22.02.2014 Views

Advanced Modulation For High Data Rate Optical ... - Infinera

Advanced Modulation For High Data Rate Optical ... - Infinera

Advanced Modulation For High Data Rate Optical ... - Infinera

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Advanced</strong> <strong>Modulation</strong> <strong>For</strong> <strong>High</strong><br />

<strong>Data</strong> <strong>Rate</strong> <strong>Optical</strong> Transmission:<br />

100G and Beyond<br />

Leigh Wade, <strong>Infinera</strong>


The State of the Market Today<br />

800G<br />

• 10Gb/s<br />

• NRZ<br />

• C-band<br />

80 ch. @ 10G = 800G<br />

More<br />

channels<br />

<strong>High</strong>er<br />

<strong>Data</strong> <strong>Rate</strong>s<br />

More<br />

Spectrum<br />

I will propose that photonic integration<br />

is an excellent solution to all three<br />

capacity challenges


Lower Cost per Bit<br />

Why do we need<br />

more than 800G?<br />

<strong>High</strong>er Speed Services<br />

More Capacity


Cost per Usable Bit<br />

Fiber Exhaust & Network Economics<br />

10G λ<br />

40G λ<br />

You want to move<br />

to 40G here…<br />

Excess<br />

cost<br />

100G λ<br />

…but what if you hit<br />

fiber exhaust here?<br />

Time<br />

Fiber exhaust can force uneconomic network decisions


Double Density Optics Mean Investment Protection<br />

and “Option Value”<br />

Conventional 80-96 λ WDM<br />

<strong>Infinera</strong> “Double Density” WDM<br />

1 λ per 50 GHz<br />

800G in the C-band<br />

1 λ per 25 GHz<br />

1.6T in the C-band<br />

At 40% bandwidth growth, double-density optics mean<br />

two more years to select the lowest cost transmission.


Why doesn’t everybody offer Double Density?<br />

Two basic reasons:<br />

WSS ROADMs<br />

designed<br />

around 50GHz<br />

spacing<br />

Operational challenge of 160 discrete<br />

transponders on a single fiber!!


What are you going to see?<br />

Adding a single PICbased<br />

line card, with<br />

10x10Gb/s waves<br />

100Gb/s of capacity for<br />

the same effort as one<br />

10Gb/s transponder<br />

“Gaps” for<br />

additional waves<br />

<strong>Optical</strong><br />

Spectrum<br />

Analyzer<br />

Existing 10G waves<br />

on the fiber<br />

Stopwatch


PICs reduce operational burden by 10x<br />

But the rest of the optical industry<br />

does not have access to PICs so…<br />

They are under pressure to move to<br />

40G and 100G as soon as possible<br />

Not necessarily when it’s economical!


100G Technology Features<br />

Differentiators<br />

3<br />

2<br />

1<br />

Core Switching & Grooming<br />

Large Scale PICs<br />

Photonic Integration<br />

Table<br />

Stakes<br />

<strong>Advanced</strong><br />

<strong>Modulation</strong><br />

Fiber Capacity<br />

Coherent<br />

Detection<br />

<strong>High</strong> Gain FEC


Complex modulation requires<br />

complex optical circuits


Why do I need Complex <strong>Modulation</strong>?<br />

<strong>Optical</strong> transmission is about:<br />

• Sending high data rates<br />

• Over very long distances<br />

• <strong>For</strong> very little money<br />

Our biggest problem is optical fiber:<br />

• Loss<br />

• Dispersion<br />

• Modal dispersion<br />

• Chromatic dispersion<br />

• Polarization mode dispersion<br />

• Non-linear effects<br />

• Self phase modulation<br />

• Cross phase modulation<br />

• Four wave mixing<br />

If you stress any one of these variables, the<br />

others will respond<br />

<strong>For</strong> a given modulation type, the<br />

gross magnitude of these<br />

impairments scales roughly with<br />

the square of the symbol rate


Think of a light wave...<br />

Oscillating wave<br />

Wavelength<br />

• 1550nm<br />

Frequency<br />

• 193.1 THz<br />

Electronics is about 20,000 times<br />

“too slow” for direct detection of<br />

“wave properties”<br />

“State of the shelf”<br />

electronics can process at<br />

~10GHz


So how do we encode and detect signals on<br />

an optical carrier?<br />

Historically, used amplitude modulation<br />

Measures the strength of a large number of waves<br />

On/Off Keying (OOK) may interpret the presence of a<br />

signal as a “1”, and the absence of a symbol as a “0”


1 bit per symbol: NRZ <strong>Modulation</strong><br />

Rx<br />

Laser<br />

Modulator<br />

Detector<br />

NRZ<br />

Tx<br />

Simple modulation technique<br />

Easy to implement<br />

Low power use<br />

But very sensitive to fiber impairments<br />

as bitrate increases<br />

• This is what we’re talking about with the “square”<br />

relationship<br />

Increasing power will trigger non-linear<br />

effects


Phase Shift Keying<br />

In-phase Out of phase Interference<br />

patterns<br />

Phase is fundamental property of waves<br />

• Two waves in-phase when the peaks & troughs line up<br />

• We say that such waves are coherent<br />

• If non-coherent waves combine we see:<br />

• Reinforcement, cancellation, interference<br />

Interference can be used to extract a lower frequency<br />

modulation from a high frequency carrier


Using Phase to Apply a Signal<br />

Tx<br />

Laser generates a<br />

constant carrier<br />

LD<br />

MZI<br />

The carriers travel<br />

over different paths<br />

When the carriers<br />

recombine they will<br />

“contain” the data signal<br />

encoded as a series of<br />

phase changes<br />

The carrier is<br />

split into 2<br />

S<br />

Can apply a data signal,<br />

S, to vary the delay on<br />

one of the arms<br />

Rx Q:<br />

How do we recover the data signal at the receiver?<br />

Hold that thought!


Component Complexity<br />

Tx<br />

Rx<br />

Part 1<br />

The Transmitter


ODB <strong>Modulation</strong> (<strong>Optical</strong> Duo-Binary)<br />

Rx<br />

Laser MZ Modulator<br />

Detector<br />

ODB<br />

Tx<br />

First generation 40G modulation scheme<br />

Phase & Amplitude based modulation<br />

• Requires MZ modulator<br />

• Can use simple, direct detection<br />

Much more tolerant of dispersion<br />

Limited reach<br />

Widely used by 1st Gen 40G<br />

• Stratalight, Mintera


1 bit per symbol: DPSK<br />

1 0<br />

Re{Ex}<br />

Most basic phase modulation technique<br />

Differential technique allows phase slips to be ignored<br />

Used by OpNext & Mintera, and their OEMs<br />

AKA: BPSK, where local oscillator coherent detection is used


2 bits per symbol: Quadrature PSK<br />

<strong>Advanced</strong> modulation, 4 phase states = 2 bits<br />

More bits per symbol


2 bits per symbol: Quadrature PSK<br />

1,1<br />

0,1<br />

1,0<br />

0,0<br />

<strong>Advanced</strong> modulation, 4 phase states = 2 bits<br />

More bits per symbol


3 bits per symbol: 8-PSK<br />

...And higher orders of modulation<br />

0,1,1<br />

0,1,0<br />

1,1,0<br />

0,0,1<br />

1,1,1<br />

0,0,0<br />

1,0,0<br />

1,0,1<br />

8 phase states = 3 bits<br />

Twice as complex, but only 50% more bits<br />

<strong>For</strong> discrete implementations, 8-PSK seems to be too complex


The Law of Diminishing Returns<br />

Phase States vs Component Complexity<br />

Complexity Factor<br />

Let’s set a circuit complexity factor of 1, to be the<br />

equivalent of a simple DPSK transponder<br />

9<br />

8<br />

7<br />

Is there a better way to<br />

get to more bit/Hz?<br />

16x<br />

32x 9<br />

8<br />

7<br />

6<br />

6<br />

Bit/Hz<br />

5<br />

4<br />

5<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

DPSK (D)QPSK 8-PSK 16-QAM 32-QAM 64-QAM


PM-QPSK, 4 bits per “symbol”<br />

Two Polarizations<br />

Im{E x }<br />

Im{E x }<br />

Re{E x }<br />

X-Polarization<br />

Re{E x }<br />

Im{E y }<br />

Re{E y }<br />

Y-Polarization


Implementing Phase <strong>Modulation</strong> Using Discrete<br />

<strong>Optical</strong> Components...<br />

S


Implementing Phase <strong>Modulation</strong> Using Discrete<br />

<strong>Optical</strong> Components...<br />

S


This is QPSK...<br />

Im{E x }<br />

S1<br />

Re{E x }<br />

This structure called a “Super Mach Zehnder”<br />

S2


This is a PM-QPSK Transmitter<br />

X Polarizations<br />

LD<br />

PBS<br />

Y Polarizations


Component Complexity<br />

Tx<br />

Rx<br />

Part 2<br />

The Detector


Let’s cut to the chase…<br />

The only practical, long haul 100G implementations will<br />

be required to use Coherent Detection<br />

What is it, and why is it useful?


What is “coherent detection”?<br />

Physics definition<br />

• A detection technique that is based on the phase properties<br />

of the carrier<br />

• If you are using a phase-based detector, you could claim to<br />

be implementing coherent detection<br />

…however…<br />

Practical definition<br />

• The market has now come to expect a “coherent detector” to<br />

make use of sophisticated, digital signal processing (DSP)<br />

algorithms


Conventional WDM Detection<br />

How do we select the<br />

channel we want to detect?<br />

PD<br />

Mixture of waves on fiber…<br />

…wideband detector


Conventional WDM Detection<br />

Wavelength demux<br />

PD<br />

Mixture of waves on fiber…<br />

…wideband detector


Conventional WDM Detection<br />

Wavelength demux<br />

Direct conversion<br />

of photons into<br />

electrons that<br />

“look like” bits<br />

PD<br />

…11010110…


Summary of “Conventional WDM Detection”<br />

Wideband Photodetector (PD) is used<br />

To prevent inter-channel interference, a wavelength<br />

demux is used to spatially separate channels<br />

<strong>Modulation</strong> technique allows minimal Rx circuit<br />

complexity – essentially “direct detection”<br />

No additional signal processing normally required


Coherent WDM Detection<br />

We could take a mixed signal that uses a<br />

phase-based modulation technique<br />

LO<br />

PD<br />

ADC<br />

DSP<br />

Use a local oscillator to choose the<br />

“color” we want to “detect”


Coherent WDM Detection<br />

Convert the<br />

photons to<br />

electrons<br />

Clean it all up!<br />

LO<br />

PD<br />

ADC<br />

DSP<br />

…11010110…<br />

Convert the<br />

“analog electrons”<br />

into “digital<br />

electrons”


Why phase-based modulation?<br />

If you need to detect 5 from 1…n, then choose a<br />

local oscillator tuned to 5<br />

Local oscillator does not carry a signal – simply a<br />

continuous beam of light<br />

But it is non-coherent with the received signal (ie. it is<br />

out of phase)<br />

Use an array of interferometers to “measure” the<br />

interference patterns<br />

Convert the interference patterns into an electronic<br />

signal, and “process it”


The Detector Requires a Complex <strong>Optical</strong> Circuit<br />

Example: <strong>For</strong> PM-QPSK <strong>Modulation</strong>…<br />

PD<br />

PM-QPSK Signal<br />

PBS<br />

PD<br />

PD<br />

The signals that come<br />

out of the PD array are<br />

“analog and dirty”<br />

PD<br />

LO<br />

PBS


Two very different functions in the detector<br />

Phase state<br />

extraction<br />

• Separate the polarization components<br />

• Create interference against a<br />

reference laser (local oscillator)<br />

• Separate the phase components<br />

• PD & A/D conversion<br />

Signal processing<br />

• Compensate for local oscillator<br />

instability<br />

• Compensate for static CD<br />

• Compensate for dynamic PMD


How do we implement these functions?<br />

Sophisticated<br />

optical circuit<br />

(PIC)<br />

• Separate the polarization components<br />

• Create interference against a<br />

reference laser (local oscillator)<br />

• Separate the phase components<br />

• PD & A/D conversion<br />

Sophisticated digital<br />

signal processing<br />

(DSP)<br />

• Compensate for local oscillator<br />

instability<br />

• Compensate for static CD<br />

• Compensate for dynamic PMD


DSP<br />

A Coherent Detector Schematic<br />

(<strong>For</strong> one wavelength only)<br />

<strong>Optical</strong> Circuit<br />

Electronic Circuit<br />

Incoming carrier<br />

(2 polarizations, each<br />

with 4 phase states)<br />

AMZ<br />

PD<br />

ADC<br />

PBS<br />

AMZ<br />

PD<br />

ADC<br />

LO<br />

PBS<br />

AMZ<br />

PD<br />

ADC<br />

ADC A/D Converter<br />

AMZ Adjustable Mach Zehnder<br />

DSP Digital Signal Processor<br />

LO Local Oscillator<br />

PD Photo Detector<br />

PS Polarization Splitter<br />

AMZ<br />

PD<br />

ADC


A Coherent Detector Schematic<br />

(<strong>For</strong> one wavelength only)<br />

DSP<br />

<strong>Optical</strong> Circuit<br />

Electronic Circuit<br />

Incoming carrier<br />

(2 polarizations, each<br />

with 4 phase states)<br />

AMZ<br />

PD<br />

ADC<br />

1<br />

LO<br />

PBS<br />

PBS<br />

AMZ<br />

AMZ<br />

PD<br />

PD<br />

ADC<br />

ADC<br />

ADC A/D Converter<br />

AMZ Adjustable Mach Zehnder<br />

DSP Digital Signal Processor<br />

LO Local Oscillator<br />

PD Photo Detector<br />

PS Polarization Splitter<br />

AMZ PD ADC<br />

Step 1: Take the two optical sources – signal and local oscillator


A Coherent Detector Schematic<br />

(<strong>For</strong> one wavelength only)<br />

DSP<br />

<strong>Optical</strong> Circuit<br />

Electronic Circuit<br />

Incoming carrier<br />

(2 polarizations, each<br />

with 4 phase states)<br />

AMZ<br />

PD<br />

ADC<br />

LO<br />

PBS<br />

2<br />

PBS<br />

AMZ<br />

AMZ<br />

PD<br />

PD<br />

ADC<br />

ADC<br />

ADC A/D Converter<br />

AMZ Adjustable Mach Zehnder<br />

DSP Digital Signal Processor<br />

LO Local Oscillator<br />

PD Photo Detector<br />

PS Polarization Splitter<br />

AMZ PD<br />

Step 2: Separate the X and Y polarizations<br />

ADC


A Coherent Detector Schematic<br />

(<strong>For</strong> one wavelength only)<br />

DSP<br />

<strong>Optical</strong> Circuit<br />

Electronic Circuit<br />

Incoming carrier<br />

(2 polarizations, each<br />

with 4 phase states)<br />

AMZ<br />

PD<br />

ADC<br />

LO<br />

PBS<br />

PBS<br />

AMZ<br />

3<br />

AMZ<br />

PD<br />

PD<br />

ADC<br />

ADC<br />

ADC A/D Converter<br />

AMZ Adjustable Mach Zehnder<br />

DSP Digital Signal Processor<br />

LO Local Oscillator<br />

PD Photo Detector<br />

PS Polarization Splitter<br />

AMZ PD ADC<br />

Step 3: Generate a set of interference patterns in the SMZ array


A Coherent Detector Schematic<br />

(<strong>For</strong> one wavelength only)<br />

DSP<br />

<strong>Optical</strong> Circuit<br />

Electronic Circuit<br />

Incoming carrier<br />

(2 polarizations, each<br />

with 4 phase states)<br />

AMZ<br />

PD<br />

ADC<br />

LO<br />

PBS<br />

PBS<br />

AMZ<br />

AMZ<br />

PD<br />

4<br />

PD<br />

ADC<br />

ADC<br />

ADC A/D Converter<br />

AMZ Adjustable Mach Zehnder<br />

DSP Digital Signal Processor<br />

LO Local Oscillator<br />

PD Photo Detector<br />

PS Polarization Splitter<br />

AMZ PD ADC<br />

Step 4: Convert optical signals to analog electronic signals


A Coherent Detector Schematic<br />

(<strong>For</strong> one wavelength only)<br />

DSP<br />

<strong>Optical</strong> Circuit<br />

Electronic Circuit<br />

Incoming carrier<br />

(2 polarizations, each<br />

with 4 phase states)<br />

AMZ<br />

PD<br />

ADC<br />

LO<br />

PBS<br />

PBS<br />

AMZ<br />

AMZ<br />

PD<br />

PD<br />

ADC<br />

ADC<br />

5<br />

ADC A/D Converter<br />

AMZ Adjustable Mach Zehnder<br />

DSP Digital Signal Processor<br />

LO Local Oscillator<br />

PD Photo Detector<br />

PS Polarization Splitter<br />

AMZ PD ADC<br />

Step 5: Convert analog to digital and process


Coherent Detection – Pros and Cons<br />

Pros:<br />

• Operates over the existing fiber plant and amp chains<br />

• Outstanding reach performance<br />

• Closest thing to achieving 40G and 100G with same reach as 10G NRZ<br />

• Significant pilot test results indicate it really does work!<br />

Cons:<br />

• Potential non-linear interaction with 10G NRZ in same fiber<br />

• The “cure” is managing launch power<br />

• Probably represents the practical complexity limit for discretes<br />

• State of the shelf DSP technology draws too much power to allow for large<br />

scale implementations (ie. multiple waves in one modules)<br />

• Solution is to use emerging 40µm DSP technology<br />

• DSP operation probably eliminates the chance of future line side interop


So remember…<br />

Complex modulation requires<br />

complex optical circuits


Where have we seen this problem before?<br />

• In the 1950s computers were made from individual<br />

transistors, resistors and capacitors...<br />

…today?


The electronics industry controlled component<br />

complexity with large scale integration<br />

We know the same thing works for optical<br />

components – we did it 5 years ago!


Small Scale vs Large Scale Photonic Integration<br />

Small Scale…<br />

• Operates on a single wavelength<br />

• Primarily used to address manufacturing cost<br />

If it works for one wave, why not…<br />

CPUs with 2-8 cores<br />

GPUs with 200-800 cores!!


<strong>Infinera</strong> 100G Transmission Differentiators<br />

500G, Large Scale, Monolithic PIC Implementation<br />

COST<br />

CAPACITY<br />

RELIABILITY<br />

500G<br />

Tx PIC<br />

500G<br />

Rx PIC<br />

SIZE<br />

POWER<br />

Number of channels<br />

5 x 100G<br />

Monolithic InP Chips 2<br />

<strong>Optical</strong> elements > 600<br />

“Gold Box” Replacements > 100<br />

Fiber Replacements > 400<br />

54 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Fat Pipes Are Not Enough<br />

How much capacity can<br />

actually be used?


<strong>Infinera</strong> 100G Transmission Differentiators<br />

PICs Enable Pervasive Digital Switching<br />

Photonic<br />

Integration<br />

100 Gb/s Transmit<br />

100 Gb/s Receive<br />

PICs enable<br />

cost-effective OEO<br />

100Gb/s to 1Tb/s “WDM<br />

system on a chip”<br />

Affordable access to<br />

digital domain<br />

56 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


<strong>Infinera</strong> 100G Transmission Differentiators<br />

PICs Enable Pervasive Digital Switching<br />

Integrated Photonics<br />

Integrated Photonics<br />

<strong>Optical</strong> (O) Electrical (E) <strong>Optical</strong> (O)<br />

Photonic<br />

Integration<br />

Integrated<br />

Switching + WDM<br />

100101011101010000101011<br />

100101010101101011010101<br />

110101000010101110010101<br />

001010111011010110010101<br />

1001<br />

0101<br />

Trib<br />

0101<br />

1010<br />

1101<br />

0101<br />

0101<br />

1010<br />

Enables “digital” functionality<br />

1101<br />

0101<br />

Integrated switching at every node<br />

<strong>High</strong> functionality Digital ROADM<br />

Dramatic network simplification<br />

57 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


<strong>Infinera</strong> 100G Transmission Differentiators<br />

PICs Enable Pervasive Digital Switching<br />

Integrated Photonics<br />

Integrated Photonics<br />

10010101110101010000<br />

10010101010110101011<br />

end-end service<br />

Photonic<br />

Integration<br />

Integrated<br />

Switching + WDM<br />

Pervasive Digital<br />

Switching<br />

10010101110101010000<br />

10010101010110101011<br />

100101011101010000101011<br />

100101010101101011010101<br />

110101000010101110010101<br />

001010111011010110010101<br />

1001<br />

0101<br />

0101<br />

1010<br />

1101<br />

0101<br />

0101<br />

1010<br />

1101<br />

Software-based “Ease-of-Use”<br />

0101<br />

Digital OTN switching at every node<br />

Unconstrained bandwidth everywhere<br />

Lowest cost per switched Gb/s<br />

58 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Muxponder<br />

Solving The 100G Muxponder Tax<br />

The Problem:<br />

• Backbone waves move to 100G, but service demands still 10G or lower<br />

• All-optical ROADMs have no inter-wavelength, or sub-wavelength<br />

grooming capability → 100G muxponders!<br />

Service Demands:<br />

A ↔ C<br />

Require Extra,<br />

Partially Filled<br />

A ↔ D Muxponder Pairs<br />

10GbE<br />

10GbE<br />

Muxponder<br />

ROADM Network<br />

B<br />

B<br />

↔<br />

↔<br />

C<br />

D<br />

10GbE<br />

10GbE<br />

How big is the<br />

“Muxponder Tax”<br />

in a real 100G<br />

network?<br />

A<br />

All services must go A ↔B<br />

B<br />

59<br />

© 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Deployed Capacity (%)<br />

Revenue Generating (%)<br />

<strong>Infinera</strong> National Network Model Summary<br />

50%<br />

66%<br />

92%<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

100G<br />

Muxponder<br />

40G<br />

Muxponder<br />

<strong>Infinera</strong> Digital<br />

ROADM<br />

• Large N. Am. Network Model: 33,084 route km, 47 core WDM links<br />

• About 10 Tb/s of customer service demands (network traffic volume)<br />

60<br />

© 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Summary of Network Efficiency<br />

A “Perfect Storm” is emerging in terms of network<br />

bandwidth efficiency:<br />

• Wavelength speeds moving to 100Gbit/s<br />

• Majority of services demands remaining at 10Gbit/s or less for near-term<br />

• All-optical ROADMs have no effective way to offer contentionless<br />

wavelength conversion and sub-wavelength grooming in the core<br />

• Muxponders are simply point-point aggregators and do not do grooming<br />

The result is that a Service Provider may need to<br />

purchase 2X Network Capacity for 1X Service Revenue<br />

The solution is an Integrated Digital OTN Network with:<br />

Bandwidth<br />

Virtualization<br />

• End to End, Any to Any service capability<br />

• Integrated OTN switching and grooming in the core<br />

• End to End intelligent optical control plane


Beyond 8Tb/s?<br />

8Tb/s<br />

More<br />

channels<br />

<strong>High</strong>er<br />

<strong>Data</strong> <strong>Rate</strong>s<br />

More<br />

Spectrum<br />

Gridless Super-<br />

Channels<br />

Even more complex<br />

modulation!<br />

L-Band<br />

S-Band<br />

E-Band<br />

O-Band<br />

Outside the scope of this discussion


What’s changed so far<br />

Since the advent of DWDM…<br />

Intensity <strong>Modulation</strong><br />

Direct Detection<br />

ITU Frequency Grid<br />

Phase <strong>Modulation</strong><br />

Coherent Detection<br />

ITU Frequency Grid<br />

now<br />

63 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


What Comes Next <strong>For</strong> Terabit Transport?<br />

Since the advent of DWDM…<br />

Intensity <strong>Modulation</strong><br />

Direct Detection<br />

ITU Frequency Grid<br />

Quadrature Amplitude<br />

Phase<br />

<strong>Modulation</strong><br />

<strong>Modulation</strong><br />

(QAM)<br />

Coherent Wave Combining<br />

and Separation<br />

Detection<br />

ITU Grid-less Frequency FlexChannels Grid<br />

…so what has to change<br />

64 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Capacity * Reach Product<br />

<strong>Advanced</strong> <strong>Modulation</strong> <strong>For</strong>mats<br />

Pol-Mux<br />

QPSK<br />

Pol-Mux<br />

8-QAM<br />

1.2<br />

1<br />

PM-<br />

BPSK<br />

Pol-Mux<br />

16-QAM<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

IM-DD<br />

1.6 8 12 16 24<br />

65 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary<br />

C-Band Capacity (Tb/s)


What Comes Next <strong>For</strong> Terabit Transport?<br />

Since the advent of DWDM…<br />

On-Off Keyed <strong>Modulation</strong><br />

Direct Detection<br />

ITU Frequency Grid<br />

Quadrature Amplitude<br />

<strong>Modulation</strong><br />

Coherent Wave Separation<br />

Grid-less FlexChannels<br />

…so what has to change<br />

66 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Single Carrier vs Multi-Carrier<br />

Goal: Create a 1Tb/s unit of transmission capacity<br />

How?<br />

Option 1:<br />

Build a singlecarrier<br />

1Tb/s<br />

channel<br />

Option 2:<br />

Build a multicarrier<br />

1Tb/s<br />

“super-channel”<br />

67<br />

© 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


OSNR Penalty (dB)<br />

1Tb/s Single Carrier: The A/D Converter Problem<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

By 2014 commercial ADCs are<br />

expected to operate at ~64GBaud<br />

PM-BPSK<br />

640GBaud<br />

PM-8QAM<br />

210GBaud<br />

PM-QPSK<br />

320GBaud<br />

PM-16QAM<br />

160GBaud<br />

PM-64QAM<br />

105GBaud<br />

PM-32QAM<br />

128GBaud<br />

1 2 4 6 8 10 12<br />

Number of bits per symbol<br />

68<br />

© 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


DWDM Direct Detection<br />

Spatially separate the<br />

channels using a<br />

wavelength demux<br />

Spacing on the fiber<br />

needed between waves:<br />

“Guard Bands”<br />

PD<br />

wavelength<br />

demux<br />

69 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


DWDM Coherent Detection<br />

Spatially separate the<br />

channels using a<br />

wavelength demux<br />

Spacing on the fiber<br />

needed between waves:<br />

“Guard Bands”<br />

LO<br />

PD<br />

ADC<br />

DSP<br />

wavelength<br />

demux<br />

Use a local oscillator to<br />

choose the “color” we want<br />

to “detect” to match the<br />

demux port color<br />

70 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


How 1Tb/s Might Look…<br />

Conventional WDM vs FlexChannels<br />

Conventional Per-Channel<br />

WDM Filtering<br />

1Tb/s<br />

Guard bands to allow for<br />

individual wavelength demux<br />

Multi-Carrier FlexChannel<br />

1Tb/s<br />

Fewer guard-bands<br />

25% increase in useable<br />

amplifier spectrum<br />

71 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


What Comes Next <strong>For</strong> Terabit Transport?<br />

Since the advent of DWDM…<br />

On-Off Keyed <strong>Modulation</strong><br />

Direct Detection<br />

ITU Frequency Grid<br />

Quadrature Amplitude<br />

<strong>Modulation</strong><br />

Coherent Wave Separation<br />

Grid-less FlexChannels<br />

…so what has to change<br />

72 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


FlexChannels Increase Total Fiber Capacity<br />

More complex modulation → more capacity per fiber<br />

PM-QPSK<br />

12 Tb/s<br />

8-QAM<br />

18 Tb/s<br />

1Tb/s<br />

16-QAM<br />

25 Tb/s<br />

73 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Reach, Spectral Efficiency, and Co-Existence<br />

A<br />

B<br />

C<br />

D<br />

E<br />

10x100G PM-QPSK<br />

1Tb/s PM-QPSK<br />

FlexChannel<br />

1Tb/s PM-8QAM<br />

FlexChannel<br />

1Tb/s PM-16QAM<br />

FlexChannel<br />

or<br />

74 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Summary:<br />

The Key Technologies <strong>For</strong> 1Tb/s Are Well Understood<br />

But the implementation of those technologies will be<br />

critical to allowing service providers to differentiate their<br />

products and services<br />

Differentiators<br />

3<br />

2<br />

1<br />

Pervasive, Switched DWDM<br />

FlexCoherent <strong>Modulation</strong><br />

Large Scale PICs<br />

Foundation<br />

Features<br />

<strong>Advanced</strong><br />

<strong>Modulation</strong><br />

Coherent<br />

Processing<br />

<strong>Advanced</strong><br />

FEC<br />

75 © 2011 <strong>Infinera</strong> Corporation Confidential & Proprietary


Thank You!<br />

lwade@infinera.com<br />

© 762011<br />

<strong>Infinera</strong> Corporation Confidential & Proprietary

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!