16.02.2014 Views

Neeraj Jaggi - Witchita State University - Wichita State University

Neeraj Jaggi - Witchita State University - Wichita State University

Neeraj Jaggi - Witchita State University - Wichita State University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rechargeable Sensor Activation under<br />

Temporally Correlated Events<br />

1<br />

<strong>Neeraj</strong> <strong>Jaggi</strong><br />

Joint work with<br />

Koushik Kar (Rensselaer Polytechnic Institute) and<br />

Ananth Krishnamurthy (Univ. of Wisconsin Madison)<br />

WICHITA STATE UNIVERSITY<br />

<strong>Wichita</strong>, KS


Outline<br />

2<br />

• Sensor Networks<br />

• Rechargeable Sensor System<br />

◦ Design of energy-efficient algorithms<br />

◦ Activation question – Single sensor scenario<br />

• Temporally correlated event occurrence<br />

◦ Perfect state information<br />

Optimal policy<br />

◦ Imperfect state information<br />

Structure of optimal policy<br />

Practical algorithm with performance guarantees<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


• Sensor Nodes<br />

◦ Tiny, low cost devices<br />

◦ Prone to Failures<br />

◦ Redundant Deployment<br />

◦ Rechargeable Sensor Nodes<br />

• Range of Applications<br />

• Important Issues<br />

◦ Energy Management<br />

◦ Quality of Coverage<br />

Sensor Networks<br />

3<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Rechargeable Sensor System<br />

4<br />

Event Phenomena<br />

Renewable Energy<br />

Randomness<br />

Spatio-temporal Correlations<br />

Control<br />

Rechargeable Sensors<br />

Discharge<br />

Recharge<br />

Activation Policy<br />

Quality of Coverage<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Dynamic Sleep Scheduling<br />

5<br />

• How should a sensor be activated (“switched on”)<br />

dynamically so that the quality of coverage is<br />

maximized over time ?<br />

• A sensor became ready. What should it do ?<br />

◦ Activate itself now :<br />

Gain some utility in the short-term<br />

◦ Activate itself later :<br />

No utility in the short term<br />

Activate when the system “needs it more”<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Temporal Correlations<br />

• Goal – Try to detect certain interesting events<br />

• Correlated Event Process (e.g. Forest fire)<br />

◦ On period (events occurring)<br />

Region is HOT<br />

◦ Off period (events not occurring)<br />

Region is COLD<br />

◦ Correlation probabilities<br />

on off<br />

p c<br />

p c<br />

0.5 < ( , ) < 1<br />

6<br />

( = = 0.8)<br />

• Performance Criteria – Single Sensor Node<br />

◦ Fraction of Events Detected over time<br />

on<br />

p c<br />

off<br />

p c<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Sensor Energy Consumption Model<br />

7<br />

• Discrete Time Energy Model<br />

◦ Operational Cost (δ 1 )<br />

◦ Detection Cost (δ 2 )<br />

◦ Recharge Rate (qc)<br />

sensor activated<br />

K<br />

δ 1 +δ 2<br />

discharge - On period<br />

• System Parameters<br />

◦ Recharge – Bernoulli<br />

c w.p. q<br />

0 otherwise<br />

qc<br />

recharge<br />

◦ Discharge – Depends upon<br />

Event occurrence (Random)<br />

discharge - Off period<br />

activation policy<br />

sensor not activated<br />

(no discharge)<br />

Activation decisions (Policy)<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong><br />

δ 1


System Observability<br />

8<br />

• Perfect <strong>State</strong> Information (Completely Observable)<br />

◦ Sensor can always observe state of event process (even<br />

while inactive)<br />

• Imperfect <strong>State</strong> Information (Partially Observable)<br />

◦ Inactive sensor can not observe current state of event<br />

process<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Approach/Methodology<br />

9<br />

• Perfect <strong>State</strong> Information<br />

◦ Formulate Markov Decision Problem (MDP)<br />

◦ Upper Bound on Performance<br />

◦ Optimal Policy<br />

• Imperfect <strong>State</strong> Information<br />

◦ Formulate Partially Observable MDP (POMDP)<br />

◦ Transform POMDP to equivalent MDP (Known techniques)<br />

◦ Structure of Optimal Policy<br />

◦ Near-optimal practical Algorithms<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Perfect <strong>State</strong> Information<br />

• Markov Decision Process (Finite K)<br />

◦ <strong>State</strong> Space = {(L, E); 0 ≤ L ≤ K, E є [0, 1]}<br />

L – Current Energy Level, E – On/Off period<br />

Reward r– one if event detected; zero otherwise<br />

Action u є [0, 1]; Transition probabilities p<br />

10<br />

• Optimality equations (average reward criteria)<br />

◦ h* – state variables<br />

◦ λ* – optimal reward<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Perfect <strong>State</strong> Information (contd.)<br />

• Approximate Solution<br />

11<br />

◦ Closed form solution for h* does not seem to exist<br />

• Value Iteration<br />

◦ Activation Algorithm<br />

When L


Performance Bound<br />

• Upper Bound on achievable performance for any<br />

stationary policy (Infinite K)<br />

◦ Have to consider “low recharge rate” and “high recharge<br />

rate” cases separately<br />

12<br />

◦ Useful observation to derive the bounds<br />

Success probability for event detection is upper bounded by<br />

on<br />

p c<br />

OR (Event predictability is upper bounded by )<br />

on<br />

p c<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Optimal Activation Policy<br />

• Optimal policy structure<br />

13<br />

◦ Activate when events are occurring<br />

◦ Activate with a probability when events are not occurring<br />

P* is directly proportional to the recharge rate<br />

Attains Energy Balance<br />

Average recharge rate equals average discharge rate in steady state<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


• Difficulty<br />

Imperfect <strong>State</strong> Information<br />

14<br />

◦ <strong>State</strong> partially observable when sensor is inactive – (L , E )<br />

• Partially Observable Markov Decision Process<br />

◦ Is converted to a completely observable MDP<br />

With a transformed state space of the form (L, E, t)<br />

◦ Information available while decision making<br />

L – Current Energy Level<br />

E – <strong>State</strong> of event process last observed (while in active state)<br />

t – Number of time slots spent in inactive state<br />

◦ Optimal policy<br />

Can now be computed numerically using value iteration<br />

Optimal actions do not seem to have a closed form expression<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Structure of Optimal Policy<br />

• Optimal actions computed using value iteration algorithm<br />

◦ Threshold energy wakeup functions<br />

f 0 – (L, 0, t), f 1 – (L, 1, t)<br />

15<br />

◦ Properties<br />

Last observed state ON<br />

Aggressive Wakeup<br />

Last observed state OFF<br />

Reluctant Wakeup<br />

◦ Sensitive to system parameters<br />

◦ Convergence of f 0 and f 1<br />

Effects of temporal correlations diminish over time<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Near-Optimal Policies<br />

• AW (Aggressive Wakeup) Policy<br />

◦ Activate whenever sufficient energy available L ≥ δ 2 + δ 1<br />

◦ Ignores temporal correlations<br />

16<br />

◦ Optimal if no temporal correlations<br />

• CW (Correlation dependent Wakeup) Policies<br />

◦ Activate during On periods; Deactivate during Off<br />

◦ Employ an appropriate sleep duration<br />

Performance depends upon sleep duration<br />

◦ Upper Bound U * CW =<br />

◦ Best CW policy performance<br />

ε-optimal (ε ~ O(1/β)); β = δ 2 /δ 1<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


EB-CW Policy<br />

• Energy balancing CW policy<br />

◦ Sleep Interval (SI*)<br />

17<br />

Derived using energy balance during a renewal interval [t 1 t 2 ]<br />

A A A A A A<br />

Y Y Y Y Y N<br />

I<br />

SI<br />

I<br />

A A A A<br />

Y Y Y N<br />

I<br />

A – Active<br />

I – Inactive<br />

Y – On, N – Off<br />

SI – sleep duration<br />

t 1 , t 2 – renewal<br />

instances<br />

• Coupled equations<br />

◦ Fixed point exists<br />

t 1<br />

t 2<br />

t<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Simulation Results<br />

18<br />

[δ 1 = c = 1, δ 1 = 6, q = 0.5, K = 2400]<br />

on off<br />

[ = 0.6, = 0.9, SI * on off<br />

p = 7] [ = 0.7, = 0.8, SI * c<br />

pc<br />

= 18]<br />

Energy balancing Sleep Interval SI*<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong><br />

p c<br />

p c


Summary and Contributions<br />

• We considered sensor node activation scheduling problem<br />

in a stochastic optimization framework<br />

• Finding optimal policy is difficult and closed form<br />

expressions may not exist<br />

19<br />

• Policies based upon the notion of energy balance perform –<br />

◦ Optimally for Perfect <strong>State</strong> Information<br />

◦ Near-optimally for Imperfect <strong>State</strong> Information<br />

5 th International Symposium on Modeling and Optimization in Mobile<br />

Ad hoc and Wireless Networks (WIOPT) April 2007<br />

ACM/KLUWER Wireless Networks 2008 (Accepted )<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Open Questions<br />

20<br />

• EB CW Policy performance<br />

◦ Is it optimal over all stationary policies ?<br />

◦ Simulation results in test cases seem to suggest so.<br />

• Extensibility to general network scenario<br />

◦ Presence of multiple sensors<br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>


Q & A<br />

21<br />

THANK YOU !! <br />

<strong>Neeraj</strong> <strong>Jaggi</strong> Dept of EECS <strong>Wichita</strong> <strong>State</strong> <strong>University</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!