19.02.2014 Views

Outer magnetospheric structure: Jupiter and Saturn compared

Outer magnetospheric structure: Jupiter and Saturn compared

Outer magnetospheric structure: Jupiter and Saturn compared

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A04224<br />

WENT ET AL.: OUTER MAGNETOSPHERIC STRUCTURE<br />

A04224<br />

while the instantaneous location of both the inner <strong>and</strong> outer<br />

boundaries are highly variable, the cushion region has a<br />

mean subsolar thickness of order 20 R J . The cushion region,<br />

which is more evident in the morningside magnetosphere<br />

as opposed to afternoon, is interpreted by Kivelson <strong>and</strong><br />

Southwood [2005] as a layer of plasma‐depleted flux tubes<br />

which have recently lost mass in the magnetotail as part of<br />

the Vasyliũnas <strong>and</strong> Dungey cycles. Using magnetometer<br />

<strong>and</strong> plasma data from Cassini <strong>and</strong> other spacecraft, we have<br />

shown that the <strong>Saturn</strong>ian magnetosphere typically lacks this<br />

outer layer of quasi‐dipolar flux tubes with the <strong>Saturn</strong>ian<br />

magnetodisk instead persisting right out to the magnetopause.<br />

[54] In spite of this observation, arguments are presented<br />

suggesting that <strong>Saturn</strong>’s outer magnetosphere must contain a<br />

large number of plasma‐depleted flux tubes. The nondipolar<br />

geometry of these flux tubes is discussed from a number<br />

of perspectives, emphasizing the complicating factors of<br />

magnetodisk warping <strong>and</strong> variations in the size of the <strong>magnetospheric</strong><br />

cavity. We show that the Jovian magnetodisk<br />

typically breaks down well inside the planetary magnetopause<br />

while, at <strong>Saturn</strong>, evidence for this breakdown is<br />

weaker although it cannot, at present, be ruled out entirely.<br />

While conclusive statements must await higher‐quality plasma<br />

data <strong>and</strong> statistics, we tentatively propose that <strong>Saturn</strong>’s<br />

magnetodisk typically persists right out to the magnetopause,<br />

robbing any plasma‐depleted flux tubes that lay beyond it<br />

of the essential space that is required for them to relax into a<br />

more dipolar configuration reminiscent of the cushion region<br />

seen at <strong>Jupiter</strong>. Observational tests of this theory have been<br />

proposed <strong>and</strong> potential developments <strong>and</strong> extensions of this<br />

work are discussed.<br />

[55] Acknowledgments. The authors would like to acknowledge<br />

useful discussions with Krishan Khurana with regards to the content of<br />

this paper. D. R. Went was funded by an STFC postgraduate studentship<br />

at Imperial College London.<br />

[56] Masaki Fujimoto thanks the reviewers for their assistance in evaluating<br />

this paper.<br />

References<br />

Achilleos, N., C. S. Arridge, C. Bertucci, C. M. Jackman, M. K. Dougherty,<br />

K. K. Khurana, <strong>and</strong> C. T. Russell (2008), Large‐scale dynamics of<br />

<strong>Saturn</strong>’s magnetopause: Observations by Cassini, J. Geophys. Res.,<br />

113, A11209, doi:10.1029/2008JA013265.<br />

Achilleos, N., P. Guio, <strong>and</strong> C. S. Arridge (2010a), A model of force balance<br />

in <strong>Saturn</strong>’s magnetodisc, Mon. Not. R. Astron. Soc., 401, 2349–2371,<br />

doi:10.1111/j.1365-2966.2009.15865.x.<br />

Achilleos,N.,P.Guio,C.S.Arridge,N.Sergis,R.J.Wilson,M.F.<br />

Thomsen, <strong>and</strong> A. J. Coates (2010b), Influence of hot plasma pressure<br />

on the global <strong>structure</strong> of <strong>Saturn</strong>’s magnetodisk, Geophys. Res. Lett.,<br />

37, L20201, doi:10.1029/2010GL045159.<br />

André, N., et al. (2007), Magnetic signatures of plasma‐depleted flux tubes<br />

in the <strong>Saturn</strong>ian inner magnetosphere, Geophys. Res. Lett., 34, L14108,<br />

doi:10.1029/2007GL030374.<br />

Arridge, C. S., N. Achilleos, M. K. Dougherty, K. K. Khurana, <strong>and</strong> C. T.<br />

Russell (2006), Modeling the size <strong>and</strong> shape of <strong>Saturn</strong>’s magnetopause<br />

with variable dynamic pressure, J. Geophys. Res., 111, A11227,<br />

doi:10.1029/2005JA011574.<br />

Arridge, C. S., C. T. Russell, K. K. Khurana, N. Achilleos, S. W. H.<br />

Cowley, M. K. Dougherty, D. J. Southwood, <strong>and</strong> E. J. Bunce (2008a),<br />

<strong>Saturn</strong>’s magnetodisc current sheet, J. Geophys. Res., 113, A04214,<br />

doi:10.1029/2007JA012540.<br />

Arridge, C. S., K. K. Khurana, C. T. Russell, D. J. Southwood, N. Achilleos,<br />

M. K. Dougherty, A. J. Coates, <strong>and</strong> H. K. Leinweber (2008b), Warping of<br />

<strong>Saturn</strong>’s <strong>magnetospheric</strong> <strong>and</strong> magnetotail current sheets, J. Geophys. Res.,<br />

113, A08217, doi:10.1029/2007JA012963.<br />

Arridge, C. S., L. K. Gilbert, G. R. Lewis, E. C. Sittler, G. H. Jones, D. O.<br />

Kataria, A. J. Coates, <strong>and</strong> D. T. Young (2009), The effect of spacecraft<br />

radiation sources on electron moments from the Cassini CAPS electron<br />

spectrometer, Planet. Space Sci., 57, 854–869, doi:10.1016/j.pss.2009.<br />

02.011.<br />

Badman, S. V., <strong>and</strong> S. W. H. Cowley (2007), Significance of Dungey‐cycle<br />

flows in <strong>Jupiter</strong>’s <strong>and</strong> <strong>Saturn</strong>’s magnetospheres, <strong>and</strong> their identification<br />

on closed equatorial field lines, Ann. Geophys., 25, 941–951.<br />

Bagenal, F., <strong>and</strong> J. D. Sullivan (1981), Direct plasma measurements in the<br />

Io torus <strong>and</strong> inner magnetosphere of <strong>Jupiter</strong>, J. Geophys. Res., 86,<br />

8447–8466, doi:10.1029/JA086iA10p08447.<br />

Bagenal, F., P. Delamere, A. Steffl, <strong>and</strong> M. Horanyi (2004), Time variability<br />

of plasma production in the Io torus, Eos Trans. AGU, 85(17), Jt.<br />

Assem. Suppl., Abstract SM51A‐03.<br />

Balogh, A., M. K. Dougherty, R. J. Forsyth, D. J. Southwood, E. J.<br />

Smith, B. T. Tsurutani, N. Murphy, <strong>and</strong> M. E. Burton (1992), Magnetic<br />

field observations during the Ulysses flyby of <strong>Jupiter</strong>, Science, 257,<br />

1515–1518, doi:10.1126/science.257.5076.1515.<br />

Bame, S. J., D. J. McComas, B. L. Barraclough, J. L. Phillips, K. J. Sofaly,<br />

J. C. Chavez, B. E. Goldstein, <strong>and</strong> R. K. Sakurai (1992), The Ulysses<br />

solar wind plasma experiment, Astrophys. J. Suppl. Ser., 92, 237–265.<br />

Bunce,E.J.,S.W.H.Cowley,D.M.Wright,A.J.Coates,M.K.<br />

Dougherty,N.Krupp,W.S.Kurth,<strong>and</strong>A.M.Rymer(2005),Insitu<br />

observations of a solar wind compression‐induced hot plasma injection<br />

in <strong>Saturn</strong>’s tail,Geophys. Res. Lett., 32, L20S04, doi:10.1029/<br />

2005GL022888.<br />

Bunce, E. J., et al. (2008), Origin of <strong>Saturn</strong>’s aurora: Simultaneous observations<br />

by Cassini <strong>and</strong> the Hubble Space Telescope, J. Geophys. Res.,<br />

113, A09209, doi:10.1029/2008JA013257.<br />

Burton, M. E., M. K. Dougherty, <strong>and</strong> C. T. Russell (2009), Model of<br />

<strong>Saturn</strong>’s internal planetary magnetic field based on Cassini observations,<br />

Planet. Space Sci., 57, 1706–1713, doi:10.1016/j.pss.2009.04.008.<br />

Cowley, S. W. H., <strong>and</strong> E. J. Bunce (2003), Modulation of <strong>Jupiter</strong>’s main<br />

auroral oval emissions by solar wind induced expansions <strong>and</strong> compressions<br />

of the magnetosphere, Planet. Space Sci., 51, 57–79.<br />

Cowley, S. W. H., E. J. Bunce, T. S. Stallard, <strong>and</strong> S. Miller (2003),<br />

<strong>Jupiter</strong>’s polar ionospheric flows: Theoretical interpretation, Geophys.<br />

Res. Lett., 30(5), 1220, doi:10.1029/2002GL016030.<br />

Cox, A. N. (Ed.) (2001), Allen’s Astrophysical Quantities, 4thed.,<br />

Springer, New York.<br />

Delamere, P. A., F. Bagenal, V. Dols, <strong>and</strong> L. C. Ray (2007), <strong>Saturn</strong>’s neutral<br />

torus versus <strong>Jupiter</strong>’s plasma torus, Geophys. Res. Lett., 34, L09105,<br />

doi:10.1029/2007GL029437.<br />

Dougherty, M. K., K. K. Khurana, F. M. Neubauer, C. T. Russell, J. Saur,<br />

J. S. Leisner, <strong>and</strong> M. E. Burton (2006), Identification of a dynamic atmosphere<br />

at Enceladus with the Cassini magnetometer, Science, 311, 1406–<br />

1409, doi:10.1126/science.1120985.<br />

Dungey, J. W. (1961), Interplanetary magnetic field <strong>and</strong> the auroral zones,<br />

Phys. Rev. Lett., 6, 47–48, doi:10.1103/PhysRevLett.6.47.<br />

Espinosa, S. A., <strong>and</strong> M. K. Dougherty (2000), Periodic perturbations<br />

in <strong>Saturn</strong>’s magnetic field, Geophys. Res. Lett., 27, 2785–2788,<br />

doi:10.1029/2000GL000048.<br />

Goertz, C. K. (1983), Detached plasma in <strong>Saturn</strong>’s front side magnetosphere,<br />

Geophys. Res. Lett., 10, 455–458, doi:10.1029/GL010i006p00455.<br />

Gombosi, T. I., T. P. Armstrong, C. S. Arridge, K. K. Khurana, S. M.<br />

Krimigis, N. Krupp, A. M. Persoon, <strong>and</strong> M. F. Thomsen (2009), <strong>Saturn</strong>’s<br />

<strong>magnetospheric</strong> configuration, in <strong>Saturn</strong> From Cassini‐Huygens, edited<br />

by M. Dougherty, L. W. Esposito, <strong>and</strong> S. M. Krimigis, pp. 203–255,<br />

Springer, New York.<br />

Haynes, P. L. (1995), Dynamic phenomena in the Jovian magnetosphere<br />

based on observations during the Ulysses flyby, Ph.D. thesis, Imp. Coll.<br />

London, London.<br />

Haynes, P. L., A. Balogh, M. K. Dougherty, D. J. Southwood, <strong>and</strong><br />

A. Fazakerley (1994), Null fields in the outer Jovian magnetosphere: Ulysses<br />

observations, Geophys. Res. Lett., 21, 405–408, doi:10.1029/93GL01986.<br />

Hill, T. W. (1980), Corotation lag in <strong>Jupiter</strong>’s magnetosphere—Comparison<br />

of observation <strong>and</strong> theory, Science, 207, 301–302, doi:10.1126/science.<br />

207.4428.301.<br />

Joy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, <strong>and</strong><br />

T. Ogino (2002), Probabilistic models of the Jovian magnetopause <strong>and</strong><br />

bow shock locations, J. Geophys. Res., 107(A10), 1309, doi:10.1029/<br />

2001JA009146.<br />

Khurana, K. K., M. K. Dougherty, C. T. Russell, <strong>and</strong> J. S. Leisner (2007),<br />

Mass loading of <strong>Saturn</strong>’s magnetosphere near Enceladus, J. Geophys.<br />

Res., 112, A08203, doi:10.1029/2006JA012110.<br />

Kivelson, M. G. (1976), <strong>Jupiter</strong>’s distant environment, in Physics of Solar<br />

Planetary Environments, edited by D. J. Williams, pp. 836–853, AGU,<br />

Washington, D. C.<br />

Kivelson, M. G. (2005), Transport <strong>and</strong> acceleration of plasma in the magnetospheres<br />

of Earth <strong>and</strong> <strong>Jupiter</strong> <strong>and</strong> expectations for <strong>Saturn</strong>, Adv. Space<br />

Res., 36, 2077–2089, doi:10.1016/j.asr.2005.05.104.<br />

13 of 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!