23.02.2014 Views

Analysis of Musty Odors using SPME-GC/MS - Shimadzu

Analysis of Musty Odors using SPME-GC/MS - Shimadzu

Analysis of Musty Odors using SPME-GC/MS - Shimadzu

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SHIMADZU APPLICATION NEWS<br />

● GASCHROMATOGRAPHY MASS SPECTROMETRY<br />

LA146-E024<br />

No.M209<br />

<strong>Analysis</strong> <strong>of</strong> <strong>Musty</strong> <strong>Odors</strong> <strong>using</strong> <strong>SPME</strong>-<strong>GC</strong>/<strong>MS</strong><br />

Japan’s tap water has a solid reputation for its safety.<br />

However, water supplies that are taken from surface<br />

water sources, such as dams, lakes and rivers, may<br />

generate musty odors during the summer. As a<br />

countermeasure, carbon treatment is being used. The<br />

substances ca<strong>using</strong> the musty odor are 2-methylisoborneol<br />

(2-MIB) and geosmin, produced by algae<br />

and actinomyces. The odor threshold values for these<br />

substances are extremely low, in the order <strong>of</strong> several<br />

ng/L, so pretreatment is required to concentrate<br />

samples. In the Japanese goverment’s drinking water<br />

examination, the solid phase extraction <strong>GC</strong>/<strong>MS</strong> and<br />

the purge & trap <strong>GC</strong>/<strong>MS</strong> methods had been stipulated,<br />

and, in 2001, the headspace <strong>GC</strong>/<strong>MS</strong> method was<br />

added. However, the solid phase extraction <strong>GC</strong>/<strong>MS</strong><br />

has disadvantages such as time-consuming and<br />

complex extraction procedures and large consumption<br />

<strong>of</strong> organic solvents. As for the purge & trap <strong>GC</strong>/<strong>MS</strong><br />

method, the analysis system is expensive and<br />

maintenance is difficult.<br />

Solid phase microextraction (<strong>SPME</strong>) is a pretreatment<br />

method that extracts organic compounds from the<br />

headspace <strong>of</strong> liquid or solid samples, concentrates<br />

them, thermally desorb them in the <strong>GC</strong> injector, and<br />

introduces them into the column. This pretreatment<br />

method is attracting attention because it does not<br />

require organic solvents, is fully automated and<br />

operation is easy.<br />

■ Analytical Conditions<br />

Autosampler : AOC 5000 (SHIMADZU)<br />

<strong>SPME</strong> Fiber : PD<strong>MS</strong>/DVB 65µm(SUPELCO)<br />

Instrument : <strong>GC</strong><strong>MS</strong>-QP2010(SHIMADZU)<br />

<strong>GC</strong> Column : DB-5(J&W, 30m×0.25mm I.D. df=0.25µm)<br />

AOC-5000<br />

sample amount<br />

Incubat Temp.<br />

Desorb Time<br />

Pre Inc Time<br />

Extract Time<br />

<strong>GC</strong><br />

Injection Temp.<br />

Column Temp.<br />

Carrier Gas<br />

Injection Method<br />

<strong>MS</strong><br />

Interface Temp.<br />

Ionsource Temp.<br />

Monitor Ion<br />

: 10mL+NaCl3g<br />

: 80˚C<br />

: 3min<br />

: 5min<br />

: 30min (headspace)<br />

: 230˚C<br />

: 40˚C(3min)-15˚C/min-250˚C(3.0min)<br />

: 100kPa<br />

: Splitless (Sampling Time : 3min)<br />

: 250˚C<br />

: 200˚C<br />

: 2-MIB : 95, 107 Geosmin : 112, 182<br />

■ Sensitivity<br />

Fig. 1 shows the SIM chromatograms for each substance<br />

at 0.001µg/L and 0.010µg/L. Sufficient sensitivity was<br />

verified for a concentration <strong>of</strong> 0.001µg/L, demonstrating<br />

that the <strong>SPME</strong> method provides sensitivity equivalent<br />

to that <strong>of</strong> the solid phase extraction or purge & trap<br />

method.<br />

■ Calibration Curves<br />

Fig. 2 shows the calibration curves for concentrations<br />

over a range <strong>of</strong> 0.001µg/L to 0.050µg/L. Excellent<br />

linearity was obtained for both substances, with<br />

coefficients <strong>of</strong> correlation <strong>of</strong> 0.9995 (2-MIB) and<br />

0.9997 (geosmin).<br />

(1)2-MIB<br />

(2)Geosmin<br />

intensity<br />

50000<br />

45000<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

2-MIB<br />

0<br />

11.0 11.1 11.2 11.3 11.4 11.5<br />

0.001µg/L<br />

min<br />

95.00<br />

*1.00<br />

107.00<br />

*1.00<br />

intensity<br />

400000<br />

350000<br />

300000<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

2-MIB<br />

0<br />

11.0 11.1 11.2 11.3 11.4 11.5<br />

min<br />

0.010µg/L<br />

95.00<br />

*1.00<br />

107.00<br />

*1.00<br />

intensity<br />

60000<br />

55000<br />

50000<br />

45000<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

geosmin<br />

0<br />

14.5 14.6 14.7 14.8 14.9 15.0<br />

min<br />

0.001µg/L<br />

112.00<br />

*1.00<br />

182.00<br />

*1.00<br />

intensity<br />

600000<br />

550000<br />

500000<br />

450000<br />

400000<br />

350000<br />

300000<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

geosmin<br />

0<br />

14.5 14.6 14.7 14.8 14.9 15.0<br />

min<br />

0.010µg/L<br />

112.00<br />

*1.00<br />

182.00<br />

*1.00<br />

Fig.1 SIM Chromatograms


No.M209<br />

(1) 2-MIB<br />

ID#:1 m/z:95.00 Compound Name:2-MIB<br />

f(x)=22364490.302279*x+5991.570697<br />

Correlation Coefficient (R)=0.999499<br />

[*10^6] #<br />

1<br />

1<br />

2<br />

3<br />

4<br />

Concentration(µg/L)<br />

0.001<br />

0.010<br />

0.020<br />

0.050<br />

Area<br />

26133<br />

246730<br />

434120<br />

1128506<br />

(2) Geosmin<br />

ID#:2 m/z:112.00 Compound Name:Geosmin<br />

f(x)=64559563.075706*x-17585.304252<br />

Correlation Coefficient (R)=0.999714<br />

[*10^6] #<br />

1<br />

3<br />

2<br />

3<br />

4<br />

Concentration(µg/L)<br />

0.001<br />

0.010<br />

0.020<br />

0.050<br />

Area<br />

66289<br />

641253<br />

1224401<br />

3227040<br />

5<br />

[*10^-2]<br />

5<br />

[*10^-2]<br />

Fig.2 Calibration Curves<br />

■ Reproducibility<br />

In order to check reproducibility, a low-concentration<br />

sample (0.001µg/L) was analyzed five times. Table 1<br />

shows the results. Pretreatment conditions such as the<br />

temperature and time were controlled by the<br />

autosampler, achieving a excellent reproducibility with<br />

a CV value at 7%.<br />

(1) 2-MIB<br />

Measurement <strong>of</strong> Blank After Injecting 0.050 µg/L Sample<br />

11 12<br />

min<br />

Measurement at 0.001 µg/L<br />

95.00<br />

*1.00<br />

107.00<br />

*1.00<br />

Table 1 Reproducibility<br />

2-MIB<br />

Geosmin<br />

Data 1<br />

23993<br />

69827<br />

Data 2<br />

24463<br />

67942<br />

Data 3<br />

25919<br />

68361<br />

Data 4<br />

21435<br />

58156<br />

Data 5<br />

26133<br />

66289<br />

CV (%)<br />

7.7<br />

7.0<br />

11 12<br />

min<br />

95.00<br />

*1.00<br />

107.00<br />

*1.00<br />

■ Carry Over<br />

In order to check sample carry over, blank water was<br />

measured after injecting a high concentration sample<br />

(0.050µg/L). In Fig. 3, results are compared for the<br />

blank water and low concentration sample (0.001<br />

µg/L). The results show that the carry over is below the<br />

lower detection limit.<br />

(2) Geosmin<br />

Measurement <strong>of</strong> Blank After Injecting 0.050µg/L Sample<br />

14 15<br />

Measurement at 0.001µg/L<br />

min<br />

112.00<br />

*1.00<br />

182.00<br />

*1.00<br />

■ Conclusion<br />

In this Application News, the <strong>SPME</strong>-<strong>GC</strong>/<strong>MS</strong> method<br />

was applied to measure the musty odor in water. The<br />

results showed good sensitivity and quantitation<br />

capability. Although the Drinking Water Examination<br />

Method does not accept the <strong>SPME</strong>-<strong>GC</strong>/<strong>MS</strong> method for<br />

analyzing musty odors, it has been confirmed that this<br />

method is effective.<br />

14 15<br />

min<br />

112.00<br />

*1.00<br />

182.00<br />

*1.00<br />

Fig.3 Data Comparison<br />

SHIMADZU CORPORATION. International Marketing Division<br />

3. Kanda-Nishikicho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan Phone: 81(3)3219-5641 Fax. 81(3)3219-5710<br />

Cable Add.:SHIMADZU TOKYO<br />

Printed in Japan 3100-02429-10A-IK

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!