28.02.2014 Views

Material properties of Cd1 x Mg x O alloys synthesized by radio ...

Material properties of Cd1 x Mg x O alloys synthesized by radio ...

Material properties of Cd1 x Mg x O alloys synthesized by radio ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Material</strong> <strong>properties</strong> <strong>of</strong> <strong>Cd1</strong> x <strong>Mg</strong> x O <strong>alloys</strong> <strong>synthesized</strong> <strong>by</strong> <strong>radio</strong> frequency sputtering<br />

Guibin Chen, K. M. Yu, L. A. Reichertz, and W. Walukiewicz<br />

Citation: Applied Physics Letters 103, 041902 (2013); doi: 10.1063/1.4816326<br />

View online: http://dx.doi.org/10.1063/1.4816326<br />

View Table <strong>of</strong> Contents: http://scitation.aip.org/content/aip/journal/apl/103/4?ver=pdfcov<br />

Published <strong>by</strong> the AIP Publishing<br />

This article is copyrighted as indicated in the abstract. Reuse <strong>of</strong> AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:<br />

166.111.38.22 On: Mon, 04 Nov 2013 08:12:38


APPLIED PHYSICS LETTERS 103, 041902 (2013)<br />

<strong>Material</strong> <strong>properties</strong> <strong>of</strong> Cd 12x <strong>Mg</strong> x O <strong>alloys</strong> <strong>synthesized</strong> <strong>by</strong> <strong>radio</strong> frequency<br />

sputtering<br />

Guibin Chen, 1,2 K. M. Yu, 1,a) L. A. Reichertz, 1,3 and W. Walukiewicz 1<br />

1 <strong>Material</strong>s Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA<br />

2 Department <strong>of</strong> Physics and Jiangsu Key Laboratory for Chemistry <strong>of</strong> Low Dimensional <strong>Material</strong>s,<br />

Huaiyin Normal University, Jiangsu 223300, People’s Republic <strong>of</strong> China<br />

3 RoseStreet Labs Energy, Phoenix, Arizona 85034, USA<br />

(Received 27 February 2013; accepted 2 July 2013; published online 22 July 2013)<br />

We have studied structural, electrical, and optical <strong>properties</strong> <strong>of</strong> sputter deposited ternary Cd<strong>Mg</strong>O<br />

alloy thin films with total <strong>Mg</strong> concentration as high as 44%. We found that only a fraction<br />

(50%–60%) <strong>of</strong> <strong>Mg</strong> is incorporated as substitutional <strong>Mg</strong> contributing to the modification <strong>of</strong> the<br />

electronic structures <strong>of</strong> the <strong>alloys</strong>. The electrical and optical results <strong>of</strong> the Cd 1 x <strong>Mg</strong> x O<strong>alloys</strong>are<br />

analyzed in terms <strong>of</strong> a large upward shift <strong>of</strong> the conduction band edge with increasing <strong>Mg</strong><br />

concentration. With the increase <strong>of</strong> the intrinsic bandgap, appropriately doped Cd-rich Cd<strong>Mg</strong>O <strong>alloys</strong><br />

can be potentially useful as transparent conductors for photovoltaics. VC 2013 AIP Publishing LLC.<br />

[http://dx.doi.org/10.1063/1.4816326]<br />

Metal oxides have been extensively studied over the last<br />

two decades. 1–6 The reason for the wide interest in these<br />

materials is that they can be highly conductive and transparent<br />

over a wide wavelength region at the same time. Wide gap<br />

oxides such as In 2 O 3 :Sn (ITO) 7–10 or ZnO:Al (AZO) 11–13 are<br />

widely used as transparent contacts on thin film solar cells.<br />

An important limitation in the applications <strong>of</strong> these oxides is<br />

that they have significant long wavelength absorption and<br />

thus cannot be used for photovoltaics that utilize the infrared<br />

part <strong>of</strong> the solar spectrum. The poor infrared transmittance <strong>of</strong><br />

these materials can be attributed to the relatively strong ionized<br />

impurity scattering resulting in low mobility and large<br />

free carrier absorption. In addition, due to the high electron<br />

concentration in these materials (10 21 /cm 3 ) their plasma<br />

reflection edge typically occurs at wavelengths


041902-2 Chen et al. Appl. Phys. Lett. 103, 041902 (2013)<br />

FIG. 1. (220) x-ray diffraction peaks from a series <strong>of</strong> Cd 1 x <strong>Mg</strong> x O <strong>alloys</strong><br />

with different substitutional <strong>Mg</strong> concentrations.<br />

substitution <strong>of</strong> Cd with <strong>Mg</strong>. The amount <strong>of</strong> substitutional<br />

<strong>Mg</strong> in Cd 1 x <strong>Mg</strong> x O can be derived from the shift <strong>of</strong> the diffraction<br />

peak using Vegaard’s law. Here we use the values<br />

<strong>of</strong> 4.212 Å and 4.6958 Å for the lattice parameter <strong>of</strong> <strong>Mg</strong>O<br />

and CdO, respectively.<br />

Figure 2(a) compares the <strong>Mg</strong> concentrations determined<br />

<strong>by</strong> XRD with those measured <strong>by</strong> RBS. We note that RBS<br />

measures the total <strong>Mg</strong> concentration whereas peak shifts in<br />

XRD arise from lattice parameter change due to the substitution<br />

<strong>of</strong> Cd with <strong>Mg</strong>. Since the electronic band structure is<br />

affected <strong>by</strong> the composition <strong>of</strong> substitutional <strong>Mg</strong>, therefore,<br />

in the following, the samples will be identified <strong>by</strong> the composition<br />

obtained from the XRD. Figure 2(a) shows that a<br />

significant fraction <strong>of</strong> the total <strong>Mg</strong> is incorporated on nonsubstitutional<br />

sites, most likely in the forms <strong>of</strong> <strong>Mg</strong> interstitials<br />

and <strong>Mg</strong> or <strong>Mg</strong>O precipitates. In Zn<strong>Mg</strong>O <strong>Mg</strong> interstitials<br />

can increase the lattice parameter <strong>of</strong> the alloy and hence partially<br />

compensate the reduction <strong>of</strong> the lattice parameter due<br />

to <strong>Mg</strong> substitution. As a result, if significant amount <strong>of</strong> <strong>Mg</strong><br />

interstitials are present the XRD measurements may underestimate<br />

the substitutional <strong>Mg</strong>. However, we found that as the<br />

FIG. 2. (a) Dependence <strong>of</strong> the substitutional <strong>Mg</strong> concentration on the total<br />

<strong>Mg</strong> concentration. (b) Grain size <strong>of</strong> the Cd 1 x <strong>Mg</strong> x O films as a function <strong>of</strong><br />

<strong>Mg</strong> concentration. The dashed line connecting the data is a polynomial fit to<br />

the data.<br />

FIG. 3. Carrier concentration (n) and mobility (l) as a function <strong>of</strong> <strong>Mg</strong> concentration,<br />

x, in the Cd 1 x <strong>Mg</strong> x O films.<br />

<strong>Mg</strong> composition increases, the electron concentration<br />

decreases in the alloy (Fig. 3), and this does not support the<br />

presence <strong>of</strong> significant amount <strong>of</strong> <strong>Mg</strong> interstitial donors.<br />

This suggests that <strong>Mg</strong> interstitials are not the dominating<br />

defects (


041902-3 Chen et al. Appl. Phys. Lett. 103, 041902 (2013)<br />

FIG. 4. Composition dependence <strong>of</strong> the position <strong>of</strong> the conduction band<br />

edge (solid line) and the Fermi level () <strong>of</strong> the Cd 1 x <strong>Mg</strong> x O samples with<br />

respect to the vacuum level.<br />

FIG. 5. (a) Room-temperature absorption spectra <strong>of</strong> Cd 1 x <strong>Mg</strong> x O films for<br />

various magnesium concentration, x. (b) Dependence <strong>of</strong> the optical gap<br />

E opt<br />

g () and the intrinsic bandgap E g () on <strong>Mg</strong> concentration. The dashed<br />

curve shows the fit to the bandgap energies using a bowing parameter<br />

b ¼ 2.17 eV.<br />

below the vacuum level. This constant level crosses the CBE<br />

and enters the bandgap for x > 0.15. This behavior could be<br />

explained assuming that the electrons in those undoped films<br />

originate from native donor defects with the energy level<br />

located at about 5.4 eV below the vacuum level. As the concentration<br />

<strong>of</strong> electrons depends on the position <strong>of</strong> this level<br />

relative to the CBE it varies from 2 10 20 cm 3 when the<br />

Fermi energy is at E CBE þ 0.5 eV in CdO to low concentrations<br />

when the Fermi energy falls well below CBE for larger<br />

x values. Additionally, at higher compositions the electron<br />

concentration is further reduced due to localization effects<br />

arising from fluctuations <strong>of</strong> the alloy composition. This picture<br />

appears to be consistent with the results <strong>of</strong> the mobility<br />

measurements shown in Fig. 3. The decrease <strong>of</strong> the mobility<br />

at low <strong>Mg</strong> concentration most likely originates from the<br />

alloy disorder scattering although it is possible that it is further<br />

reduced <strong>by</strong> scattering from the grain boundaries since as<br />

it has been shown above the grain size is decreasing with<br />

increasing <strong>Mg</strong> concentration.<br />

The absorption coefficients a <strong>of</strong> films with different <strong>Mg</strong><br />

concentration are shown in Fig. 5(a). A clear blueshift in the<br />

absorption edge is observed with increasing <strong>Mg</strong> concentration.<br />

The absorption edge energy or optical gap, E opt<br />

g ,<strong>of</strong><br />

Cd 1 x <strong>Mg</strong> x O films was obtained <strong>by</strong> linear extrapolations <strong>of</strong><br />

a 2 to the base line in the energy region. The optical gaps,<br />

, as functions <strong>of</strong> x are shown as square symbols in Figure<br />

5(b). However, because <strong>of</strong> large electron concentrations in<br />

some <strong>of</strong> our samples these optical gaps are expected to be<br />

higher than the intrinsic direct gaps E g . Several corrections<br />

have to be taken into account to obtain E g (Ref. 6)<br />

E opt<br />

g<br />

E g ¼ E opt<br />

g DE F Hall ðnÞþDE Ie e ðnÞþDE Ie i ðnÞ; (1)<br />

where the Burstein Moss shift 23,24 DE F-Hall is determined <strong>by</strong><br />

the position <strong>of</strong> the Fermi level in the conduction band and<br />

can be calculated directly from the electron concentration<br />

measured <strong>by</strong> Hall effect, DE Ie-e (n) and DE Ie-i (n) are bandgap<br />

renormalizations due to electron-electron and electron-ion<br />

interactions, respectively. The bandgap renormalizations<br />

were calculated using the formulism in Berggren and<br />

Sernelius 25 and Walukiewicz. 26 The nonparabolic dispersion<br />

relation for the conduction band was derived from Kane’s<br />

two band kp model. 27<br />

The solid triangle symbols in Fig. 5(b) represent the<br />

intrinsic direct gap <strong>of</strong> Cd 1 x <strong>Mg</strong> x O as a function <strong>of</strong> <strong>Mg</strong> concentration<br />

x obtained from Eq. (1), using the conduction<br />

band edge effective mass <strong>of</strong> 0.21m 0 . The bandgap energy<br />

corrections become insignificant, and values <strong>of</strong> E opt<br />

g and E g<br />

are very similar for <strong>alloys</strong> with high <strong>Mg</strong> concentrations<br />

where the electron concentration falls below 10 18 /cm 3 .<br />

Fitting the composition dependence <strong>of</strong> this intrinsic bandgap<br />

to the standard second order formula yields a bandgap bowing<br />

parameter b ¼ 2.17 eV. This bowing parameter is reasonable<br />

comparing to the linear bandgap dependence <strong>of</strong> <strong>Mg</strong> in<br />

Zn<strong>Mg</strong>O <strong>alloys</strong>. 28 Using the same formulism, a much larger<br />

bandgap bowing parameter <strong>of</strong> 5.3 eV is obtained if the RBS<br />

measured <strong>Mg</strong> contents are used.<br />

An ideal transparent conductor on photovoltaic devices<br />

that utilizes most <strong>of</strong> the solar spectrum requires highly conducting<br />

materials (r > 5000 S/cm) with high transparency<br />

from 340 to1300 nm. In our prior work on In and Ga doped<br />

CdO we have achieved thin films with r 15 000 S/cm and<br />

with excellent infrared transparency down to 0.8 eV<br />

(1500 nm) but with too low UV absorption edge at 3.1 eV<br />

(400 nm). 15 Here we show that alloying 10% <strong>of</strong> <strong>Mg</strong>O with<br />

CdO increases the intrinsic bandgap <strong>by</strong> 400 meV, resulting<br />

in a desirable shift <strong>of</strong> the optical absorption edge to higher<br />

energies. However, we note that without any intentional doping,<br />

alloying <strong>of</strong> CdO with <strong>Mg</strong>O results in a reduced electron<br />

mobility and electron concentration resulting in a conductivity<br />

<strong>of</strong>


041902-4 Chen et al. Appl. Phys. Lett. 103, 041902 (2013)<br />

doping <strong>of</strong> Cd-rich Cd 1 x <strong>Mg</strong> x O <strong>alloys</strong> will be required to<br />

determine if similar effects occur in these <strong>alloys</strong> too.<br />

In summary, we have <strong>synthesized</strong> and characterized a<br />

series <strong>of</strong> Cd 1 x <strong>Mg</strong> x O thin films with substitutional <strong>Mg</strong> x up<br />

to 0.28 <strong>by</strong> <strong>radio</strong> frequency magnetron sputtering method. We<br />

found a significant decrease in the grain size with increasing<br />

<strong>Mg</strong> concentration. The reduction <strong>of</strong> the electron concentration<br />

and mobility in these undoped samples is explained <strong>by</strong> a<br />

rapid upward shift <strong>of</strong> the conduction band edge with increasing<br />

<strong>Mg</strong> concentration. Cd-rich Cd<strong>Mg</strong>O <strong>alloys</strong> <strong>of</strong>fer a potential,<br />

as materials, for transparent conductors. We expect that<br />

the electron concentration and mobility <strong>of</strong> Cd 1 x <strong>Mg</strong> x O can<br />

be further increased <strong>by</strong> intentional doping with In or Ga.<br />

Hence, further systematic studies <strong>of</strong> intentional doping and<br />

post-growth annealing will be required to optimize this material<br />

for PV applications.<br />

This material was based upon work supported <strong>by</strong> the<br />

Department <strong>of</strong> Energy through the Bay Area Photovoltaic<br />

Consortium under Award No. DE-EE0004946. G.B.C.<br />

acknowledges the support provided <strong>by</strong> the National Natural<br />

Science Foundation <strong>of</strong> China (No. 11174101), Natural<br />

Science Foundation <strong>of</strong> Jiangsu Province (NSFJS, Nos.<br />

BK2010499, BK2011411, and HAG2011006).<br />

This report was prepared as an account <strong>of</strong> work sponsored<br />

<strong>by</strong> an agency <strong>of</strong> the United States Government. Neither<br />

the United States Government nor any agency there<strong>of</strong>, nor<br />

any <strong>of</strong> their employees, makes any warranty, express or<br />

implied, or assumes any legal liability or responsibility for the<br />

accuracy, completeness, or usefulness <strong>of</strong> any information, apparatus,<br />

product, or process disclosed, or represents that its<br />

use would not infringe privately owned rights. Reference<br />

herein to any specific commercial product, process, or service<br />

<strong>by</strong> trade name, trademark, manufacturer, or otherwise does<br />

not necessarily constitute or imply its endorsement, recommendation,<br />

or favoring <strong>by</strong> the United States Government or<br />

any agency there<strong>of</strong>. The views and opinions <strong>of</strong> authors<br />

expressed herein do not necessarily state or reflect those <strong>of</strong><br />

the United States Government or any agency here<strong>of</strong>.<br />

1 T. Minami, Semicond. Sci. Technol. 20, S35 (2005).<br />

2 Handbook <strong>of</strong> Transparent Conductors, edited <strong>by</strong> D. S. Ginley, H. Hosono,<br />

and D. C. Paine (Springer, New York, 2011).<br />

3 P. D. King and T. D. Veal, J. Phys.: Condens. Matter 23, 334214 (2011).<br />

4 K. L. Chopra, P. D. Paulson, and V. Dutta, Prog. Photovoltaics 12, 69<br />

(2004).<br />

5 S. K. Vasheghani Farahani, T. D. Veal, P. D. C. King, J. Zu~niga-Perez, V.<br />

Mu~noz-Sanjose, and C. F. McConville, J. Appl. Phys. 109, 073712 (2011).<br />

6 A. Segura, J. F. Sanchez-Royo, B. G. Domene, and G. Almonacid, Appl.<br />

Phys. Lett. 99, 151907 (2011).<br />

7 J. C. C. Fan and F. J. Bachner, J. Electrochem. Soc. 122, 1719 (1975).<br />

8 H. Fujiwara and M. Kondo, Phys. Rev. B 71, 075109 (2005).<br />

9 E. Fortunato, D. Gingley, H. Hosono, and D. C. Paine, MRS Bull. 32, 242<br />

(2007).<br />

10 K. Ellmer, Nat. Photonics 6, 809 (2012).<br />

11 C. G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007).<br />

12 K. Fleischer, E. Arca, and I. V. Shvets, Sol. Energy Mater. Sol. Cells 101,<br />

262 (2012).<br />

13 A. Anders, S. H. N. Lim, K. M. Yu, J. Andersson, J. Rosen, M.<br />

McFarland, and J. Brown, Thin Solid Films 518, 3313 (2010).<br />

14 S. Jin, Y. Yang, J. E. Medvedeva, L. Wang, S. Li, N. Cortes, J. R. Ireland,<br />

A. W. Metz, J. Ni, M. C. Hersam, A. J. Freeman, and T. J. Marks, Chem.<br />

Mater. 20, 220 (2008).<br />

15 K. M. Yu, M. A. Mayer, D. T. Speaks, H. He, R. Zhao, L. Hsu, S. S. Mao,<br />

E. E. Haller, and W. Walukiewicz, J. Appl. Phys. 111, 123505 (2012).<br />

16 A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, R.<br />

Asahi, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks,<br />

Proc. Natl. Acad. Sci. U.S.A. 98, 7113 (2001).<br />

17 S. K. Vasheghani Farahani, V. Munoz-Sanjose, J. Zuniga-Perez, C. F.<br />

McConville, and T. D. Veal, Appl. Phys. Lett. 102, 022102 (2013).<br />

18 L. F. J. Piper, A. DeMasi, K. E. Smith, A. Schleife, F. Fuchs, F. Bechstedt,<br />

J. Zuniga-Perez, and V. Munoz-Sanjose, Phys. Rev. B 78, 165127 (2008).<br />

19 D. T. Speaks, M. A. Mayer, K. M. Yu, S. S. Mao, E. E. Haller, and W.<br />

Walukiewicz, J. Appl. Phys. 107, 113706 (2010).<br />

20 P. H. Jefferson, S. A. Hatfield, T. D. Veal, P. D. C. King, C. F.<br />

McConville, J. Zu~niga-Perezb, and V. Mu~noz-Sanjose, Appl. Phys. Lett.<br />

92, 022101 (2008).<br />

21 K. Y. Tsou and E. B. Hensley, J. Appl. Phys. 45, 47 (1974).<br />

22 J. H. Kim, X. Li, L. S. Wang, H. L. de Clercq, C. A. Fancher, O. C.<br />

Thomas, and K. H. Bowen, J. Phys. Chem. A 105, 5709 (2001).<br />

23 E. Burstein, Phys. Rev. 93, 632 (1954).<br />

24 T. S. Moss, Optical Properties <strong>of</strong> Semiconductors (Butterworths, London,<br />

1961).<br />

25 K. F. Berggren and B. E. Sernelius, Phys. Rev. B 24, 1971 (1981).<br />

26 W. Walukiewicz, Phys. Rev. B 41, 10218 (1990).<br />

27 E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).<br />

28 A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y.<br />

Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72,<br />

2466 (1998).<br />

This article is copyrighted as indicated in the abstract. Reuse <strong>of</strong> AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:<br />

166.111.38.22 On: Mon, 04 Nov 2013 08:12:38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!