20.02.2014 Views

The Quantum Mechanics of Global Warming - University of Virginia

The Quantum Mechanics of Global Warming - University of Virginia

The Quantum Mechanics of Global Warming - University of Virginia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Quantum</strong> <strong>Mechanics</strong><br />

<strong>of</strong><br />

<strong>Global</strong> <strong>Warming</strong><br />

Brad Marston<br />

Brown <strong>University</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Virginia</strong><br />

April 17, 2009


Richardson’s Human Weather Computer (1917 --1922)<br />

“Lewis Fry Richardson’s imaginary `forecast factor’ would have employed some 64,000 human<br />

computers to keep up with the pace <strong>of</strong> the weather, <strong>The</strong> workers sit in tiers inside a great<br />

spherical theater; the director, atop a pedestal in the middle, shines a beam <strong>of</strong> light on those<br />

places where the calculation is getting ahead or falling behind.” [Brian Hayes, American Scientist<br />

80, 10 -- 14 (2001).]


cooler sun<br />

continental drift<br />

orogeny<br />

climate<br />

optimum<br />

LIA<br />

synoptic<br />

disturbances


Outline


Outline<br />

• <strong>Quantum</strong> <strong>Mechanics</strong> #1: blackbody radiation


Outline<br />

• <strong>Quantum</strong> <strong>Mechanics</strong> #1: blackbody radiation<br />

• QM #2: Why we aren’t freezing


Outline<br />

• <strong>Quantum</strong> <strong>Mechanics</strong> #1: blackbody radiation<br />

• QM #2: Why we aren’t freezing<br />

• QM #3: Deciphering ice and sediment records


Outline<br />

• <strong>Quantum</strong> <strong>Mechanics</strong> #1: blackbody radiation<br />

• QM #2: Why we aren’t freezing<br />

• QM #3: Deciphering ice and sediment records<br />

• Fluid Dynamics: Single layer models<br />

• Coriolis Force<br />

• Stratification & Differential Heating<br />

• Topography


Outline<br />

• <strong>Quantum</strong> <strong>Mechanics</strong> #1: blackbody radiation<br />

• QM #2: Why we aren’t freezing<br />

• QM #3: Deciphering ice and sediment records<br />

• Fluid Dynamics: Single layer models<br />

• Coriolis Force<br />

• Stratification & Differential Heating<br />

• Topography<br />

• <strong>Quantum</strong> field theory <strong>of</strong> global warming?


Outline<br />

• <strong>Quantum</strong> <strong>Mechanics</strong> #1: blackbody radiation<br />

• QM #2: Why we aren’t freezing<br />

• QM #3: Deciphering ice and sediment records<br />

• Fluid Dynamics: Single layer models<br />

• Coriolis Force<br />

• Stratification & Differential Heating<br />

• Topography<br />

• <strong>Quantum</strong> field theory <strong>of</strong> global warming?<br />

• Ecosystems and feedbacks


Crisis in 19th Century Classical Physics


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)<br />

[I] = W atts<br />

meter 2 = Joules<br />

m 2 s


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)<br />

[I] = W atts<br />

meter 2 = Joules<br />

m 2 s<br />

[k B T ] = J


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)<br />

[I] = W atts<br />

meter 2 = Joules<br />

m 2 s<br />

[k B T ] = J [ν] = 1 s


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)<br />

[I] = W atts<br />

meter 2 = Joules<br />

m 2 s<br />

[k B T ] = J [ν] = 1 s<br />

c = 3 × 10 8 m/s speed <strong>of</strong> light<br />

k B = 1.38 × 10 −23 J/K Boltzmann ′ s constant


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)<br />

[I] = W atts<br />

meter 2 = Joules<br />

m 2 s<br />

[k B T ] = J [ν] = 1 s<br />

c = 3 × 10 8 m/s speed <strong>of</strong> light<br />

k B = 1.38 × 10 −23 J/K Boltzmann ′ s constant<br />

∆I(T, ν) ∝ k BT ν 2<br />

∆ν<br />

c 2


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)<br />

[I] = W atts<br />

meter 2 = Joules<br />

m 2 s<br />

[k B T ] = J [ν] = 1 s<br />

c = 3 × 10 8 m/s speed <strong>of</strong> light<br />

k B = 1.38 × 10 −23 J/K Boltzmann ′ s constant<br />

∆I(T, ν) ∝ k BT ν 2<br />

c 2 ∆ν I =<br />

∞∑<br />

∆I(T, ν) → ∞<br />

ν=0


Crisis in 19th Century Classical Physics<br />

Intensity = function(T emperature, frequency)<br />

[I] = W atts<br />

meter 2 = Joules<br />

m 2 s<br />

[k B T ] = J [ν] = 1 s<br />

c = 3 × 10 8 m/s speed <strong>of</strong> light<br />

k B = 1.38 × 10 −23 J/K Boltzmann ′ s constant<br />

∆I(T, ν) ∝ k BT ν 2<br />

c 2 ∆ν I =<br />

∞∑<br />

∆I(T, ν) → ∞<br />

ν=0<br />

UV Catastrophe!


<strong>The</strong> Solution: Quanta


<strong>The</strong> Solution: Quanta<br />

Light is composed <strong>of</strong><br />

particles -- quanta --<br />

called photons.<br />

ɛ = hν Photons carry energy.<br />

h = 6.63 × 10 −34 Js Planck ′ s constant


<strong>The</strong> Solution: Quanta<br />

Light is composed <strong>of</strong><br />

particles -- quanta --<br />

called photons.<br />

ɛ = hν Photons carry energy.<br />

h = 6.63 × 10 −34 Js Planck ′ s constant<br />

New constant <strong>of</strong><br />

nature makes it<br />

possible to write<br />

the correct intensity.<br />

∆I(T, ν) = 2πhν3<br />

c 2 1<br />

e hν/k BT<br />

− 1 ∆ν<br />

→ 2πk BTν 2<br />

→<br />

c 2<br />

0 for ν →∞<br />

∆ν for k B T ≫ hν


<strong>The</strong> Solution: Quanta<br />

Light is composed <strong>of</strong><br />

particles -- quanta --<br />

called photons.<br />

ɛ = hν Photons carry energy.<br />

h = 6.63 × 10 −34 Js Planck ′ s constant<br />

New constant <strong>of</strong><br />

nature makes it<br />

possible to write<br />

the correct intensity.<br />

∆I(T, ν) = 2πhν3<br />

c 2 1<br />

e hν/k BT<br />

− 1 ∆ν<br />

→ 2πk BTν 2<br />

→<br />

c 2<br />

0 for ν →∞<br />

∆ν for k B T ≫ hν<br />

Now we can<br />

do that sum<br />

over frequency!<br />

I = σT 4<br />

σ ≡ 2π5 kB<br />

4 W<br />

15h 3 =5.67 × 10−8<br />

c2 m 2 K 4


∆I(T, ν) = 2πhν3<br />

c 2 1<br />

e hν/k BT<br />

− 1 ∆ν<br />

→ 2πk BTν 2<br />

→<br />

c 2<br />

0 for ν →∞<br />

∆ν for k B T ≫ hν<br />

Agree to better than<br />

1 part in 100,000


Temperature <strong>of</strong> the Earth<br />

Rsun<br />

<strong>The</strong> earth is (almost) in a thermal<br />

steady state: it emits as much radiation<br />

as it receives from the sun.<br />

r E<br />

RE


Temperature <strong>of</strong> the Earth<br />

Rsun<br />

<strong>The</strong> earth is (almost) in a thermal<br />

steady state: it emits as much radiation<br />

as it receives from the sun.<br />

r E<br />

Albedo = a = 30%visible light<br />

reflected directly back to space<br />

(“earthshine” on the new moon).<br />

RE


Temperature <strong>of</strong> the Earth<br />

Rsun<br />

<strong>The</strong> earth is (almost) in a thermal<br />

steady state: it emits as much radiation<br />

as it receives from the sun.<br />

r E<br />

Albedo = a = 30%visible light<br />

reflected directly back to space<br />

(“earthshine” on the new moon).<br />

fraction = πR2 E<br />

4πr 2 E<br />

× (1 − a)<br />

RE


Energy Balance<br />

Luminosity = Area × Intensity<br />

= 4πR 2 sun × σT 4 sun


Energy Balance<br />

Luminosity = Area × Intensity<br />

= 4πR 2 sun × σT 4 sun<br />

incoming<br />

energy flux


Energy Balance<br />

Luminosity = Area × Intensity<br />

= 4πR 2 sun × σT 4 sun<br />

incoming<br />

energy flux<br />

πR 2 E<br />

4πr 2 E<br />

(1 − a) 4πR 2 sun σT 4 sun = 4πR 2 E σT 4 E


Energy Balance<br />

Luminosity = Area × Intensity<br />

= 4πR 2 sun × σT 4 sun<br />

Space<br />

incoming<br />

energy flux<br />

outgoing<br />

energy flux (IR)<br />

πR 2 E<br />

4πr 2 E<br />

(1 − a) 4πR 2 sun σT 4 sun = 4πR 2 E σT 4 E


Energy Balance<br />

Luminosity = Area × Intensity<br />

= 4πR 2 sun × σT 4 sun<br />

Space<br />

incoming<br />

energy flux<br />

outgoing<br />

energy flux (IR)<br />

πR 2 E<br />

4πr 2 E<br />

(1 − a) 4πR 2 sun σT 4 sun = 4πR 2 E σT 4 E


Energy Balance<br />

Luminosity = Area × Intensity<br />

= 4πR 2 sun × σT 4 sun<br />

Space<br />

incoming<br />

energy flux<br />

outgoing<br />

energy flux (IR)<br />

πR 2 E<br />

4πr 2 E<br />

(1 − a) 4πR 2 sun σT 4 sun = 4πR 2 E σT 4 E<br />

r E = 150 × 10 9 m<br />

R sun = 6.96 × 10 8 m<br />

T sun = 5, 800K


Energy Balance<br />

Luminosity = Area × Intensity<br />

incoming<br />

energy flux<br />

= 4πR 2 sun × σT 4 sun<br />

Space<br />

outgoing<br />

energy flux (IR)<br />

πR 2 E<br />

4πr 2 E<br />

(1 − a) 4πR 2 sun σT 4 sun = 4πR 2 E σT 4 E<br />

r E = 150 × 10 9 m<br />

R sun = 6.96 × 10 8 m<br />

T sun = 5, 800K<br />

√<br />

T E = (1 − a) 1/4 Rsun<br />

2r E<br />

≈ 251K = −22C<br />

T sun


Energy Balance<br />

Luminosity = Area × Intensity<br />

incoming<br />

energy flux<br />

= 4πR 2 sun × σT 4 sun<br />

Space<br />

outgoing<br />

energy flux (IR)<br />

πR 2 E<br />

4πr 2 E<br />

(1 − a) 4πR 2 sun σT 4 sun = 4πR 2 E σT 4 E<br />

r E = 150 × 10 9 m<br />

R sun = 6.96 × 10 8 m<br />

T sun = 5, 800K<br />

√<br />

T E = (1 − a) 1/4 Rsun<br />

2r E<br />

≈ 251K = −22C<br />

T sun<br />

FREEZING


Terrestrial Planets


Planet Earth Mars Venus<br />

calculated<br />

temperature<br />

actual<br />

temperature<br />

-18 0 C -56 0 C -39 0 C<br />

15 0 C -53 0 C 427 0 C<br />

greenhouse<br />

warming 33 0 C 3 0 C 466 0 C


Planet Earth Mars Venus<br />

calculated<br />

temperature<br />

actual<br />

temperature<br />

-18 0 C -56 0 C -39 0 C<br />

15 0 C -53 0 C 427 0 C<br />

greenhouse<br />

warming 33 0 C 3 0 C 466 0 C


Planet Earth Mars Venus<br />

calculated<br />

temperature<br />

actual<br />

temperature<br />

-18 0 C -56 0 C -39 0 C<br />

15 0 C -53 0 C 427 0 C<br />

greenhouse<br />

warming 33 0 C 3 0 C 466 0 C


Planet Earth Mars Venus<br />

calculated<br />

temperature<br />

actual<br />

temperature<br />

-18 0 C -56 0 C -39 0 C<br />

15 0 C -53 0 C 427 0 C<br />

greenhouse<br />

warming 33 0 C 3 0 C 466 0 C<br />

Water Vapour: 65% Carbon Dioxide: 21%


Why We Aren’t Freezing<br />

from Climate Change 1995: <strong>The</strong> Science <strong>of</strong> Climate Change


H2O<br />

hν<br />

-<br />

+ +<br />

hν<br />

hν = Ef - Ei


H2O<br />

hν<br />

-<br />

+ +<br />

hν<br />

hν = Ef - Ei<br />

CO2<br />

- +<br />

-


H2O<br />

hν<br />

-<br />

+ +<br />

hν<br />

hν = Ef - Ei<br />

CO2<br />

N2<br />

O2<br />

Ar<br />

- +<br />

-<br />

Transparent


Principal greenhouse<br />

gas: water vapor<br />

Secondary: carbon<br />

dioxide, methane,<br />

CFC’s, …<br />

Robert A. Rohde for the <strong>Global</strong> <strong>Warming</strong> Art project


Principal greenhouse<br />

gas: water vapor<br />

Secondary: carbon<br />

dioxide, methane,<br />

CFC’s, …<br />

Absorption lines are<br />

pressure-broadened<br />

Robert A. Rohde for the <strong>Global</strong> <strong>Warming</strong> Art project


Principal greenhouse<br />

gas: water vapor<br />

Secondary: carbon<br />

dioxide, methane,<br />

CFC’s, …<br />

Absorption lines are<br />

pressure-broadened<br />

IR photons are on<br />

average absorbed and<br />

emitted about 2x on<br />

way out to space<br />

Robert A. Rohde for the <strong>Global</strong> <strong>Warming</strong> Art project


John Harte, Consider a Spherical Cow


Ω = 1372 W/m 2<br />

John Harte, Consider a Spherical Cow


John Harte, Consider a Spherical Cow<br />

Ω = 1372 W/m 2 Ω<br />

4<br />

= a Ω 4 + σT 4 0 + F w<br />

2σT 4 0 = σT 4 1 + 0.5F e + 0.7F s<br />

2σT 4 1 = σT 4 0 + σT 4 s − F w + F c + 0.5F e + 0.3F s


John Harte, Consider a Spherical Cow<br />

Ω = 1372 W/m 2 Ω<br />

4<br />

= a Ω 4 + σT 4 0 + F w<br />

2σT0 4 = σT1 4 + 0.5F e + 0.7F s<br />

2σT1 4 = σT0 4 + σTs 4 − F w + F c + 0.5F e + 0.3F s<br />

F s ≈ 86 W/m 2 Solar flux absorbed by atmosphere<br />

F e ≈ 80 W/m 2 Latent heat from evaporating water<br />

F w ≈ 20 W/m 2 IR flux directly to space<br />

F c ≈ 17 W/m 2 Convective heat transfer


John Harte, Consider a Spherical Cow<br />

Ω = 1372 W/m 2 Ω<br />

4<br />

= a Ω 4 + σT 4 0 + F w<br />

2σT 4 0 = σT 4 1 + 0.5F e + 0.7F s<br />

2σT1 4 = σT0 4 + σTs 4 − F w + F c + 0.5F e + 0.3F s<br />

T<br />

F s ≈ 86 W/m 2 0 = 250K<br />

Solar flux absorbed by atmosphere<br />

T<br />

F e ≈ 80 W/m 2 1 = 278K<br />

Latent heat from evaporating water<br />

T<br />

F w ≈ 20 W/m 2 s = 289K = 16C<br />

IR flux directly to space<br />

F c ≈ 17 W/m 2 Convective heat transfer<br />

Excellent agreement<br />

for such a simple model


Tropopause<br />

Z e Z e + !Z e<br />

Held & Soden (2000)<br />

Altitude<br />

1xCO 2<br />

2xCO 2<br />

Temperature<br />

T e<br />

T s<br />

T s + !T s<br />

Figure 1 Schematic illustration <strong>of</strong> the change in emission level (Z e ) associated with an<br />

increase in surface temperature (T s ) due to a doubling <strong>of</strong> CO 2 assuming a fixed atmospheric<br />

lapse rate. Note that the effective emission temperature (T e ) remains unchanged.


<strong>The</strong> Past 160,000 Years<br />

J. M. Barnola et al., Nature 329, 408 (1987)<br />

Carbon Dioxide<br />

Temperature<br />

Present


<strong>Quantum</strong> Zero-Point Motion<br />

(Harold Urey, “<strong>The</strong> thermodynamic properties <strong>of</strong> isotopic substances,” 1946)


<strong>Quantum</strong> Zero-Point Motion<br />

Classically: All motion ceases at absolute zero temperature.<br />

Everything freezes into a solid.<br />

(Harold Urey, “<strong>The</strong> thermodynamic properties <strong>of</strong> isotopic substances,” 1946)


<strong>Quantum</strong> Zero-Point Motion<br />

Classically: All motion ceases at absolute zero temperature.<br />

Everything freezes into a solid.<br />

<strong>Quantum</strong> physics: <strong>The</strong>re is still some motion even at T = 0.<br />

This is why liquid helium never freezes!<br />

(Harold Urey, “<strong>The</strong> thermodynamic properties <strong>of</strong> isotopic substances,” 1946)


<strong>Quantum</strong> Zero-Point Motion<br />

Classically: All motion ceases at absolute zero temperature.<br />

Everything freezes into a solid.<br />

<strong>Quantum</strong> physics: <strong>The</strong>re is still some motion even at T = 0.<br />

This is why liquid helium never freezes!<br />

Small mass --> large<br />

quantum zero-point<br />

motion and energy.<br />

ν = 1<br />

2π<br />

√<br />

2k<br />

m<br />

E 0 = 1 2 hν<br />

m<br />

k<br />

m<br />

He<br />

(Harold Urey, “<strong>The</strong> thermodynamic properties <strong>of</strong> isotopic substances,” 1946)


<strong>Quantum</strong> Zero-Point Motion<br />

Classically: All motion ceases at absolute zero temperature.<br />

Everything freezes into a solid.<br />

<strong>Quantum</strong> physics: <strong>The</strong>re is still some motion even at T = 0.<br />

This is why liquid helium never freezes!<br />

Small mass --> large<br />

quantum zero-point<br />

motion and energy.<br />

ν = 1<br />

2π<br />

√<br />

2k<br />

m<br />

E 0 = 1 2 hν<br />

m<br />

k<br />

m<br />

He<br />

18O versus 16O in H2O: Classically both molecules have same energy.<br />

<strong>Quantum</strong> zero-point energy means that 18O water is slightly less likely<br />

to evaporate during cold spells.<br />

(Harold Urey, “<strong>The</strong> thermodynamic properties <strong>of</strong> isotopic substances,” 1946)


S. J. Johnsen et al. Tellus 41B, 452 (1989)


Eccentricity: 100 and 413 kyr<br />

N<br />

S


α Draconis<br />

(2000 BC)<br />

Polaris<br />

(now)<br />

Precession: 19 to 23 kyr<br />

Eccentricity: 100 and 413 kyr<br />

N<br />

S


α Draconis<br />

(2000 BC)<br />

Polaris<br />

(now)<br />

Precession: 19 to 23 kyr<br />

Eccentricity: 100 and 413 kyr<br />

N<br />

23.5o (now)<br />

ecliptic<br />

S<br />

Change in tilt <strong>of</strong> axis<br />

“obliquity”: 41 kyr


Spectral Analysis <strong>of</strong> Isotope Records<br />

Figures from Ice Ages and<br />

Astronomical Causes: Data,<br />

Spectral Analysis, and Mechanisms<br />

by R. Muller and G. MacDonald


Spectral Analysis <strong>of</strong> Isotope Records<br />

Figures from Ice Ages and<br />

Astronomical Causes: Data,<br />

Spectral Analysis, and Mechanisms<br />

by R. Muller and G. MacDonald


What amplifies orbital<br />

forcing to produce<br />

ice ages?


What amplifies orbital<br />

forcing to produce<br />

ice ages?<br />

Why does 100 kyr<br />

eccentricity period<br />

dominate climate signal?


What amplifies orbital<br />

forcing to produce<br />

ice ages?<br />

Why does 100 kyr<br />

eccentricity period<br />

dominate climate signal?<br />

Why did the 41 kyr<br />

period dominate 1.5<br />

million years ago?


Martian Climate May Also<br />

Show Orbital Forcing<br />

North Polar Cap <strong>of</strong> Mars<br />

Laskar, Levrard, and Mustard,<br />

Nature 419, 375 (2002); Head<br />

et al. Nature 426, 797 (2003).


D. Lüthi et al. Nature 453, 379 (2008)<br />

26


LIDE 7<br />

Ice Age Climate Forcings (W/m 2 )<br />

aerosols<br />

greenhouse<br />

ice sheets gases<br />

&<br />

vegetation CO 2<br />

-0.5 ± 1<br />

CH 4<br />

N 2 O<br />

-2.6 ± 0.5<br />

-3.5 ± 1<br />

Fig 2. <strong>Global</strong> radiative forcings during the last ice age relative to the current<br />

interglacial period. <strong>The</strong> total forcing is -6.6 ± 1.5 W/m 2 . Thus, the 5°C cooling<br />

<strong>of</strong> the ice age implies a climate sensitivity <strong>of</strong> 0.75°C per 1 W/m 2 forcing.<br />

Hansen, J. et al., <strong>The</strong> missing climate forcing, Phil. Trans. R. Soc. London. B, 352, 231-240, 1997.


Atmospheric Dynamics<br />

from Climate Change 1995:<br />

<strong>The</strong> Science <strong>of</strong> Climate Change


Single Layer Models


Single Layer Models<br />

Dω<br />

Dt =0


Single Layer Models<br />

Vorticity<br />

Dω<br />

Dt =0<br />

ω = ˆr · ( ⃗ ∇×⃗v)


Single Layer Models<br />

Vorticity<br />

Dω<br />

Dt =0<br />

ω = ˆr · ( ⃗ ∇×⃗v)<br />

∂ω<br />

∂t + ⃗v · ⃗∇ω =0<br />

⃗v = ˆr × ⃗ ∇ψ<br />

⃗∇· ⃗v = 0<br />

ω = ∇ 2 ψ


Single Layer Models<br />

Vorticity<br />

Dω<br />

Dt =0<br />

ω = ˆr · ( ⃗ ∇×⃗v)<br />

∂ω<br />

∂t + ⃗v · ⃗∇ω =0<br />

∂ω<br />

∂t<br />

+ J(ψ, ω) = 0<br />

⃗v = ˆr × ⃗ ∇ψ<br />

⃗∇· ⃗v = 0<br />

J(ψ, ω) ≡ ∂ψ<br />

∂x<br />

∂ω<br />

∂y − ∂ψ<br />

∂y<br />

∂ω<br />

∂x<br />

ω = ∇ 2 ψ


Freely Decaying Turbulence<br />

on Sphere


Coriolis Force


Coriolis Force<br />

∂q<br />

∂t<br />

+ J(ψ, q) = 0


Coriolis Force<br />

∂q<br />

∂t<br />

+ J(ψ, q) = 0<br />

Relative vorticity<br />

q = ω + f<br />

Coriolis term<br />

Absolute<br />

vorticity<br />

= ∇ 2 ψ + f


Coriolis Force<br />

∂q<br />

∂t<br />

+ J(ψ, q) = 0<br />

Relative vorticity<br />

q = ω + f<br />

Coriolis term<br />

Absolute<br />

vorticity<br />

= ∇ 2 ψ + f<br />

f = 2Ω sin(φ)


Coriolis Force


Chelton et al., Science 303, 978 (2004)


Stratification


Stratification<br />

q = ∇ 2 ψ + f − ψ l 2 R


Stratification<br />

q = ∇ 2 ψ + f − ψ l 2 R<br />

l 2 R = gh<br />

f 2


Stratification<br />

q = ∇ 2 ψ + f − ψ l 2 R<br />

l 2 R = gh<br />

f 2<br />

h<br />

l R = O(1, 000 km)


Stratification Sets Synoptic Length<br />

Scale


Stratification Sets Synoptic Length<br />

Scale


7. <strong>The</strong> NADW Meridional Cell and Deep Western Boundary Current<br />

b -,c.<br />

Q. '"<br />

=~ ,,-a<br />

Figure 1-91 : A new version <strong>of</strong><br />

Figure 1-90 with schematic<br />

meridional sections <strong>of</strong><br />

interbasin flow for each ocean<br />

with their global linkages.<br />

SAMW<br />

AAIW<br />

RSOW<br />

AABW<br />

NPDW<br />

AAC<br />

CDW<br />

NADW<br />

UPPER IW<br />

IODW<br />

Subantarctic Mode Water<br />

Antarctic Intermediate Water<br />

Red Sea Overflow Water<br />

Antarctic Bottom Water<br />

North Pacific Deep Water<br />

Antarctic Circumpolar Current<br />

Circumpolar Deep Water<br />

North Atlantic Deep Water<br />

26.8:: (Je:: 27.25<br />

Indian Ocean Deep Water<br />

W. J. Schmitz, WHOI technical report 96-03<br />

<strong>The</strong>re is a recent review article on NADW (Fine, 1995) containing a schematic


City Latitude January ( o F) August ( o F)<br />

Glasgow 56 o 34 to 45 52 to 64<br />

Sitka 57 o 30 to 38 52 to 62


City Latitude January ( o F) August ( o F)<br />

Glasgow 56 o 34 to 45 52 to 64<br />

Sitka 57 o 30 to 38 52 to 62


City Latitude January ( o F) August ( o F)<br />

Glasgow 56 o 34 to 45 52 to 64<br />

Sitka 57 o 30 to 38 52 to 62


Topography & Angular Momentum<br />

Richard Seager, “<strong>The</strong> Source <strong>of</strong> Europe’s Mild<br />

Climate,” American Scientist (July-August 2006)


<strong>Quantum</strong> Field <strong>The</strong>ory<br />

<strong>of</strong> <strong>Global</strong> <strong>Warming</strong>?<br />

"More than any other theoretical procedure,<br />

numerical integration is also subject to the criticism<br />

that it yields little insight into the problem. <strong>The</strong><br />

computed numbers are not only processed like data<br />

but they look like data, and a study <strong>of</strong> them may be<br />

no more enlightening than a study <strong>of</strong> real<br />

meteorological observations. An alternative<br />

procedure which does not suffer this disadvantage<br />

consists <strong>of</strong> deriving a new system <strong>of</strong> equations<br />

whose unknowns are the statistics themselves."<br />

Edward Lorenz, <strong>The</strong> Nature and <strong>The</strong>ory <strong>of</strong> the General Circulation (1967)


PV = nRT


PV = nRT<br />

<strong>The</strong>rmodynamics vs. Statistical <strong>Mechanics</strong>


PV = nRT<br />

<strong>The</strong>rmodynamics vs. Statistical <strong>Mechanics</strong><br />

Equilibrium vs. Out-<strong>of</strong>-Equilibrium


PV = nRT<br />

<strong>The</strong>rmodynamics vs. Statistical <strong>Mechanics</strong><br />

Equilibrium vs. Out-<strong>of</strong>-Equilibrium


Hopf Functional Approach


Hopf Functional Approach<br />

dx<br />

dt = x2


Hopf Functional Approach<br />

dx<br />

dt = x2<br />

Ψ(t, u) ≡ e iux(t)


Hopf Functional Approach<br />

dx<br />

dt = x2<br />

Ψ(t, u) ≡ e iux(t)<br />

i ∂ ∂t<br />

Ψ= u<br />

∂2<br />

∂u 2 Ψ


Hopf Functional Approach<br />

dx<br />

dt = x2<br />

Ψ(t, u) ≡ e iux(t)<br />

i ∂ ∂t<br />

Ψ= u<br />

∂2<br />

∂u 2 Ψ<br />

i ∂ ∂t<br />

Ψ= u<br />

∂2<br />

∂u 2 Ψ


Hopf Functional Approach<br />

dx<br />

dt = x2<br />

Ψ(t, u) ≡ e iux(t)<br />

i ∂ ∂t<br />

Ψ= u<br />

∂2<br />

∂u 2 Ψ<br />

i ∂ ∂t<br />

Ψ= u<br />

∂2<br />

∂u 2 Ψ<br />

ĤΨ 0 = 0<br />

Ψ 0 (u) = exp{iu〈x〉− 1 2! u2 (〈x 2 〉−〈x〉 2 )+...}<br />

〈x〉 = −i ∂Ψ 0(u)<br />

∂u<br />

∣<br />

u=0


A. Sanchez-Lavega et al. Nature 451, 437 (2008)


0<br />

A. Sanchez-Lavega et al. Nature 451, 437 (2008)<br />

10 -6 -40<br />

Mean Zonal Velocity


0<br />

A. Sanchez-Lavega et al. Nature 451, 437 (2008)<br />

Mean Zonal Velocity


Direct Numerical Simulation <strong>of</strong> Jet<br />

jet relaxation time = 25 days<br />

J. B. M, E. Conover, and T. Schneider, J. Atmos. Sci. 65, 1955 (2008)


Direct Numerical Simulation <strong>of</strong> Jet<br />

jet relaxation time = 25 days<br />

FIG. J. 1. B. Absolute M, E. Conover, vorticity qand as calculated T. Schneider, by DNS J. Atmos. for a jetSci. relaxation 65, 1955 time(2008)<br />

<strong>of</strong> τ = 25 days


1.5625 days<br />

12.5 days<br />

3.125 days<br />

25 days<br />

6.25 days<br />

50 days


10 -5 -10<br />

10<br />

8<br />

(a)<br />

Mean Absolute Vorticity (1/s)<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

! = 0 days<br />

DNS: ! = 1.5625 days<br />

CE: ! = 1.5625 days<br />

DNS: ! = 3.125 days<br />

CE: ! = 3.125 days<br />

DNS: ! = 6.25 days<br />

CE: ! = 6.25 days<br />

DNS: ! = 25 days<br />

CE: ! = 25 days<br />

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70<br />

Latitude (degrees)<br />

10 -6 -20<br />

20<br />

15<br />

(b)<br />

Mean Absolute Vorticity (1/s)<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Latitude (degrees)


2nd Cumulant = 2-point Correlation Function


25 days


Ecosystems & Feedbacks<br />

C. D. Keeling and T. P. Whorf<br />

Hawaii<br />

Antarctica


Ecosystems & Feedbacks<br />

C. D. Keeling and T. P. Whorf<br />

Amplitude <strong>of</strong><br />

seasonal cycle<br />

is growing.<br />

Hawaii<br />

Antarctica


Vast Reservoirs <strong>of</strong> Carbon & Enormous Fluxes<br />

Source: Climate Change 1995


J. B. Marston, M. Oppenheimer, R. M. Fujita, and S. R. Gaffin, “CO2 and temperature”<br />

Nature 349, 573 (1991).


Physics <strong>of</strong> Feedbacks<br />

Input (I)<br />

System<br />

Output (O)<br />

gain (g)


Physics <strong>of</strong> Feedbacks<br />

Input (I)<br />

System<br />

Output (O)<br />

gain (g)<br />

O = I + gI + ggI + ···<br />

=<br />

I<br />

1 − g<br />

if g


Physics <strong>of</strong> Feedbacks<br />

Input (I)<br />

System<br />

Output (O)<br />

gain (g)<br />

O = I + gI + ggI + ···<br />

=<br />

I<br />

1 − g<br />

if g


Some Feedbacks Already Included in Models


Some Feedbacks Already Included in Models<br />

Feedback Process<br />

Gain g<br />

water vapor 0.40 (0.28 to 0.52)<br />

ice & snow 0.09 (0.03 to 0.21)<br />

clouds 0.22 (-0.12 to 0.29)<br />

Total 0.71 (0.17 to 0.77)


Some Feedbacks Already Included in Models<br />

Feedback Process<br />

Gain g<br />

water vapor 0.40 (0.28 to 0.52)<br />

ice & snow 0.09 (0.03 to 0.21)<br />

clouds 0.22 (-0.12 to 0.29)<br />

Total 0.71 (0.17 to 0.77)


Some Feedbacks Already Included in Models<br />

Feedback Process<br />

Gain g<br />

water vapor 0.40 (0.28 to 0.52)<br />

ice & snow 0.09 (0.03 to 0.21)<br />

clouds 0.22 (-0.12 to 0.29)<br />

Total 0.71 (0.17 to 0.77)


Some Feedbacks Already Included in Models<br />

Feedback Process<br />

Gain g<br />

water vapor 0.40 (0.28 to 0.52)<br />

ice & snow 0.09 (0.03 to 0.21)<br />

clouds 0.22 (-0.12 to 0.29)<br />

Total 0.71 (0.17 to 0.77)


Some Feedbacks Already Included in Models<br />

Feedback Process<br />

Gain g<br />

water vapor 0.40 (0.28 to 0.52)<br />

ice & snow 0.09 (0.03 to 0.21)<br />

clouds 0.22 (-0.12 to 0.29)<br />

Total 0.71 (0.17 to 0.77)


Some Feedbacks Already Included in Models<br />

Feedback Process<br />

Gain g<br />

water vapor 0.40 (0.28 to 0.52)<br />

ice & snow 0.09 (0.03 to 0.21)<br />

clouds 0.22 (-0.12 to 0.29)<br />

Total 0.71 (0.17 to 0.77)<br />

∆T ≈ 1 ◦ C/(1 − 0.71) ≈ 3.4 ◦ C


IPCC 2001


IPCC 2001


<strong>Global</strong> Carbon Cycle<br />

Small change in g causes large ΔT<br />

Asymmetries<br />

Decrease in warming due<br />

to ecosystem feedbacks<br />

Extra warming due to<br />

ecosystem feedbacks<br />

ΔT (ºC)<br />

due to<br />

feedback<br />

2×CO 2 g = 0.7<br />

(no eco feedbacks)<br />

Change in g<br />

due to ecosystem feedbacks<br />

M.S. Torn, LBNL


An estimate <strong>of</strong> the contribution to g from Vostok core data:<br />

Torn and Harte, GRL33,<br />

L10703 (2006)<br />

CO 2 (ppm)<br />

Holocene CO 2 -Temp coupling<br />

General<br />

Circulation<br />

Models<br />

M.S. Torn, LBNL<br />

Data Cuffey & Vimeux 2002<br />

ΔT (K)<br />

g CO2 = ∂T<br />

∂[CO 2 ] · ∂[CO 2]<br />

∂T<br />

= 1◦ C<br />

275ppmv · 14.6ppmv<br />

1 ◦ C<br />

=0.053<br />

1 o C/(1 - .71) = 3.4 o C<br />

1 o C/(1 - .71 – .05) = 4.2 o C<br />

But where is the carbon<br />

coming from?


(a)<br />

.6<br />

.4<br />

<strong>Global</strong> Temperature Change (C)<br />

Annual Mean<br />

5-year Mean<br />

.2<br />

.0<br />

-.2<br />

-.4<br />

1880 1900 1920 1940 1960 1980 2000


Source: <strong>Global</strong> <strong>Warming</strong> Art


What Can Modern Physics Contribute?


What Can Modern Physics Contribute?<br />

Aspen Center for Physics<br />

Summer 2005 Workshop<br />

Novel Approaches To Climate<br />

Funding: NSF, BP Research, & ICAM<br />

John Harte’s long-term ecosystem heating<br />

experiment at the Rocky Mountain<br />

Biological Laboratory near Aspen.


What Can Modern Physics Contribute?<br />

Aspen Center for Physics<br />

Summer 2005 Workshop<br />

Novel Approaches To Climate<br />

Funding: NSF, BP Research, & ICAM<br />

Kavli Institute for <strong>The</strong>oretical Physics<br />

Physics <strong>of</strong> Climate Change<br />

April 28 -- July 11, 2008<br />

Frontiers <strong>of</strong> Climate Science<br />

& Engineering the Earth<br />

May 6 -- 10, 2008<br />

John Harte’s long-term ecosystem heating<br />

experiment at the Rocky Mountain<br />

Biological Laboratory near Aspen.<br />

Co-organizers:<br />

J. Carlson, G. Falkovich, J. Harte,<br />

J. B. Marston, and R. Pierrehumbert


“Human beings are now<br />

carrying out a large scale<br />

geophysical experiment <strong>of</strong> a<br />

kind that could not have<br />

happened in the past nor be<br />

reproduced in the future.<br />

Within a few centuries we are<br />

returning to the atmosphere<br />

and oceans the concentrated<br />

organic carbon stored in<br />

sedimentary rocks over<br />

hundreds <strong>of</strong> millions <strong>of</strong> years.<br />

(Revelle and Suess, 1957)


scent <strong>of</strong> the n 5/3<br />

tional data near the<br />

but here it is more<br />

eractions prevent a<br />

all length scales.<br />

nergy spectrum is<br />

tions over a wide<br />

paradox that the<br />

wer-law decay that<br />

in an inertial range<br />

in the atmospheric<br />

elated to eddy-eddy<br />

other terms would<br />

spectrum. We also<br />

eter settings in the<br />

d and Suarez, 1994]<br />

layer schemes and<br />

, our results for the<br />

artifacts <strong>of</strong> specific<br />

. <strong>The</strong> approximate<br />

ut eddy-eddy interventional<br />

enstrophy<br />

nent plays a central<br />

t this is difficult to<br />

erms in the spectral<br />

nly considered the<br />

s may apply to the<br />

Figure 3. Mean eastward wind (m s 1 ) in the meridional<br />

plane in (a) the full simulation and (b) the simulation<br />

without eddy-eddy interactions. <strong>The</strong> mean is a zonal, time,<br />

and interhemispheric average with mass weighting. <strong>The</strong><br />

thick solid lines are the zero-wind lines.


Antarctic Dome C<br />

Siegenthaler et al. Science 310, 1313 (2005)


Antarctic Dome C<br />

Siegenthaler et al. Science 310, 1313 (2005)


Lake Mead

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!