15.02.2014 Views

What is Financial Mathematics?

What is Financial Mathematics?

What is Financial Mathematics?

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>What</strong> <strong>is</strong> <strong>Financial</strong><br />

<strong>Mathematics</strong>?<br />

1


Introduction<br />

• <strong>Financial</strong> <strong>Mathematics</strong> <strong>is</strong> a collection of<br />

mathematical techniques that find applications<br />

in finance, e.g.<br />

– Asset pricing: derivative securities.<br />

– Hedging and r<strong>is</strong>k management<br />

– Portfolio optimization<br />

– Structured products<br />

• There are two main approaches:<br />

– Partial Differential Equations<br />

– Probability and Stochastic Processes<br />

2


Short H<strong>is</strong>tory of <strong>Financial</strong> <strong>Mathematics</strong><br />

• 1900: Bachelier uses Brownian motion as<br />

underlying process to derive option prices.<br />

• 1973: Black and Scholes publ<strong>is</strong>h their<br />

PDE-based option pricing formula.<br />

• 1980: Harr<strong>is</strong>on and Kreps introduce the<br />

martingale approach into mathematical<br />

finance.<br />

• <strong>Financial</strong> <strong>Mathematics</strong> has been establ<strong>is</strong>hed<br />

as a separate academic d<strong>is</strong>cipline<br />

only since the late eighties, with a number<br />

of dedicated journals.<br />

3


Structure of th<strong>is</strong> talk<br />

• Preliminary notions: Time value of money,<br />

financial securities, options.<br />

• Arbitrage and r<strong>is</strong>k–neutral valuation<br />

via a one–period, two–state toy model.<br />

• Modelling stock price behaviour<br />

• Naive stochastic calculus<br />

• PDE approach to finance<br />

• Martingale approach to finance<br />

• Numerical methods<br />

• Current Research<br />

4


Preliminary Notions<br />

D<strong>is</strong>counting and <strong>Financial</strong> Instruments<br />

• Finance may be defined as the study of<br />

how people allocate scarce resources over<br />

time.<br />

• The outcomes of financial dec<strong>is</strong>ions (costs<br />

and benefits) are<br />

– spread over time<br />

– not generally known with certainty ahead<br />

of time, i.e. subject to an element of<br />

r<strong>is</strong>k<br />

• Dec<strong>is</strong>ion makers must therefore<br />

– be able to compare the values of cashflows<br />

at different dates<br />

– take a probabil<strong>is</strong>tic view<br />

5


D<strong>is</strong>counting<br />

• The time value of money: R1.00 in the<br />

hand today <strong>is</strong> worth more than the expectation<br />

of receiving R1.00 at some future<br />

date.<br />

• Thus borrowing <strong>is</strong>n’t free: the borrower<br />

pays a premium to induce the lender to<br />

part with h<strong>is</strong>/her money. Th<strong>is</strong> premium<br />

<strong>is</strong> the interest.<br />

• We shall make the simplifying assumptions<br />

that<br />

– There <strong>is</strong> only one interest rate: All<br />

investors can borrow and lend at th<strong>is</strong><br />

(r<strong>is</strong>kless) rate.<br />

– The interest rate <strong>is</strong> constant over time.<br />

– The same rate applies for all maturities.<br />

6


• Let r denote the continuously compounded<br />

interest rate, so that one unit of currency<br />

deposited in a (r<strong>is</strong>kless) bank account<br />

grows to e rT units in time T .<br />

• Thus an amount X at time T <strong>is</strong> the same<br />

as Xe −rT now.<br />

• D<strong>is</strong>counting allows us to compare amounts<br />

of money at different times.<br />

7


Returns<br />

• The return on an investment S <strong>is</strong> defined<br />

by<br />

R = ln S T<br />

S 0<br />

i.e. S T = S 0 e RT<br />

The random variable R <strong>is</strong> essentially the<br />

“interest” obtained on the investment,<br />

and may be negative.<br />

• Investors attempt to maximize their expected<br />

return.<br />

Fundamental relationship in finance:<br />

•<br />

E[Return] = f(R<strong>is</strong>k)<br />

where f <strong>is</strong> an increasing function.<br />

8


Securities<br />

• Securities are contracts for future delivery<br />

of goods or money, e.g. shares, bonds<br />

and derivatives.<br />

• One d<strong>is</strong>tingu<strong>is</strong>hes between underlying (primary)<br />

and derivative (secondary) instruments.<br />

• Examples of underlying instruments are<br />

shares, bonds, currencies, interest rates,<br />

and indices.<br />

• A derivative (or contingent claim) <strong>is</strong> a<br />

financial instruments whose value <strong>is</strong> derived<br />

from an underlying asset.<br />

• Examples of derivatives are forward contracts,<br />

futures, options, swaps and bonds.<br />

9


• There are two main reasons for using derivatives:<br />

Hedging and Speculation.<br />

• Thus derivatives are essentially tools for<br />

transferring r<strong>is</strong>k, and will allow one to<br />

dimin<strong>is</strong>h or increase one’s exposure to uncertain<br />

events.<br />

• An option gives the holder the right, but<br />

not the obligation to buy or sell an asset.<br />

• A European call option gives the holder<br />

the right to buy an asset S (the underlying)<br />

for an agreed amount K (the strike<br />

price) on a specified future date T (maturity).<br />

10


• Thus the payoff at expiry <strong>is</strong><br />

max{S(T ) − K, 0}<br />

• Since the payoff can never be negative,<br />

but <strong>is</strong> sometimes positive, options aren’t<br />

free. The premium paid for the option<br />

<strong>is</strong> related to the r<strong>is</strong>k (“probability”) that<br />

the share price <strong>is</strong> greater than the strike<br />

at expiry.<br />

11


R<strong>is</strong>k-Neutral Valuation<br />

• Consider a toy model with just two trading<br />

dates t = 0 and t = T , and just two<br />

financial assets<br />

– A r<strong>is</strong>k–free bank account A paying<br />

a constant simple rate r = 10% over<br />

the interval [0, T ].<br />

– A r<strong>is</strong>ky stock S. Today’s stock price<br />

<strong>is</strong> S 0 = 10.<br />

• At time T , there are only two possible<br />

states of the world, UP and DOWN.<br />

12


• We model th<strong>is</strong> using the tuple<br />

(Ω, P, F, T, F, (A t , S t ) t∈T )<br />

• Here Ω = {Up, Down}, and P <strong>is</strong> a probability<br />

measure on Ω.<br />

13


• Consider a European call option on S<br />

with strike price K = 11 and maturity<br />

T . At maturity the call option has the<br />

following possible values:<br />

• How would we find “the” fair price C 0<br />

for th<strong>is</strong> contract at t = 0?<br />

14


• Two possibilities come to mind:<br />

– METHOD I. Calculate the expected<br />

value of the future payoff, and d<strong>is</strong>count<br />

th<strong>is</strong> to the present.<br />

Thus<br />

C 0 = 1 [P(UP) · 11 + P(Down) · 0]<br />

1.1<br />

= 10 · P(UP)<br />

∗ PROBLEM: How do we determine<br />

the measure P?<br />

If we consider both states equally<br />

likely, the value of the call option<br />

will be C(0) = 5<br />

– METHOD II. The price of the option<br />

will be determined by the market, in<br />

particular by supply and demand.<br />

15


• The correct price can be determined by<br />

an arbitrage argument, as follows:<br />

• Consider a portfolio θ = (θ 0 , θ 1 ) containing<br />

an amount θ 0 in the bank and a quantity<br />

θ 1 shares. The initial value of the<br />

portfolio <strong>is</strong> V 0 (θ) = θ 0 + 10θ 1 .<br />

• We want to ensure that the portfolio has<br />

the same value as the call option in all<br />

states of the world at expiry.<br />

UP V T (θ) = 1.1θ 0 + 22θ 1 = 11<br />

DOWN V T (θ) = 1.1θ 0 + 5.5θ 1 = 0<br />

i.e.<br />

θ =<br />

(<br />

− 10 3 , 2 )<br />

3<br />

• Thus if you borrow 10<br />

3 and buy 2 3 shares,<br />

the resulting portfolio has the same cashflows<br />

at maturity as the call option.<br />

17


• To exclude arbitrage, the initial value<br />

of the option must be the same as the<br />

initial value of the portfolio, i.e.<br />

C(0) = − 10 3 + 10 · 2<br />

3 = 10 3<br />

• Arbitrage <strong>is</strong> the possibility of making a<br />

profit without the possibility of making a<br />

loss.<br />

• In the preceding example, if the option<br />

costs less than the portfolio, then<br />

– Short the portfolio;<br />

– Use the proceeds to buy the option;<br />

– And put the remainder in the bank.<br />

18


• Note that the option price using d<strong>is</strong>counted<br />

expected values was 5, which <strong>is</strong> higher<br />

than 10/3. How can th<strong>is</strong> be?<br />

• If we ins<strong>is</strong>t on using the probability measure<br />

P, then the share itself <strong>is</strong> priced “incorrectly”.<br />

– Its value ought to have been<br />

S 0 = 1 [ 1<br />

1.1 2 (22) + 1 ]<br />

2 (5.5) = 12.5<br />

– but the real price <strong>is</strong> S 0 = 10.<br />

19


• Th<strong>is</strong> reflects the fact that investors are<br />

r<strong>is</strong>k averse. In order to take on the r<strong>is</strong>k<br />

of the share, investors require a r<strong>is</strong>k premium<br />

Rp:<br />

1<br />

10 = S 0 =<br />

1 + r + Rp E P [S T ]<br />

1<br />

=<br />

1.1 + Rp [1 2 · 22 + 1 2 · 5.5]<br />

• Suppose that we now change the probability<br />

measure to a new measure Q under<br />

which investors are r<strong>is</strong>k–neutral, i.e.<br />

under which they do not require a r<strong>is</strong>k<br />

premium.<br />

• In th<strong>is</strong> world, the current value of the<br />

share <strong>is</strong> its d<strong>is</strong>counted expected value.<br />

10 = 1 [Q(UP) · 22 + (1 − Q(UP)) · 5.5]<br />

1.1<br />

which implies that Q(UP) = 1 3 ,<br />

and Q(DOWN) = 2 3 . 20


• If we price the option using the d<strong>is</strong>counted<br />

expected value under the r<strong>is</strong>k–neutral measure<br />

Q, we get<br />

C(0) = 1<br />

1.1 (1 3 · 11 + 2 3 · 0) = 10 3<br />

• and th<strong>is</strong> <strong>is</strong> CORRECT!!!<br />

Principle of R<strong>is</strong>k–Neutral Valuation:<br />

– The t = 0–value of an option <strong>is</strong> its<br />

d<strong>is</strong>counted expected value.<br />

– However, the expectation <strong>is</strong> taken under<br />

a r<strong>is</strong>k–neutral probability mea-<br />

•<br />

sure, which we can calculate.<br />

– And not under the “real–world” probability<br />

measure, which we can never<br />

know.<br />

21


Modelling Stock Prices<br />

• Any model of stock price behaviour must<br />

be stochastic, i.e. incorporate the random<br />

nature of price behaviour. The simplest<br />

such models are random walks.<br />

• Partition the interval [0, T ] into subintervals<br />

of length ∆t<br />

0 = t 0 ≤ t 1 ≤ · · · ≤ t N = T N = T ∆t<br />

• Let X tn , n = 1, 2, . . . N be a family of random<br />

variables, and let S 0 be the stock<br />

price at t = 0.<br />

We might (naively) attempt<br />

to model the stock price process<br />

by<br />

S tn+1 = S tn + X tn+1<br />

22


• Thus<br />

S t = S 0 +<br />

t∑<br />

X u<br />

u=1<br />

• The intuition behind th<strong>is</strong> <strong>is</strong> that the price<br />

at time t + ∆t equals the price at time t<br />

plus a “random shock”, modelled by X t .<br />

• We also assume that these shocks are<br />

independent.<br />

• Efficient Markets Hypothes<strong>is</strong>: Stock<br />

price processes are Markov processes.<br />

23


• Fact: If X n are independent random variables,<br />

then<br />

var( ∑ n X n) = ∑ n var(X n)<br />

• Thus if the X n are independent, identically<br />

d<strong>is</strong>tributed, then the variance of<br />

the sum <strong>is</strong> proportional to the number of<br />

terms.<br />

• So the variance of the stock price in our<br />

naive random walk model <strong>is</strong> proportional<br />

to the elapsed time.<br />

24


• We attempt to build a continuous–time<br />

model of stock price behaviour over an<br />

interval [0, T ]. As a first approximation,<br />

we use Bernoulli shocks every unit time,<br />

i.e. we let<br />

{<br />

+∆S with probability 0.5<br />

X t =<br />

−∆S with probability 0.5<br />

• Note that<br />

Var(X t ) = ∆S 2<br />

Var(S T ) =<br />

N∑<br />

n=1<br />

= N∆S 2<br />

Var(X tn )<br />

= ∆S2<br />

∆t T 25


• How large should the jumps in stock price<br />

be? To ensure that Var(S T ) goes to neither<br />

0 nor ∞ as ∆t → 0, we must have<br />

∆S = o( √ ∆t)<br />

• Note that for differentiable functions f(t),<br />

we have ∆f ≈ f ′ (t)∆t, i.e.<br />

∆f = o(∆t)<br />

• Th<strong>is</strong> shows that S t cannot be differentiable!<br />

26


• To build a continuous version of our model,<br />

we use the Central Limit Theorem: If<br />

X n <strong>is</strong> a larg<strong>is</strong>h family of iid random variables,<br />

then ∑ n X n <strong>is</strong> approximately normally<br />

d<strong>is</strong>tributed.<br />

• Thus: After a larg<strong>is</strong>h number of shocks,<br />

the stock price in our naive random walk<br />

model will be approximately normally d<strong>is</strong>tributed.<br />

• We seek a continuous-time version of the<br />

random walk — a stochastic process that<br />

<strong>is</strong> changing because of random shocks at<br />

every instant in time.<br />

27


Brownian motion<br />

• Brownian motion <strong>is</strong> a continuous–time<br />

stochastic process B t , t ≥ 0 with the following<br />

properties:<br />

(1) Each change<br />

B t − B s = (B s+h − B s ) + (B s+2h − B s+h )<br />

+ · · · + (B t − B t−h )<br />

<strong>is</strong> normally d<strong>is</strong>tributed with mean 0<br />

and variance t − s.<br />

(2) Each change B t − B s <strong>is</strong> independent<br />

of all the previous values B u , u ≤ s.<br />

(3) Each sample path B t , t ≥ 0 <strong>is</strong> (a.s.)<br />

continuous, and has B 0 = 0.<br />

• Brownian motion <strong>is</strong> a martingale:<br />

E s B t = B s<br />

s ≤ t<br />

where E s denotes the expectation at time<br />

s.<br />

28


GBM<br />

• For stock prices, the Brownian motion<br />

model <strong>is</strong> inadequate. We expect the change<br />

in price to be proportional to the current<br />

price.<br />

• A better model for share prices <strong>is</strong> given<br />

by the stochastic differential equation<br />

dS t = µS t dt + σS t dB t<br />

• Here µ <strong>is</strong> the drift, i.e. the rate at which<br />

the share price increases in the absence<br />

of r<strong>is</strong>k. The differential dB t models the<br />

randomness (r<strong>is</strong>k), and the parameter σ,<br />

known as the volatility, models how sensitive<br />

the share price <strong>is</strong> to these random<br />

events.<br />

• Th<strong>is</strong> share price process <strong>is</strong> called a geometric<br />

Brownian motion.<br />

29


Value process<br />

• Consider a market with a share S t whose<br />

price process <strong>is</strong> a GBM<br />

dS t = µS t dt + σS t dB t<br />

• Let the r<strong>is</strong>k–free interest rate be r, i.e.<br />

the r<strong>is</strong>k–free bank account A t sat<strong>is</strong>fies<br />

the DE<br />

dA t = rA t dt<br />

A t <strong>is</strong> the r<strong>is</strong>kless asset. It has drift r<br />

and zero volatility.<br />

• Given a dynamic portfolio θ t = (θ 0 t , θ1 t ),<br />

the value process V t (θ) <strong>is</strong> defined by<br />

V t (θ) = θ 0 t A t + θ 1 t S t<br />

• It sat<strong>is</strong>fies the SDE<br />

dV t = θ 0 t dA t + θ 1 t dS t<br />

= (rθ 0 t A t + µθ 1 t S t) dt + θ 1 σS t dB t<br />

30


• The value of the portfolio at time T <strong>is</strong><br />

therefore<br />

V T (θ) = V 0 (θ) +<br />

+<br />

∫ T<br />

0<br />

∫ T<br />

0<br />

[rθ 0 t A t + µθ 1 t S t ] dt<br />

θ 1 σS t dB t<br />

• We now see that we need to be able to<br />

evaluate integrals of the form<br />

∫ T<br />

0<br />

f(t, ω) dB t (ω)<br />

• The obvious method would be to regard<br />

the above as a Riemann–Stieltjes (or<br />

Lebesgue–Stieltjes) integral.<br />

31


Stochastic Calculus<br />

Naive Approach<br />

• Let f(x) be a differentiable function on<br />

an interval [a, b]. Partition th<strong>is</strong> interval:<br />

a = x 0 < x 1 < x 2 < x n = b<br />

where x i+1 − x i = ∆x<br />

• Then by Taylor series expansion, we get<br />

f(x i+1 ) − f(x i ) = f ′ (x i )∆x + 1 2! f ′′ (x i )(∆x) 2<br />

+ 1 3! f ′′′ (x i )(∆x) 3 + terms involving ∆x 4 , ∆x 5 , . . .<br />

• Thus<br />

f(b) − f(a) =<br />

=<br />

n−1<br />

∑<br />

i=0<br />

n−1<br />

[f(x i+1 ) − f(x i )]<br />

∑<br />

f ′ (x i )∆x + 1 2<br />

i=0<br />

n−1<br />

∑<br />

i=0<br />

f ′′ (x i )(∆x) 2 + . . .<br />

32


• As ∆x → 0, we get<br />

f(b) − f(a) = lim<br />

∆x→0<br />

+ 1 2 lim<br />

∆x→0<br />

=<br />

∫ b<br />

a<br />

∑<br />

f ′ (x i )∆x<br />

i<br />

∑<br />

f ′′ (x i )(∆x) 2 + . . .<br />

i<br />

[ ∫ 1 b<br />

]<br />

f ′ (x) dx + f ′′ (x) (dx) 2 + . . .<br />

2<br />

a<br />

• In ordinary calculus, only the first term<br />

counts (by the Fundamental Theorem of<br />

Calculus), and the other terms are zero.<br />

• Th<strong>is</strong> <strong>is</strong> because the quadratic variation<br />

of any “ordinary” function <strong>is</strong> zero, i.e.<br />

lim<br />

∆x→0<br />

∑<br />

(∆g) 2 = 0<br />

for any “ordinary” function g.<br />

33


• But Brownian motion <strong>is</strong> different: Consider<br />

∆B = B t+∆t − B t . Th<strong>is</strong> <strong>is</strong> a normally<br />

d<strong>is</strong>tributed random variable with E[∆B] =<br />

0 and variance var(∆B) = ∆t.<br />

• Consider next the random variable (∆B) 2 .<br />

Th<strong>is</strong> has<br />

E[(∆B) 2 ] = var[∆B] = ∆t<br />

var[(∆B) 2 ] = E[(∆B) 4 ] − (∆t) 2 = 2(∆t) 2


• Also<br />

lim<br />

∆t→0<br />

∑<br />

E(∆B) 4 = 2 lim<br />

∆t→0<br />

∑<br />

(∆t) 2 = 0<br />

because g(t) = t <strong>is</strong> an “ordinary” function,<br />

with quadratic variation zero.<br />

• Hence we cannot ignore the second–order<br />

term<br />

1<br />

2<br />

∫ b<br />

a<br />

f ′′ (x) (dx) 2<br />

in the case that x = B.<br />

• But we can ignore all higher–order terms.<br />

• We thus have the following rules for stochastic<br />

calculus:<br />

(dB t ) 2 = dt<br />

dB t · dt = (dt) 2 = 0<br />

35


• Suppose that f(t, x) <strong>is</strong> a C 1,2 –function,<br />

and let X t = f(t, B t ). Applying these<br />

rules to a second order Taylor series, we<br />

obtain:<br />

Theorem: (Ito’s Formula)<br />

dX t =<br />

(<br />

∂f<br />

∂t + 1 ∂ 2 )<br />

f<br />

2∂B 2<br />

dt + ∂f<br />

∂B dB t<br />

• Ordinary calculus shows that for a function<br />

f(t, x) we have<br />

df = ∂f<br />

∂t<br />

dt +<br />

∂f<br />

∂x dx<br />

• In stochastic calculus, we get another term,<br />

due to the non–zero quadratic variation<br />

of Brownian motion.<br />

36


• Since Brownian motion has non-zero quadratic<br />

variation, Brownian sample paths are (a.s.)<br />

of unbounded variation.<br />

• Th<strong>is</strong> means that in general the Ito stochastic<br />

integral ∫ T<br />

0 f dB t cannot be interpreted<br />

as a Riemann–Stieltjes integral.<br />

• Nevertheless, the stochastic integral can<br />

be defined with semimartingale integrators<br />

(using an approximation in a L 2 –<br />

space, rather than an (almost) pointw<strong>is</strong>e<br />

limit).<br />

• Fact: The Ito integral<br />

M t =<br />

∫ t<br />

0<br />

f(u, B u ) dB u<br />

<strong>is</strong> a (local) martingale, i.e.<br />

[∫ t<br />

]<br />

E s f dB u =<br />

0<br />

∫ s<br />

0<br />

f dB u<br />

37


Stock price process parameters<br />

• Let’s have another look at volatility. The<br />

GBM model for stock prices <strong>is</strong><br />

Thus<br />

dS t = µS t dt + σS t dB t<br />

[ dS<br />

E<br />

S<br />

] 2<br />

= σ 2 dt<br />

and thus σ 2 dt <strong>is</strong> the variance of the return<br />

of the stock over a small period dt.<br />

• It follows that σ <strong>is</strong> the standard deviation<br />

of the annual return of the stock<br />

S.<br />

• Th<strong>is</strong> can be measured from market data.<br />

38


• Can we also measure the drift µ?<br />

No.<br />

• So the correct, real-world dynamics of a<br />

share price are unknowable: We can get<br />

the volatility, but not the drift.<br />

• Amazingly, we don’t care!!<br />

39


Black-Scholes Model<br />

PDE Approach<br />

• Consider again market with a share S t<br />

whose price process sat<strong>is</strong>fies the SDE<br />

dS t = µS t dt + σS t dB t<br />

• Let the r<strong>is</strong>k–free interest rate be r, and<br />

let A t be the r<strong>is</strong>kless bank account, with<br />

dynamics<br />

dA t = rA t dt<br />

• Let V (t, S t ) be European–style derivative<br />

whose value depends on both the share<br />

price and time. Consider a portfolio Π<br />

which contains 1 derivative, and n shares,<br />

i.e. its value <strong>is</strong><br />

Π t = V t + nS t<br />

40


• A small amount of time dt later, the share<br />

price has changed. The value of the portfolio<br />

changes by<br />

dΠ t = dV t + n dS t<br />

• By Ito’s Formula,<br />

dV t = ∂V ∂V<br />

dt +<br />

∂t ∂S dS + 1 ∂ 2 V<br />

2 ∂S 2 dS2<br />

( ∂V ∂V<br />

= + µS<br />

∂t ∂S + 1 2 σ2 S 2 ∂V )<br />

∂S 2<br />

dt + σS ∂V<br />

∂S dB t<br />

• Hence<br />

( ∂V ∂V<br />

dΠ t = + µS<br />

∂t ∂S + 1 2 σ2 S 2 ∂V )<br />

∂S + nµS ( )<br />

2<br />

∂V<br />

+ σS<br />

∂S + n<br />

dt<br />

dB t<br />

41


• Now if we take n = − ∂V<br />

∂S<br />

(i.e. the portfolio<br />

<strong>is</strong> short − ∂V<br />

∂S<br />

shares), then the portfolio<br />

<strong>is</strong> unaffected by a random change<br />

in the stock price:<br />

dΠ t =<br />

( ∂V<br />

∂t + 1 2 σ2 S 2 ∂V<br />

∂S 2 )<br />

dt (1)<br />

• Thus, for a brief instant, the portfolio<br />

<strong>is</strong> r<strong>is</strong>k–free. By a no–arbitrage argument,<br />

it must earn the same return as<br />

the r<strong>is</strong>k–free bank account, i.e.<br />

dΠ t = rΠ t dt = r<br />

(<br />

V − ∂V<br />

∂S S )<br />

dt (2)<br />

42


• Equating (1) and (2), we get<br />

∂V<br />

∂t + 1 2 σ2 S 2∂2 V<br />

∂S 2 + rS∂V ∂S − rV = 0<br />

• Th<strong>is</strong> <strong>is</strong> the famous Black–Scholes PDE.<br />

It <strong>is</strong> a second–order parabolic PDE, i.e.<br />

essentially a heat equation.<br />

• It <strong>is</strong> now clear why we don’t care about<br />

the drift µ of the underlying asset S: It<br />

does not appear in the BS PDE!!<br />

43


Black–Scholes Model<br />

R<strong>is</strong>k–Neutral Approach<br />

• Since we don’t care about the drift rate<br />

µ of an underlying asset, we may as well<br />

simplify our asset price dynamics by assuming<br />

that all assets have the same<br />

drift.<br />

• The r<strong>is</strong>kless asset (bank account) has drift<br />

r, which we can actually see. We thus<br />

assume that all assets have the same return,<br />

namely the r<strong>is</strong>k–free rate r.<br />

• Mathematically, th<strong>is</strong> corresponds to a change<br />

of measure — from a real world, unknowable<br />

probability measure P to a knowable,<br />

r<strong>is</strong>k–neutral measure Q. In the<br />

r<strong>is</strong>k–neutral world, the dynamics of S are<br />

dS t = rS t dt + σS dB t<br />

Thus we change the drift of the asset<br />

from µ to r.<br />

44


• Mathematically, th<strong>is</strong> <strong>is</strong> accompl<strong>is</strong>hed using<br />

the Cameron–Girsanov Theorem:<br />

Let<br />

dY t = µ(t, ω) dt + θ(t, ω) dB t<br />

be an Ito process in a filtered probability<br />

space (Ω, F t , P) Suppose that there ex<strong>is</strong>ts<br />

processes u(t, ω) and ν(t, ω) such that<br />

θ · u = ν − µ<br />

Define a process M by<br />

∫ t<br />

∫ t<br />

M t = exp( u dB s − 1<br />

0 2 0 ||u||2 ds)<br />

and define a measure Q by<br />

dQ<br />

dP = M T<br />

Then under Q, Y –dynamics are<br />

dY t = ν(t, ω) dt + θ(t, ω) d ˆB t<br />

where ˆB t <strong>is</strong> a Q–Brownian motion.<br />

• Amazingly, a change of measure changes<br />

only the drift and not the volatility.<br />

45


• We can calculate option prices in the r<strong>is</strong>k–<br />

neutral world, because the asset price<br />

dynamics/d<strong>is</strong>tributions are known.<br />

• But: Prices in the real– and r<strong>is</strong>k–neutral<br />

world are the same! It <strong>is</strong> just probabilities<br />

that are changed.<br />

Fundamental Theorem of Asset Pricing:<br />

There are no arbitrage opportunities<br />

•<br />

if and only if there ex<strong>is</strong>ts a r<strong>is</strong>k–neutral<br />

measure.<br />

46


PDE = R<strong>is</strong>k–Neutral<br />

• Consider a European call option C on a<br />

share S with strike K and maturity T .<br />

The volatility of the underlying share S <strong>is</strong><br />

σ and the r<strong>is</strong>k–free rate <strong>is</strong> r.<br />

• We must solve the following BVP:<br />

⎧<br />

⎨ ∂V<br />

∂t + 1 2 σ2 S 2∂2 V ∂V<br />

+ rS<br />

∂S2 ∂S − rV = 0<br />

⎩<br />

V (T ) = Φ(S T ) = max{S T − K, 0}<br />

• Theorem: In the r<strong>is</strong>k–neutral world, the<br />

d<strong>is</strong>counted value process V t<br />

A<br />

= e −rt V t t <strong>is</strong><br />

a martingale:<br />

e −rT V T = V 0 +<br />

∫ T<br />

0<br />

e −rt σS t dB t<br />

47


• It follows that the expected value of<br />

e −rt V t at any time <strong>is</strong> its current value,<br />

and thus the value of the call option with<br />

strike K and maturity T <strong>is</strong> given by<br />

V 0 = E 0 [e −rT V T ] = e −rT E 0 [max{S T − K, 0}]<br />

• In the same way, the value of any European–<br />

style contingent claim V with maturity T<br />

and payoff (boundary condition) V (T, S T ) =<br />

Φ(S T ) <strong>is</strong> simply<br />

V 0 = e −rT E[Φ(S T )]<br />

• Th<strong>is</strong> <strong>is</strong> a version of the Feynman–Kac<br />

Theorem, which gives the solution to a<br />

large class of parabolic PDE’s as an expectation<br />

of a diffusion (here with loss of<br />

mass, represented by d<strong>is</strong>counting).<br />

48


Computational Toolbox<br />

• Numerical integration<br />

• Optimization techniques<br />

• Finite difference methods<br />

• Lattice/tree methods<br />

• Monte Carlo and quasi–Monte Carlo methods<br />

• Stat<strong>is</strong>tical techniques: Principal component<br />

analys<strong>is</strong>, factor analys<strong>is</strong>, maximum<br />

entropy<br />

49


• Time series analys<strong>is</strong><br />

• Numerical solution of SDE’s<br />

• Dynamic programming<br />

• Stochastic control theory<br />

50


Current Research<br />

• Altenatives to Black–Scholes<br />

– Stochastic volatility models.<br />

– Jump diffusions.<br />

– Levy processes.<br />

• Interest–rate modelling.<br />

• Pricing in incomplete markets.<br />

• Pricing/measuring/hedging credit r<strong>is</strong>k.<br />

51


• Capital adequacy based r<strong>is</strong>k measures<br />

• Real options<br />

• Differential game theory<br />

• Entropy–based option pricing<br />

• Viability theory<br />

• Non-standard finance<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!