (2001)<br />

Sp<strong>on</strong>t<strong>an</strong>eous large-scale wave org<strong>an</strong>izati<strong>on</strong>!


Grabowski <strong>an</strong>d M<strong>on</strong>crieff (2001)<br />

18 m/s (flow relative)<br />

Sp<strong>on</strong>t<strong>an</strong>eous large-scale wave org<strong>an</strong>izati<strong>on</strong>!


Grabowski <strong>an</strong>d M<strong>on</strong>crieff (2001)<br />

Boomer<strong>an</strong>g temperature structures like obs.


Grabowski <strong>an</strong>d M<strong>on</strong>crieff (2002)<br />

St<strong>an</strong>ding waves develop with interactive radiati<strong>on</strong>


These papers set the stage for my<br />

own PhD <strong>an</strong>d postdoctoral research<br />

No preferred hor. scale; -5/3 spectrum


Today: Extend these studies to 3D<br />

basin-scale domains<br />

• <str<strong>on</strong>g>Explicit</str<strong>on</strong>g>, nested <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong><br />

<strong>an</strong> <strong>equatorial</strong> <strong>beta</strong>-pl<strong>an</strong>e<br />

• Two types <str<strong>on</strong>g>of</str<strong>on</strong>g> runs:<br />

1) Z<strong>on</strong>al-me<strong>an</strong> u-wind relaxed to zero<br />

2) Z<strong>on</strong>al-me<strong>an</strong> u-wind relaxed to shear<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile


Further details<br />

• Model: WRF (most recent versi<strong>on</strong>)<br />

• Forcing: Spatially uniform radiative-like<br />

cooling to drive deep <str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g><br />

• SST: Z<strong>on</strong>ally uniform; peaked at eq.


Further details<br />

• Model: WRF (most recent versi<strong>on</strong>)<br />

• Forcing: Spatially uniform radiative-like<br />

cooling to drive deep <str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong></str<strong>on</strong>g><br />

• SST: Z<strong>on</strong>ally uniform; peaked at eq.


45 N<br />

Nesting strategy: 3 grids<br />

9900 km<br />

Grid 1<br />

dx, dy = 36 km<br />

Equator<br />

45 S<br />

5000 km


45 N<br />

Nesting strategy: 3 grids<br />

9900 km<br />

Grid 1<br />

dx, dy = 36 km<br />

Equator<br />

Periodic<br />

Periodic<br />

45 S<br />

5000 km


45 N<br />

Nesting strategy: 3 grids<br />

Rigid wall<br />

9900 km<br />

Grid 1<br />

dx, dy = 36 km<br />

Equator<br />

Periodic<br />

45 S<br />

5000 km<br />

Periodic<br />

Rigid wall


45 N<br />

Nesting strategy: 3 grids<br />

3300 km<br />

Grid 2<br />

dx, dy = 12 km<br />

15 N<br />

15 S<br />

45 S<br />

5000 km


45 N<br />

Nesting strategy: 3 grids<br />

Periodic<br />

Grid 2<br />

dx, dy = 12 km<br />

15 N<br />

Periodic<br />

15 S<br />

45 S<br />

5000 km


45 N<br />

Nesting strategy: 3 grids<br />

Periodic<br />

Grid 2<br />

dx, dy = 12 km<br />

15 N<br />

Periodic<br />

15 S<br />

45 S<br />

5000 km


45 N<br />

Nesting strategy: 3 grids<br />

5 N<br />

5 S<br />

Grid 3<br />

dx, dy = 4 km<br />

15 N<br />

15 S<br />

45 S<br />

5000 km


One last detail<br />

• Coriolis force acts <strong>on</strong>ly <strong>on</strong> perturbati<strong>on</strong><br />

winds (about the z<strong>on</strong>al me<strong>an</strong>)<br />

• Prevents the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unw<strong>an</strong>ted<br />

z<strong>on</strong>al jets <strong>an</strong>d tradewinds


Results for uniform background<br />

cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.25 K/day<br />

200 mb<br />

150 mb<br />

Qrad = 1.25 K/day


Quiz time: Does the model<br />

produce a single or double ITCZ?


Quiz time: Does the model<br />

produce a single or double ITCZ?<br />

Perhaps both?


Quiz time: Does the model<br />

produce a single or double ITCZ?


The ITCZ is multilayered


The ITCZ is multilayered


The ITCZ is also n<strong>on</strong>-stati<strong>on</strong>ary


The ITCZ is also n<strong>on</strong>-stati<strong>on</strong>ary<br />

5 m/s


Quiz time: What type <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>allypropagating<br />

waves develop?


Quiz time: What type <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>allypropagating<br />

waves develop?


Space-time spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> rain


Composite wave structures through<br />

linear regressi<strong>on</strong> <strong>on</strong> filtered index<br />

WIG<br />

EIG


Compute difference through rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

EIG composite then subtract<br />

WIG<br />

Rotate(EIG)<br />

- =


Compute difference through rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

EIG composite then subtract<br />

-


Repeat the simulati<strong>on</strong> with a<br />

specified pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile


Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meridi<strong>on</strong>ally-averaged rainfall


Space-time spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall


This westward bias apparently<br />

impacts the ITCZs structure


Further exploring the<br />

parameter space<br />

• Quiz time: What happens if we<br />

decrease or increase the cooling rate by<br />

10%?


Cooling rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.125K/day<br />

Westward bias develops even with U = 0


Cooling rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.125K/day<br />

Also, the ITCZ becomes narrower <strong>an</strong>d more intense


Cooling rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.375K/day<br />

The ITCZ becomes broader <strong>an</strong>d less intense


Cooling rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.375K/day<br />

Also, some hint <str<strong>on</strong>g>of</str<strong>on</strong>g> eastward bias


Open questi<strong>on</strong>s<br />

• Why does easterly shear cause a westward bias?<br />

• Why is a westward bias produced under weak cooling<br />

with no shear?<br />

• Why is rainfall maximized <str<strong>on</strong>g>of</str<strong>on</strong>g>f the equator? Why does<br />

the ITCZ become narrower/broader as the cooling is<br />

made weaker/str<strong>on</strong>ger? What causes the meridi<strong>on</strong>al<br />

propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ITCZ?<br />

• Why d<strong>on</strong>t low-frequency Kelvin waves develop?


Kelvin waves are obtained in the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> baroclinic instability

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!