19.02.2014 Views

Tutorial 4 - ETH - UP - Environmental Physics - ETH Zürich

Tutorial 4 - ETH - UP - Environmental Physics - ETH Zürich

Tutorial 4 - ETH - UP - Environmental Physics - ETH Zürich

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Global Biogeochemical 
<br />

<br />

Cycles and Climate:
<br />

<strong>Tutorial</strong> 4: Terrestrial<br />

Carbon Cycle<br />

Meike Vogt<br />

<br />

<strong>Environmental</strong> <strong>Physics</strong> <br />

Institute of Biogeochemistry and Pollutant Dynamics<br />

<strong>ETH</strong> Zürich<br />

meike.vogt@env.ethz.ch<br />

1


The unperturbed terrestrial carbon cycle<br />

INTRODUCTION<br />

( -1 yr (Units: Reservoirs in Gt C, Fluxes in Gt C<br />

> Terrestrial biosphere: 5 times more carbon than the atmosphere (but<br />

about 10 times less than the ocean) à changes in terrestrial carbon<br />

storage directly and immediately impact atmospheric CO 2<br />

> Residence time (τ = Mass / Flux):<br />

τ for photosynthesis / respiration cycle of living biomass ~ 11 years<br />

compared to ~1 month for marine biota, although similar fluxes<br />

2<br />

(‏‎2004‎ (SCOPE, Sabine et al.


Exchanges between biosphere and atmosphere<br />

INTRODUCTION<br />

Momentum<br />

Radiation<br />

Precipitation<br />

Deposition<br />

NH4<br />

NO3<br />

SO4<br />

O3<br />

ATMOSPHERE<br />

Sensible Heat<br />

Latent Heat<br />

Trace Gases<br />

CO2<br />

CH4<br />

N2O<br />

Key Characteristics<br />

Leaf Area<br />

Sensible Heat<br />

(‏Roughness‏)‏ Surface Height<br />

Albedo<br />

Soil moisture<br />

Nutrients<br />

TERRESTRIAL ECOSYSTEMS<br />

> Impact the global water cycle and albedo thus energy balance<br />

(‏chemistry > Impact the composition of the atmosphere (GHGs,<br />

> Impact the momentum transfer<br />

3<br />

TUTORIAL 4


Outline<br />

OUTLINE<br />

• Introduction: Overview Pool Sizes and Fluxes<br />

• What limits terrestrial NPP?<br />

• Major Biomes of the World<br />

• Carbon Storage on Land<br />

• Impact of a Changing Climate?<br />

4<br />

TUTORIAL 4


Global Net Primary Production (NPP) 2001/02<br />

PRODUCTIVITY<br />

5<br />

http://earthobservatory.nasa.gov/Newsroom/NPP/npp.html


What limits terrestrial productivity?<br />

PRODUCTIVITY<br />

Main factors limiting terrestrial biological productivity:<br />

• water availability<br />

• temperature conditions<br />

• light conditions<br />

• availability of nutrients<br />

• CO 2 concentration<br />

Differences to marine biological productivity?<br />

(‏Fe‏)‏ à macro nutrients (N, P, Si), light, temperature, micro nutrients<br />

6<br />

TUTORIAL 4


Global rainfall patterns<br />

PRODUCTIVITY<br />

7<br />

TUTORIAL 4


Global pattern of surface temperature<br />

PRODUCTIVITY<br />

8


(‏PAR‏)‏ Global pattern of “available radiation”<br />

PRODUCTIVITY<br />

9<br />

(‏‎2005‎‏)‏ Raschke and Ohmura


Photosynthetically available radiation (PAR)<br />

PRODUCTIVITY<br />

Solar radiation spectrum<br />

Energy for photosynthesis<br />

comes<br />

essentially from the blue and<br />

red wavelengths<br />

Blue: 475 nm<br />

Green: 510 nm<br />

Yellow: 570 nm<br />

Red: 625 nm<br />

10


Nitrogen limitation<br />

PRODUCTIVITY<br />

Ratio of nitrogen availability over nitrogen demand (NCAR CCSM)<br />

70%<br />

75%<br />

Many regions are nitrogen limited.<br />

11 Thornton pers. Comm.


Global Net Primary Production (NPP) 2002<br />

PRODUCTIVITY<br />

12<br />

http://earthobservatory.nasa.gov/Newsroom/NPP/npp.html


Outline<br />

OUTLINE<br />

• Introduction: Overview Pool Sizes and Fluxes<br />

• What limits terrestrial NPP?<br />

• Major Biomes of the World<br />

• Carbon Storage on Land<br />

• Impact of a Changing Climate?<br />

13<br />

TUTORIAL 4


Terrestrial biomes<br />

BIOMES<br />

> Classification of biomes: structural and functional different ecosystem<br />

complexes exist under different climate/environmental conditions, i.e.,<br />

biomes are distinguished primarily by their predominant plants and are<br />

associated with particular climates<br />

> usually between 15 and 20 biome types (depending on the<br />

(‏included classificaton; the 8 major biomes are ~consistently<br />

> Distribution of biomes: along latitudes; but impacted by topography,<br />

ocean/land distribution, etc.<br />

14<br />

(‏‎1996‎‏)‏ Adapted from: H.J. de Blij and P.O. Miller


Terrestrial biomes<br />

BIOMES<br />

15<br />

(‏‎1996‎‏)‏ Adapted from: H.J. de Blij and P.O. Miller


Terrestrial biomes and temperature/precipitation<br />

BIOMES<br />

> Temperature and precipitation limit the distribution of plant communities<br />

16<br />

http://www.globalchange.umich.edu/globalchange2/current/2007/Labs/Unit-203b2007_files/image004.jpg


Outline<br />

OUTLINE<br />

• Introduction: Overview Pool Sizes and Fluxes<br />

• What limits terrestrial NPP?<br />

• Major Biomes of the World<br />

• Carbon Storage on Land<br />

• Impact of a Changing Climate?<br />

17<br />

TUTORIAL 4


Carbon storage in terrestrial biomes<br />

CARBON STORAGE<br />

( -2 m C density (kg<br />

Plant Soil<br />

20 11.7<br />

16 13.4<br />

9 20.6<br />

0.3 20.4<br />

? ?<br />

0.5 6.0<br />

1.8 4.2<br />

0.7 18.9<br />

0.3 5.8<br />

> Differences between biomes generally account for large parts of the<br />

spatial variability of carbon storage<br />

18<br />

(‏‎2004‎ (SCOPE, Sabine et al.


Production terms: GPP, NPP, NEP, and NEE<br />

CARBON STORAGE<br />

GPP: Gross primary production<br />

NPP: Net primary production<br />

NEP: Net ecosystem production<br />

NEE: Net ecosystem exchange<br />

NPP = GPP - R a<br />

NEP = NPP - R h<br />

NEE = NEP - disturbance = NPP - R h - disturbance<br />

19<br />

TUTORIAL 4


CARBON STORAGE<br />

What determines NEE? Balance of assimilation/respiration<br />

Respiration vs Transpiration<br />

20<br />

TUTORIAL 4


Carbon storage in terrestrial pools<br />

CARBON STORAGE<br />

> Carbon storage are largest in the equatorial, innertropic ecosystems and<br />

at high northern latitudes<br />

21<br />

http://soils.usda.gov/use/worldsoils/mapindex/


Vegetation carbon<br />

CARBON STORAGE<br />

22<br />

> Vegetation carbon: high values in the inner tropics, elevated at mid to<br />

high northern latitudes<br />

http://soils.usda.gov/use/worldsoils/mapindex/


Soil carbon<br />

CARBON STORAGE<br />

> Soil carbon: largest values at high northern latitudes<br />

23<br />

http://soils.usda.gov/use/worldsoils/mapindex/


Outline<br />

OUTLINE<br />

• Introduction: Overview Pool Sizes and Fluxes<br />

• What limits terrestrial NPP?<br />

• Major Biomes of the World<br />

• Carbon Storage on Land<br />

• Impact of a Changing Climate?<br />

24<br />

TUTORIAL 4


Impact of climate change<br />

CC IMPACT<br />

R a<br />

Rh<br />

Climate change can alter all fluxes through different mechanisms:<br />

- warmer temperatures: enhance NPP, but also enhance R h<br />

- wetter/drier: enhance/reduce NPP, but also alter R h .<br />

- length of the growing season<br />

- frequency of extreme events (fires,…): alter the disturbance flux<br />

- changes in cloudiness: alter the PAR, hence GPP<br />

25


Impact of climate change on vegetation<br />

Based on NCAR CCSM simulation<br />

CC IMPACT<br />

Bala et al, 2005<br />

26


Impact of climate change on land carbon stocks<br />

CC IMPACT<br />

Based on NCAR CCSM simulation<br />

1870-2100<br />

27<br />

http://www.nesl.ucar.edu


Terrestrial biosphere: future CO 2 sink or source?<br />

CC IMPACT<br />

Potential feedback mechanisms:<br />

- CO 2 increase: increase in CO 2 assimilation<br />

+ Temp increase: increased plant/soil respiration<br />

+/- Climate change: changes in vegetation structure<br />

(‏‎2001‎‏)‏ al. Hypothesis by Joos et<br />

Slow warming: negative feedbacks will be dominant (sink<br />

( 2 of atmospheric CO<br />

Fast warming: positive feedbacks will be dominant (source<br />

(‏atmosphere of CO 2 to the<br />

28<br />

TUTORIAL 4


Terrestrial biosphere: future CO 2 sink or source?<br />

CC IMPACT<br />

Prescribed<br />

atmospheric CO 2<br />

Modelled terrestrial<br />

CO 2 Source/Sink<br />

29<br />

(‏‎2001‎‏)‏ al. Joos et


Terrestrial biosphere: future CO 2 sink or source?<br />

CC IMPACT<br />

30<br />

(‏‎2001‎‏)‏ al. Joos et


Outline of BGC&Climate course<br />

OUTLINE COURSE<br />

31<br />

TUTORIAL 4


INTRODUCTION<br />

The terrestrial carbon cycle and atmospheric CO 2<br />

Photosynthesis<br />

Respiration<br />

32<br />

(‏‎2005‎ CDIAC (Trends


NPP and Evapotranspiration<br />

PRODUCTIVITY<br />

33<br />

TUTORIAL 4


Impact of climate change on vegetation<br />

CC IMPACT<br />

Based on NCAR CCSM simulation<br />

Bala et al, 2005<br />

34


Vegetation changes 2100 - 1765<br />

FEEDBACKS<br />

35<br />

(‏‎2001‎‏)‏ al. Joos et


Changes in carbon storage 2100 - 1765<br />

CC IMPACT<br />

release uptake<br />

36<br />

(‏‎2001‎‏)‏ al. Joos et

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!