03.03.2014 Views

Effects of attached bacteria on organic aggregate settling velocity in ...

Effects of attached bacteria on organic aggregate settling velocity in ...

Effects of attached bacteria on organic aggregate settling velocity in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vol. 70: 261–272, 2013<br />

doi: 10.3354/ame01658<br />

AQUATIC MICROBIAL ECOLOGY<br />

Aquat Microb Ecol<br />

Published <strong>on</strong>l<strong>in</strong>e October 16<br />

OPEN<br />

ACCESS<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> <strong>on</strong> <strong>organic</strong> <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> <strong>in</strong> seawater<br />

Yosuke Yamada, Hideki Fukuda, Katsuyuki Inoue, Kazuhiro Kogure, Toshi Nagata*<br />

Atmosphere and Ocean Research Institute, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan<br />

ABSTRACT: We <strong>in</strong>vestigated whether <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> affect the <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>organic</strong><br />

<strong>aggregate</strong>s via modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s, <strong>in</strong>clud<strong>in</strong>g density, porosity,<br />

and morphology. Model <strong>aggregate</strong>s, prepared by mix<strong>in</strong>g 2 different polysaccharides (fucoidan<br />

and chitosan), were <strong>in</strong>cubated <strong>in</strong> coastal seawater passed through either 0.8 μm (AGG 0.8 ) or<br />

0.2 μm (AGG 0.2 ) filters. After <strong>in</strong>cubati<strong>on</strong> for 48 h, AGG 0.8 were much more densely (3.2- to 10.1-<br />

fold) col<strong>on</strong>ized by <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> than AGG 0.2 . Based <strong>on</strong> median <strong>settl<strong>in</strong>g</strong> velocities (W 50 ), as determ<strong>in</strong>ed<br />

by laser <strong>in</strong> situ scatter<strong>in</strong>g and transmissometry, the W 50 <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 was lower (1.6- to 4.5-fold) than<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.2 for a size class <str<strong>on</strong>g>of</str<strong>on</strong>g> 62 to 119 μm. Stokes model analyses <strong>in</strong>dicated that this reducti<strong>on</strong><br />

<strong>in</strong> W 50 could be largely attributed to the higher porosities <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 (0.932−0.981) than those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AGG 0.2 (0.719−0.929). Our results support the noti<strong>on</strong> that the modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong> structure<br />

by <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> (porosity enhancement) can be an important factor c<strong>on</strong>troll<strong>in</strong>g the <strong>settl<strong>in</strong>g</strong><br />

<strong>velocity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e particles.<br />

KEY WORDS: Bacteria · Aggregate · Settl<strong>in</strong>g <strong>velocity</strong> · Porosity · Mar<strong>in</strong>e envir<strong>on</strong>ments<br />

INTRODUCTION<br />

Organic <strong>aggregate</strong>s, <strong>in</strong>clud<strong>in</strong>g transparent exo -<br />

polymer particles (TEP) and hydrogels, play an im -<br />

portant role <strong>in</strong> the regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material cycl<strong>in</strong>g and<br />

food webs <strong>in</strong> mar<strong>in</strong>e ecosystems (Alldredge 1979,<br />

Sim<strong>on</strong> et al. 2002, Verdugo 2012). Organic <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> from the sunlit layer to the deeper layers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the oceans mediates the vertical delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>organic</strong><br />

carb<strong>on</strong> and other bioelements, represent<strong>in</strong>g an im -<br />

portant regulatory element <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> sequestrati<strong>on</strong><br />

(Fisher et al. 1991, Passow & De La Rocha 2006, De<br />

La Rocha & Passow 2007) and a means <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and<br />

nutrient supply to heterotrophic organisms <strong>in</strong> aphotic<br />

layers and <strong>on</strong> the seafloor (Alldredge 1979, Grossart<br />

et al. 1998, Passow et al. 2001). Because the <strong>settl<strong>in</strong>g</strong><br />

<strong>velocity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s is a key variable that <strong>in</strong>fluences<br />

the length-scale <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical carb<strong>on</strong> delivery and<br />

rem<strong>in</strong>eralizati<strong>on</strong> depth (Passow & Carls<strong>on</strong> 2012), it is<br />

important to clarify the variability and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> velocities <strong>in</strong> mar<strong>in</strong>e envir<strong>on</strong>ments.<br />

*Corresp<strong>on</strong>d<strong>in</strong>g author. Email: nagata@aori.u-tokyo.ac.jp<br />

Aggregate <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> is affected by the physical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s <strong>in</strong>clud<strong>in</strong>g size, porosity,<br />

morphology, and associati<strong>on</strong> with ballast particles<br />

such as diatom frustules and coccolith shells (Ploug et<br />

al. 2008, Iversen & Ploug 2010). These <strong>aggregate</strong><br />

properties may reflect not <strong>on</strong>ly the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>,<br />

and physicochemical <strong>in</strong>teracti<strong>on</strong>s am<strong>on</strong>g, polymeric<br />

materials and other c<strong>on</strong>stituents (Ch<strong>in</strong> et al. 1998,<br />

Verdugo 2012) but also the modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong><br />

structures by <str<strong>on</strong>g>attached</str<strong>on</strong>g> microbes. Bacteria can<br />

actively proliferate <strong>on</strong> the surface and <strong>in</strong> the <strong>in</strong>terstitial<br />

spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong> matrices, cleav<strong>in</strong>g polymer<br />

cha<strong>in</strong>s to create pores and reduce <strong>aggregate</strong> size<br />

(Passow & Alldredge 1994, Azam & Malfatti 2007).<br />

Alternatively, <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> may excrete sticky polymeric<br />

materials to fill <strong>in</strong>terstitial spaces and promote ag -<br />

gregate producti<strong>on</strong> (Cowen 1992, Stoderegger &<br />

Herndl 1998, Sugimoto et al. 2007). Furthermore, the<br />

replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong> matrices by <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l cells<br />

may alter bulk <strong>aggregate</strong> density. However, the prevail<strong>in</strong>g<br />

mode and net outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> these complex bac-<br />

© The authors 2013. Open Access under Creative Comm<strong>on</strong>s by<br />

Attributi<strong>on</strong> Licence. Use, distributi<strong>on</strong> and reproducti<strong>on</strong> are un -<br />

restricted. Authors and orig<strong>in</strong>al publicati<strong>on</strong> must be credited.<br />

Publisher: Inter-Research · www.<strong>in</strong>t-res.com


262<br />

Aquat Microb Ecol 70: 261–272, 2013<br />

terial acti<strong>on</strong>s <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g <strong>organic</strong> <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong><br />

velocities <strong>in</strong> seawater are not entirely clear.<br />

To understand how <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s affects <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> velocities, we exam<strong>in</strong>ed the <strong>settl<strong>in</strong>g</strong> velocities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> model <strong>aggregate</strong>s with different degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l col<strong>on</strong>izati<strong>on</strong>. Data <strong>on</strong> the physical parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s, <strong>in</strong>clud<strong>in</strong>g size, porosity, and morphology,<br />

were collected to <strong>in</strong>vestigate the dom<strong>in</strong>ant<br />

mechanism by which <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> affect the <strong>settl<strong>in</strong>g</strong><br />

velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>organic</strong> <strong>aggregate</strong>s <strong>in</strong> mar<strong>in</strong>e envir<strong>on</strong>ments.<br />

MATERIALS AND METHODS<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model <strong>aggregate</strong>s<br />

We used compositi<strong>on</strong>ally def<strong>in</strong>ed, sp<strong>on</strong>taneously<br />

assembled gels (Verdugo 2012) as model <strong>aggregate</strong>s<br />

to <strong>in</strong>vestigate <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l effects <strong>on</strong> <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong><br />

<strong>velocity</strong> with m<strong>in</strong>imal effects <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong>al variability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>organic</strong> <strong>aggregate</strong>s <strong>in</strong> natural envir<strong>on</strong>ments<br />

(see ‘Discussi<strong>on</strong>’). The model <strong>aggregate</strong>s<br />

were prepared us<strong>in</strong>g fucoidan (a sulfated polysaccharide<br />

found <strong>in</strong> brown seaweed) and chitosan (a<br />

partially deacetylated derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> the am<strong>in</strong>o polysaccharide,<br />

chit<strong>in</strong>) accord<strong>in</strong>g to a gel preparati<strong>on</strong><br />

protocol orig<strong>in</strong>ally developed by Nakamura et al.<br />

(2008) for pharmaceutical purposes. Fucoidan was<br />

extracted from Kjellmanialla crassifolia (Gagomekombu)<br />

accord<strong>in</strong>g to Nakamura et al. (2008).<br />

Gagome-kombu powder (10 g) (Toy<strong>on</strong>aka Matumae<br />

K<strong>on</strong>bu H<strong>on</strong>po Corp., Osaka, www.kobuya.net) was<br />

added to 100 ml 70% by volume ratio (v/v) ethanol<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 0.1 M acetic acid <strong>in</strong> a 200 ml c<strong>on</strong>ical<br />

glass flask. After gentle mix<strong>in</strong>g, the suspensi<strong>on</strong> was<br />

filtered through polycarb<strong>on</strong>ate filters (10 μm pore<br />

size, 47 mm diameter; Whatman). The filtrate was<br />

air-dried and added to 200 ml 8.8 μM CaCl 2 soluti<strong>on</strong>.<br />

After boil<strong>in</strong>g for 30 m<strong>in</strong>, the extract was centrifuged<br />

(2330 × g) at room temperature for 10 m<strong>in</strong>.<br />

The supernatant was filtered through polycarb<strong>on</strong>ate<br />

filters (10 μm pore size, 47 mm diameter; Whatman).<br />

The filtrate was mixed with 2× volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 99.5%<br />

ethanol (total volume, ca. 300 ml). The precipitated<br />

materials were collected <strong>on</strong> polycarb<strong>on</strong>ate filters<br />

(10 μm pore size, 47 mm diameter; Whatman) and<br />

transferred to a 500 ml c<strong>on</strong>ical glass flask. The<br />

<strong>in</strong>creas<strong>in</strong>g volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl soluti<strong>on</strong> (0.9% by<br />

weight to volume ratio [wt/vol], c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 10 mM<br />

EDTA-2Na) were slowly added to the precipitates<br />

until the mixture became clear (the total volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NaCl soluti<strong>on</strong> added was ca. 75 ml). Precipitates<br />

that were not completely dissolved were elim<strong>in</strong>ated<br />

by successive filtrati<strong>on</strong> through 2 types <str<strong>on</strong>g>of</str<strong>on</strong>g> glass fiber<br />

filter (GF/D and GF/C filters, 47 mm diameter;<br />

Whatman) and polycarb<strong>on</strong>ate filters (0.8 μm pore<br />

size, 47 mm diameter; Whatman). The filtrate was<br />

mixed with 2× volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> 99.5% ethanol (total volume:<br />

ca. 150 ml) and centrifuged (2330 × g) at room<br />

temperature for 10 m<strong>in</strong>. F<strong>in</strong>ally, the precipitates<br />

(fucoidan extracts) were broken <strong>in</strong>to small pieces<br />

with spatulas and air-dried <strong>in</strong> a flow hood. Fucoidan<br />

soluti<strong>on</strong> (2.1% wt/vol) was prepared by dissolv<strong>in</strong>g<br />

16.6 mg fucoidan extract <strong>in</strong> 790 μl Milli-Q water<br />

(Millipore). Chitosan soluti<strong>on</strong> (3.8% w v −1 ) was prepared<br />

by dissolv<strong>in</strong>g 1.25 g chitosan (LL-40, Yaizu<br />

Suisankagaku Industry, ex tracted from Chi<strong>on</strong>oecetes<br />

opilo; nom<strong>in</strong>al deacetylati<strong>on</strong> rate: >80%) <strong>in</strong><br />

33.1 ml 190 mM HCl.<br />

Model <strong>aggregate</strong>s were prepared by mix<strong>in</strong>g chitosan<br />

and fucoidan soluti<strong>on</strong>s accord<strong>in</strong>g to Nakamura<br />

et al. (2008) with the follow<strong>in</strong>g modificati<strong>on</strong>s. Before<br />

the preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s, chitosan and fucoidan<br />

soluti<strong>on</strong>s (see above) were centrifuged at 1200 × g for<br />

10 m<strong>in</strong> at 23°C. The supernatant <str<strong>on</strong>g>of</str<strong>on</strong>g> each soluti<strong>on</strong> was<br />

successively filtered through 0.8 μm and 0.2 μm<br />

syr<strong>in</strong>ge filters (25 mm diameter, Acrodisc syr<strong>in</strong>ge filter<br />

with Supor® membrane; Pall) to remove particles.<br />

Then, 210 μl chitosan soluti<strong>on</strong> was added to 50 ml filtered<br />

(0.2 μm) seawater <strong>in</strong> a 50 ml polypropylene<br />

tube (BD Falc<strong>on</strong> C<strong>on</strong>ical Centrifuge tube; Fisher Scientific).<br />

After gentle mix<strong>in</strong>g, 790 μl clear fucoidan<br />

soluti<strong>on</strong> was added to the seawater and then mixed.<br />

At this stage, the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s was ob -<br />

served. After storage <str<strong>on</strong>g>of</str<strong>on</strong>g> the suspensi<strong>on</strong> at 4°C for 3 h,<br />

<strong>aggregate</strong>s that settled at the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the tube<br />

were collected by remov<strong>in</strong>g the supernatant by aspirati<strong>on</strong><br />

(~10 ml soluti<strong>on</strong> rema<strong>in</strong><strong>in</strong>g). Then, 40 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

filtered (0.2 μm) seawater was added to the tube. The<br />

<strong>aggregate</strong> suspensi<strong>on</strong> was filtered through a nyl<strong>on</strong><br />

mesh (Nitex screen, mesh size 200 μm; Wildlife Supply<br />

Company) to remove large <strong>aggregate</strong>s. The<br />

<strong>aggregate</strong> suspensi<strong>on</strong> (hereafter, 50 ml work<strong>in</strong>g suspensi<strong>on</strong>)<br />

was stored at 4°C for 3 h until it was used for<br />

the <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> experiments.<br />

Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater samples and <strong>in</strong>cubati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

model <strong>aggregate</strong>s<br />

Surface seawater samples were collected us<strong>in</strong>g a<br />

plastic bucket at the shore <str<strong>on</strong>g>of</str<strong>on</strong>g> Oarai Beach, Ibaraki,<br />

Japan (36° 19’ 3’’ N, 140° 35’ 29’ E), <strong>on</strong> January 30<br />

(water temperature: 10.1°C, sal<strong>in</strong>ity: 29.2), August 29


Yamada et al.: How <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> affect <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

263<br />

(24.0°C, 29.2), and November 15 (17.3°C, 28.8), 2011.<br />

With<strong>in</strong> 12 h <str<strong>on</strong>g>of</str<strong>on</strong>g> sampl<strong>in</strong>g, seawater samples were filtered<br />

through 0.8 μm polycarb<strong>on</strong>ate filters (47 mm<br />

diameter; Whatman) to elim<strong>in</strong>ate grazers and other<br />

eukaryotes. The filtrate was further filtered through<br />

0.2 μm polycarb<strong>on</strong>ate filters (47 mm diameter; Whatman)<br />

us<strong>in</strong>g negative pressure (


264<br />

Aquat Microb Ecol 70: 261–272, 2013<br />

Density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g><br />

In the August experiment, the density distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> <str<strong>on</strong>g>attached</str<strong>on</strong>g> to <strong>aggregate</strong>s (after 48 h <strong>in</strong>cubati<strong>on</strong>)<br />

was measured accord<strong>in</strong>g to Inoue et al.<br />

(2007). To remove <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> from <strong>aggregate</strong><br />

matrices, <strong>aggregate</strong> structures were mechanically<br />

de stroyed by filtrati<strong>on</strong> through a 0.8 μm syr<strong>in</strong>ge filter<br />

(25 mm diameter; Pall). First, 2 ml AGG 0.8 was<br />

filtered through the syr<strong>in</strong>ge filter, and the filtrate<br />

was discarded (we assumed that <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> collected<br />

<strong>on</strong> the 0.8 μm filter represented those associated<br />

with AGG 0.8 , although some <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> might<br />

have passed through the filters). Then, 2 ml filtered<br />

sea water (0.2 μm) was passed through the same<br />

syr<strong>in</strong>ge filter. The filtrate was passed a sec<strong>on</strong>d time<br />

through the same syr<strong>in</strong>ge filter. This operati<strong>on</strong> was<br />

repeated 10 times to obta<strong>in</strong> a <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l suspensi<strong>on</strong>.<br />

The recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> was calculated as<br />

follows: (<str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance determ<strong>in</strong>ed for the<br />

<str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l suspensi<strong>on</strong> obta<strong>in</strong>ed after <strong>aggregate</strong><br />

mechanical destructi<strong>on</strong>) / (<str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance<br />

<strong>in</strong>itially determ<strong>in</strong>ed us<strong>in</strong>g the 0.8 μm pore<br />

size filters) × 100. Bacteria were enumerated by the<br />

DAPI sta<strong>in</strong><strong>in</strong>g method as described <strong>in</strong> ‘Microscopic<br />

exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s and <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>’.<br />

The recovery was 102.1 ± 16.8% (mean ± standard<br />

error [SE], n = 7).<br />

To determ<strong>in</strong>e <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l density, 1 ml at -<br />

tached <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l suspensi<strong>on</strong> and a 0.1 ml soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

density marker beads (Amersham Biosciences)<br />

were layered <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 ml Percoll gradient work<strong>in</strong>g<br />

soluti<strong>on</strong>. The work<strong>in</strong>g soluti<strong>on</strong> c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

30% v/v Percoll, 10% v/v <str<strong>on</strong>g>of</str<strong>on</strong>g> 10× phosphatebuffered<br />

sal<strong>in</strong>e (pH 7.4), 2.34% wt/vol <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl and<br />

autoclaved Milli-Q (filtered through the 0.2 μm<br />

pore size filter) and was c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> a centrifugati<strong>on</strong><br />

tube (No. 7031; Set<strong>on</strong> Scientific). Then, the<br />

tube was ultra-centrifuged (50 512 × g) for 20 m<strong>in</strong> at<br />

20°C (Optima XL-90 with SW40Ti rotor; Beckman<br />

Coulter). After centrifugati<strong>on</strong>, the tubes were<br />

marked at equal distances from the surface layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soluti<strong>on</strong> to the bottom to divide it <strong>in</strong>to 10 fracti<strong>on</strong>s.<br />

Then, 1 ml soluti<strong>on</strong> was withdrawn at each<br />

mark positi<strong>on</strong>, <strong>in</strong> descend<strong>in</strong>g order, by prick<strong>in</strong>g the<br />

centrifugati<strong>on</strong> tube wall with a 1 ml syr<strong>in</strong>ge with a<br />

needle (0.45 × 13 mm; Terumo). The <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

abundance <strong>in</strong> each fracti<strong>on</strong> was counted by epifluorescence<br />

microscopy (×1000, BX61; Olympus) after<br />

DAPI sta<strong>in</strong><strong>in</strong>g. Bacteria recovered <strong>in</strong> the top and<br />

bottom fracti<strong>on</strong>s c<strong>on</strong>ta<strong>in</strong>ed <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> with densities<br />

either lower (1.086 g<br />

cm −3 ) than the analytical limits <str<strong>on</strong>g>of</str<strong>on</strong>g> the present<br />

method. For the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the weighted average<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> the total <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l assemblage,<br />

we assumed that the densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g><br />

collected <strong>in</strong> the top and bottom fracti<strong>on</strong>s were 1.033<br />

and 1.086 g cm −3 , respectively.<br />

Aggregate porosity<br />

The porosities <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.2 and AGG 0.8 obta<strong>in</strong>ed <strong>in</strong><br />

the November experiment were estimated by compar<strong>in</strong>g<br />

<strong>aggregate</strong> size distributi<strong>on</strong>s determ<strong>in</strong>ed by<br />

LISST to those determ<strong>in</strong>ed us<strong>in</strong>g a resistive pulse<br />

particle counter (Coulter counter; Multisizer II,<br />

Beckman Coulter) (Sterl<strong>in</strong>g et al. 2004). This<br />

method is based <strong>on</strong> different pr<strong>in</strong>ciples <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 <strong>in</strong>struments<br />

to measure particle size distributi<strong>on</strong>s. LISST<br />

measures light scatter<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> particles (reflect<strong>in</strong>g<br />

particle bulk volume), whereas a Coulter counter<br />

determ<strong>in</strong>es the electric resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

(reflect<strong>in</strong>g particle solid volume). For porous particles,<br />

the particle size distributi<strong>on</strong> determ<strong>in</strong>ed by a<br />

Coulter counter deviates to smaller size categories<br />

relative to that determ<strong>in</strong>ed by LISST, reflect<strong>in</strong>g the<br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity (Sterl<strong>in</strong>g et al. 2004). We used<br />

the follow<strong>in</strong>g equati<strong>on</strong> to derive the <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity<br />

(ε):<br />

C<br />

Porosity( ε) = 1− V (1)<br />

V L<br />

where V C and V L are the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s (ml<br />

<strong>aggregate</strong> −1 ) determ<strong>in</strong>ed by the Coulter counter<br />

and LISST, respectively. V C and V L for each size<br />

class were estimated from the Coulter-based<br />

<strong>aggregate</strong> diameter (D C ) and LISST-based diameter<br />

(D L ), assum<strong>in</strong>g that the <strong>aggregate</strong>s were spheres.<br />

Because the b<strong>in</strong>s differed between D C and D L , we<br />

derived the abundance-D L regressi<strong>on</strong> (log-log<br />

regressi<strong>on</strong>) for the LISST data to estimate the<br />

<strong>aggregate</strong> abundance (l −1 μm −1 ) for the size category<br />

between 62 μm (N 62 ) and 119 μm (N 119 ).<br />

Then, D C for the abundance range between N 62<br />

and N 119 was compared to the D L (derived from<br />

the abundance-D L regressi<strong>on</strong>) bel<strong>on</strong>g<strong>in</strong>g to the<br />

same abundance category.<br />

Ectoenzymatic activity<br />

In the August experiment, the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the bac -<br />

terial ectoenzyme that potentially hydrolyzes ag -<br />

gregate polymer c<strong>on</strong>stituents (chitosan) was determ<strong>in</strong>ed<br />

us<strong>in</strong>g a methylumbelliferyl (MUF) substrate,


Yamada et al.: How <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> affect <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

265<br />

4-MUF-N-acetyl-β-D-glucosam<strong>in</strong>ide (Sigma-Aldrich)<br />

(Hoppe 1983). Fluorescent substrate dissolved <strong>in</strong> 2-<br />

methoxyethanol was added to either total or syr<strong>in</strong>gefiltered<br />

(0.8 μm) sample waters (f<strong>in</strong>al c<strong>on</strong>c. 0.05 mM).<br />

The samples were <strong>in</strong>cubated at 23°C for 2 m<strong>in</strong>. After<br />

add<strong>in</strong>g borate buffer (0.5 M boric acid with NaOH,<br />

pH 10), fluorescence (455 nm emissi<strong>on</strong>, 365 nm excitati<strong>on</strong>)<br />

was determ<strong>in</strong>ed us<strong>in</strong>g a fluorescence spectrophotometer<br />

(RF-1500; Shimadzu). The enzyme<br />

activity was calibrated us<strong>in</strong>g 4-methylumbellifer<strong>on</strong>e<br />

(Sigma-Aldrich) as a standard. The enzyme activity<br />

associated with each <strong>aggregate</strong> (AGG 0.2 and AGG 0.8 )<br />

was estimated by subtract<strong>in</strong>g the enzyme activity<br />

determ<strong>in</strong>ed for filtered samples from that determ<strong>in</strong>ed<br />

for the total sample.<br />

Abundance and density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>, and<br />

<strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

Aggregates were porous (Fig. 2a), clearly sta<strong>in</strong>ed<br />

by Alcian Blue (Fig. 2b), and associated with bacte-<br />

RESULTS<br />

Aggregate size distributi<strong>on</strong> and total volume<br />

a<br />

After <strong>in</strong>cubati<strong>on</strong> for 48 h, both AGG 0.8 and AGG 0.2<br />

displayed a similar unimodal size distributi<strong>on</strong> with a<br />

peak at 119 μm <strong>in</strong> all experiments (Fig. 1). Total volume<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s <strong>in</strong>itially added was<br />

97.5 ± 4.3 ppm (mean ± SE, n = 22), which was with<strong>in</strong><br />

the range <str<strong>on</strong>g>of</str<strong>on</strong>g> typical TEP volume c<strong>on</strong>centrati<strong>on</strong>s<br />

reported <strong>in</strong> coastal waters (Passow 2002). Aggregates<br />

bel<strong>on</strong>g<strong>in</strong>g to the 62 to 119 μm size class were used to<br />

assess the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l attachment <strong>on</strong> <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> velocities. This size range was used<br />

because for smaller <strong>aggregate</strong>s (119 μm<br />

size class).<br />

b<br />

Volume (ppm)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1 10<br />

100<br />

1000<br />

ESD (µm)<br />

Fig. 1. Aggregate size (equivalent spherical diameter [ESD])<br />

distributi<strong>on</strong> for (solid l<strong>in</strong>e) AGG 0.8 and (dashed l<strong>in</strong>e) AGG 0.2 .<br />

Data are from the August experiment<br />

c<br />

Fig. 2. Microscopic images <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong> AGG 0.8 (collected<br />

dur<strong>in</strong>g the January experiment). Scale bars = 50 μm. (a)<br />

Transmissi<strong>on</strong> light microscopic image. (b) Transmissi<strong>on</strong> light<br />

microscopic image after Alcian Blue-SYBR Green I double<br />

sta<strong>in</strong><strong>in</strong>g. (c) Epifluorescence microscopic image after Alcian<br />

blue-SYBR Green I double sta<strong>in</strong><strong>in</strong>g. Green particles are<br />

<str<strong>on</strong>g>bacteria</str<strong>on</strong>g>


266<br />

Aquat Microb Ecol 70: 261–272, 2013<br />

ria (Fig. 2c). For both AGG 0.2 and AGG 0.8 , <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

abundance per <strong>aggregate</strong> generally <strong>in</strong>creased with<br />

<strong>in</strong>creas<strong>in</strong>g <strong>aggregate</strong> size (Fig. 3). Empirical equati<strong>on</strong>s<br />

that relate <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance<br />

(ABA) to the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s (D <strong>in</strong> μm)<br />

were obta<strong>in</strong>ed us<strong>in</strong>g a l<strong>in</strong>ear regressi<strong>on</strong> model after<br />

a double logarithmic transformati<strong>on</strong>. The follow<strong>in</strong>g<br />

regressi<strong>on</strong> equati<strong>on</strong>s were derived: log ABA =<br />

−1.32 + (2.31 × log D) (r 2 = 0.98, p < 0.001, n = 15)<br />

for AGG 0.8 and log ABA = −1.51 + (2.04 × log D)<br />

(r 2 = 0.57, p < 0.01, n = 15) for AGG 0.2 . For each size<br />

class, <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance associated with AGG 0.8<br />

was much higher (3.2- to 10.1-fold) than the corresp<strong>on</strong>d<strong>in</strong>g<br />

value for AGG 0.2 . The differences <strong>in</strong> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

abundance between AGG 0.8 and AGG 0.2 were<br />

significant (p < 0.01, Student’s t-test) for all size<br />

classes. In the January experiment, the average<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> associated with AGG 0.8 was 0.47 ±<br />

0.01 μm 3 (mean ± SE, n = 474), which did not differ<br />

significantly (p > 0.05, Student’s t-test) from the<br />

average size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> associated with AGG 0.2<br />

(0.46 ± 0.02 μm 3 ; n = 181). The weighted average<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>, determ<strong>in</strong>ed for AGG 0.8<br />

collected <strong>in</strong> the August experiment, was 1.064 ±<br />

0.002 g cm −3 (n = 4). Note that this estimate has an<br />

error due to the <strong>in</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> <strong>in</strong> either top<br />

Attached <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance<br />

(cells <strong>aggregate</strong> –1 )<br />

1000<br />

100<br />

10<br />

1<br />

**<br />

**<br />

***<br />

***<br />

*** **<br />

***<br />

*** ***<br />

***<br />

*** **<br />

*** ***<br />

***<br />

62 73 86 101 119<br />

ESD (µm)<br />

Fig. 3. Relati<strong>on</strong>ship between <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance<br />

and size (equivalent spherical diameter, ESD) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s<br />

AGG 0.8 (j: January; m: August; d: No vember) and AGG 0.2<br />

(h: January; n: August; s: November). Values are means ±<br />

SE; error bars are those associated with 3 (January) or 4 (August<br />

and November) replicated bottles. For each bottle, 10 to<br />

20 <strong>aggregate</strong>s were analyzed. Asterisks <strong>in</strong>dicate the significance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the difference between AGG 0.8 and AGG 0.2 (**p <<br />

0.01, ***p < 0.001; Student’s t-test). Solid and dashed l<strong>in</strong>es<br />

are l<strong>in</strong>ear regressi<strong>on</strong>s after double logarithmic transformati<strong>on</strong><br />

for AGG 0.8 and AGG 0.2 , respectively (see ‘Results’)<br />

or bottom fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the density gradient (these<br />

<str<strong>on</strong>g>bacteria</str<strong>on</strong>g> have densities either lower or higher than<br />

the analytical limits; see ‘Materials and methods’).<br />

While the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> the<br />

top fracti<strong>on</strong> accounted for <strong>on</strong>ly 3.7 ± 1.6% (n = 4) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance, the c<strong>on</strong>tributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> the bottom fracti<strong>on</strong> was<br />

relatively large (38.1 ± 7.1% [n = 4] <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

<str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance), suggest<strong>in</strong>g that our<br />

estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> average <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l density might be too<br />

low.<br />

The ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> W 50 values for AGG 0.8 and AGG 0.2<br />

were 0.0025−0.0054 cm s −1 and 0.0056−0.0136 cm<br />

s −1 , respectively. For each size class, the W 50 values<br />

for AGG 0.8 were lower (1.6- to 4.5-fold) than those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.2 (Fig. 4). The differences <strong>in</strong> the W 50<br />

values between AGG 0.8 and AGG 0.2 were significant<br />

(p < 0.05, Student’s t-test), except for the 62, 73,<br />

and 86 μm size classes <strong>in</strong> the August experiment<br />

(Fig. 4).<br />

Aggregate ε, enzyme activity, and morphological<br />

parameters<br />

The ε <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 and AGG 0.2 varied <strong>in</strong> the ranges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.932−0.981 and 0.719−0.929, respectively. The average<br />

ε <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.2 was significantly smaller than the<br />

corresp<strong>on</strong>d<strong>in</strong>g ε <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 for each size class (p < 0.05,<br />

Student’s t-test, Fig. 5). Empirical equati<strong>on</strong>s that<br />

relate ε to D were obta<strong>in</strong>ed us<strong>in</strong>g a quadratic regressi<strong>on</strong><br />

model after a double logarithmic transformati<strong>on</strong>.<br />

A quadratic rather than l<strong>in</strong>ear regressi<strong>on</strong> model was<br />

used because the r 2 value <str<strong>on</strong>g>of</str<strong>on</strong>g> the quadratic regressi<strong>on</strong><br />

exceeded that <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>in</strong>ear regressi<strong>on</strong> for both<br />

AGG 0.8 and AGG 0.2 . The follow<strong>in</strong>g regressi<strong>on</strong> equati<strong>on</strong>s<br />

were derived: log ε = 1.214 + (0.719 × log D) −<br />

[0.166 × (log D) 2 ] (r 2 = 0.73, p < 0.001, n = 20) for<br />

AGG 0.8 , and log ε = −2.704 + (4.409 × log D) − [1.040<br />

× (log D) 2 ] (r 2 = 0.76, p < 0.001, n = 20) for AGG 0.2 .<br />

In the August experiment, the ectoenzymatic activity<br />

(hydrolysis rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 4-MUF-N-acetyl-β-D-gluco -<br />

sam<strong>in</strong>ide, mean ± SE, n = 3) <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 and AGG 0.2<br />

was 4.00 ± 0.99 nM m<strong>in</strong> −1 ml −1 and 0.03 ± 0.01 nM<br />

m<strong>in</strong> −1 ml −1 , respectively, with the former be<strong>in</strong>g sig -<br />

nificantly (p < 0.05, Student’s t-test) higher than the<br />

latter.<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s<br />

are tabulated <strong>in</strong> Table 1. Neither the l<strong>on</strong>g to short<br />

axis ratio nor the circularity differed significantly<br />

am<strong>on</strong>g different size classes for both AGG 0.8 and<br />

AGG 0.2 (p > 0.05, ANOVA). The average l<strong>on</strong>g to<br />

short axis ratios for AGG 0.8 and AGG 0.2 were 0.596


Yamada et al.: How <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> affect <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

267<br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

a) Jan<br />

*** *** ***<br />

***<br />

***<br />

Porosity<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

***<br />

***<br />

***<br />

***<br />

***<br />

0<br />

0.5<br />

62<br />

73<br />

86<br />

ESD (µm)<br />

101 119<br />

W 50 (cm s –1 )<br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

b) Aug<br />

NS<br />

NS<br />

NS<br />

*<br />

*<br />

Fig. 5. Relati<strong>on</strong>ship between porosity and size (equivalent<br />

spherical diameter, ESD) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s AGG 0.8 (j) and<br />

AGG 0.2 (h). Data were collected dur<strong>in</strong>g the November experiment.<br />

Values are means ± SE <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 replicate bottles. Asterisks<br />

<strong>in</strong>dicate the significance <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference between<br />

AGG 0.8 and AGG 0.2 (***p < 0.001; Student’s t-test) for each<br />

size class. Fitted curves are quadratic regressi<strong>on</strong>s after<br />

double logarithmic transformati<strong>on</strong> (see ‘Results’)<br />

DISCUSSION<br />

0<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> model <strong>aggregate</strong>s to exam<strong>in</strong>e <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

0<br />

c) Nov<br />

*** ***<br />

62<br />

73<br />

***<br />

and 0.584, respectively, which did not differ significantly<br />

from each other (p > 0.05, Student’s t-test).<br />

The average circularities for AGG 0.8 and AGG 0.2<br />

were 0.072 and 0.044, respectively. The former<br />

was significantly larger than the latter (p < 0.001,<br />

Student’s t-test).<br />

86<br />

ESD (µm)<br />

**<br />

**<br />

101 119<br />

Fig. 4. Median <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> (W 50 ; cm s −1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> each size class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s AGG 0.2 (gray bars) and AGG 0.8 (white bars) <strong>in</strong><br />

(a) January, (b) August, and (c) November experiments. Values<br />

are means ± SE <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 (January) or 4 (August and November)<br />

replicated bottles. Asterisks <strong>in</strong>dicate the significance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the difference between AGG 0.8 and AGG 0.2 (*p < 0.05, **p <<br />

0.01, ***p < 0.001, NS: p > 0.05; Student’s t-test)<br />

The model <strong>aggregate</strong>s exhibited the key features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural mar<strong>in</strong>e <strong>aggregate</strong>s: they were sp<strong>on</strong>taneously<br />

assembled micro-gels that are abundant <strong>in</strong><br />

mar<strong>in</strong>e waters (Ch<strong>in</strong> et al. 1998, Verdugo 2012); they<br />

were sta<strong>in</strong>able by Alcian Blue, a critical feature that<br />

characterizes TEP (Alldredge et al. 1993); they c<strong>on</strong>ta<strong>in</strong>ed<br />

sulfate and am<strong>in</strong>o polysaccharides, which are<br />

the major c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> TEP (Zhou et al. 1998, Passow<br />

2002); and their m<strong>on</strong>omeric c<strong>on</strong>stituents, fucose<br />

and glucosam<strong>in</strong>e, are ubiquitous and can be abundant<br />

<strong>in</strong> mar<strong>in</strong>e waters (Borch & Kirchman 1997, Myklestad<br />

et al. 1997). Furthermore, our experiments<br />

modeled the fundamental features <str<strong>on</strong>g>of</str<strong>on</strong>g> microbe−<br />

<strong>aggregate</strong> <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> mar<strong>in</strong>e systems, i.e. col<strong>on</strong>izati<strong>on</strong>,<br />

growth, and enzymatic cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers<br />

(Azam & Malfatti 2007, Nagata 2008). Ectoenzymatic<br />

activities cleav<strong>in</strong>g fucoidan and chit<strong>in</strong> have<br />

been detected <strong>in</strong> seawater (Gooday 1990, Poulicek et<br />

al. 1998, Ziervogel & Arnosti 2008), <strong>in</strong>dicat<strong>in</strong>g that<br />

the model <strong>aggregate</strong>s serve not <strong>on</strong>ly as attachment<br />

surfaces but also as carb<strong>on</strong> and nutrient sources for<br />

microbes. In fact, <strong>in</strong> our experiments, AGG 0.8 were<br />

densely col<strong>on</strong>ized by <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>, with an abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.050 to 0.074 cells μm −2 . This is with<strong>in</strong> the higher<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance reported to be associated<br />

with mar<strong>in</strong>e TEP with<strong>in</strong> a similar size range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>aggregate</strong>s (0.006 to 0.079 cells μm −2 ; Schuster &


268<br />

Aquat Microb Ecol 70: 261–272, 2013<br />

Table 1. L<strong>on</strong>g to short axis ratio and circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s AGG 0.8 and AGG 0.2 . The data were collected dur<strong>in</strong>g the January<br />

experiment. Values are means ± SE <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicate bottles (n = 3) for the different size classes. For each bottle, 40 to 71 particles<br />

were analyzed. ESD: equivalent spherical diameter<br />

ESD (μm)<br />

62 73 86 101 119<br />

Mean (μm)<br />

L<strong>on</strong>g to short AGG 0.8 0.586 ± 0.007 0.590 ± 0.003 0.623 ± 0.002 0.630 ± 0.006 0.551 ± 0.011 0.596 ± 0.004<br />

axis ratio AGG 0.2 0.614 ± 0.005 0.581 ± 0.020 0.600 ± 0.006 0.534 ± 0.010 0.593 ± 0.012 0.584 ± 0.005<br />

Circularity AGG 0.8 0.072 ± 0.001 0.066 ± 0.001 0.076 ± 0.004 0.076 ± 0.004 0.070 ± 0.003 0.072 ± 0.001<br />

AGG 0.2 0.055 ± 0.001 0.043 ± 0.002 0.041 ± 0.001 0.039 ± 0.001 0.040 ± 0.001 0.044 ± 0.001<br />

Herndl 1995, Mari & Kiørboe 1996, Passow 2002).<br />

The average cell volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> associated with<br />

AGG 0.2 was relatively large (0.46 μm 3 ) and differed<br />

little from that <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 , suggest<strong>in</strong>g that a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

small <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> <strong>in</strong>itially c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> the 0.2 μm filtered<br />

seawater became larger dur<strong>in</strong>g their growth <strong>on</strong><br />

the substrate-rich <strong>aggregate</strong>s. The <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l growth<br />

<strong>on</strong> AGG 0.8 was accompanied by a substantial <strong>in</strong> -<br />

crease <strong>in</strong> ectoenzymatic activity, support<strong>in</strong>g the<br />

noti<strong>on</strong> that <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> cleaved polymer matrices dur<strong>in</strong>g<br />

col<strong>on</strong>izati<strong>on</strong> and growth. Thus, our model <strong>aggregate</strong>s<br />

represent a class <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate-rich <strong>aggregate</strong>s<br />

that harbor dense <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l communities. The<br />

follow<strong>in</strong>g discussi<strong>on</strong> will focus <strong>on</strong> the specific mechanisms<br />

underly<strong>in</strong>g the regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> <strong>velocity</strong>.<br />

Possible mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> via <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l col<strong>on</strong>izati<strong>on</strong><br />

The W 50 values for AGG 0.8 were significantly (1.6-<br />

to 4.5-fold) lower than those for AGG 0.2 . Settl<strong>in</strong>g<br />

velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 would have been affected by the<br />

adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> submicr<strong>on</strong>-sized TEP that existed <strong>in</strong> the<br />

0.8 μm filtrate but not <strong>in</strong> the 0.2 μm filtrate. Although<br />

submicr<strong>on</strong>-sized TEP are known to be abundant <strong>in</strong><br />

natural seawaters, their c<strong>on</strong>tributi<strong>on</strong>s to total TEP<br />

volumes are usually low (


Yamada et al.: How <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> affect <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

269<br />

where ρ S (g cm −3 ) is the density <str<strong>on</strong>g>of</str<strong>on</strong>g> the solid fracti<strong>on</strong><br />

c<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> polysaccharide matrices with a density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ρ pol (g cm −3 ) and <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l cells with a density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ρ bac (g cm −3 ). ε is the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater volume relative<br />

to the total <strong>aggregate</strong> volume, and α is the fracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l cell volume relative to the total solid<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>aggregate</strong>. Eqs. (2−4) can be rewritten<br />

as follows:<br />

gD<br />

2 ( 1−ε) [( 1− α)<br />

ρpol + α ρbac − ρ0]<br />

v =<br />

(5)<br />

18 μϕ<br />

This model assumes that the <strong>aggregate</strong>s are n<strong>on</strong>permeable<br />

(there is no advective flow through the<br />

<strong>aggregate</strong>s), which is c<strong>on</strong>sistent with the suggesti<strong>on</strong><br />

that mar<strong>in</strong>e <strong>aggregate</strong>s have very low permeability<br />

(Ploug & Passow 2007, K<strong>in</strong>dler et al. 2010). Clearly,<br />

this assumpti<strong>on</strong> does not hold for all <strong>aggregate</strong> types<br />

<strong>in</strong> mar<strong>in</strong>e envir<strong>on</strong>ments. In fact, for fast-<strong>settl<strong>in</strong>g</strong>,<br />

large <strong>aggregate</strong>s (with diameters <strong>on</strong> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

few mm) c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g ballast particles, apparent diffusivity<br />

with<strong>in</strong> the <strong>aggregate</strong>s has been reported to be<br />

high (Ploug et al. 2008). However, for the small<br />

(diameters 62 to 119 μm), slowly <strong>settl<strong>in</strong>g</strong> <strong>aggregate</strong>s<br />

exam<strong>in</strong>ed here, it is probably safe to assume that permeability<br />

barely <strong>in</strong>fluenced <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> velocities<br />

(Logan & Hunt 1987).<br />

Us<strong>in</strong>g Eq. (5) and the parameters obta<strong>in</strong>ed <strong>in</strong> the<br />

present study (ε, α, and ρ bac ) and from the literature<br />

(Table 2), we exam<strong>in</strong>ed the relative c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>, i.e. α and ε, to the reducti<strong>on</strong><br />

<strong>in</strong> the <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s. Because<br />

the morphological effect (ϕ) was unknown, we first<br />

estimated the ϕ value for which the predicted v<br />

becomes equal to the observed v for each size category<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.2 . Then, the average (±1 SE) ϕ for different<br />

size categories (2.80 ± 0.13, n = 5) was used as<br />

a parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the morphological effect for AGG 0.2<br />

(parameter set 1). Next, by assum<strong>in</strong>g that ϕ is c<strong>on</strong>stant<br />

(= 2.80), we determ<strong>in</strong>ed to what extent the v for<br />

AGG 0.2 changes with <strong>in</strong>creases <strong>in</strong> α and ε to the levels<br />

that we determ<strong>in</strong>ed for AGG 0.8 (parameter sets 2<br />

and 3). The results revealed that the <strong>in</strong>crease <strong>in</strong> α<br />

(parameter set 2) resulted <strong>in</strong> <strong>on</strong>ly a 4.9% (range: 3.0<br />

to 7.1%) reducti<strong>on</strong> <strong>in</strong> v (Table 3), which expla<strong>in</strong>ed a<br />

small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed difference <strong>in</strong> v be -<br />

tween AGG 0.8 and AGG 0.2 (71.2%). Note that the<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> <strong>in</strong> v with <strong>in</strong>creas<strong>in</strong>g α might<br />

be overestimated because our estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

density would be too low (see ‘Results’). In c<strong>on</strong>trast,<br />

<strong>in</strong>creases <strong>in</strong> both α and ε (parameter set 3) resulted <strong>in</strong><br />

a large reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> v, with an average reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

75.4% (range: 74.4 to 76.4%) (Table 3). These results<br />

<strong>in</strong>dicate that the ε effect was ma<strong>in</strong>ly resp<strong>on</strong>sible for<br />

the difference <strong>in</strong> v between AGG 0.2 and AGG 0.8 . Note<br />

that the predicted v with parameter set 3 was slightly<br />

lower (by 0.9 to 6.3% depend<strong>in</strong>g <strong>on</strong> size categories)<br />

than the observed v (Table 3). This might be due to<br />

differences <strong>in</strong> morphology (hence ϕ) between AGG 0.2<br />

and AGG 0.8 . C<strong>on</strong>sistent with this noti<strong>on</strong>, our results<br />

<strong>in</strong>dicated that the circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 was larger<br />

Table 2. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters used for the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> (v) accord<strong>in</strong>g to the model described<br />

by Eq. (5). *Asterisks <strong>in</strong>dicate the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters for each parameter set<br />

Parameters Units Parameter set Values Remarks<br />

1 2 3 4<br />

D μm * * * * 62, 73, 86, Diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>aggregate</strong><br />

101, 119<br />

g m s −2 * * * * 9.8 Gravitati<strong>on</strong>al accelerati<strong>on</strong><br />

μ kg m −1 s −1 * * * * 0.00099 Viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater at 23°C and sal<strong>in</strong>ity 29 (F<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>f & Millard 1983)<br />

ρ 0 g cm −3 * * * * 1.019 Density <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater at 23°C and sal<strong>in</strong>ity 29 (F<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>f & Millard 1983)<br />

ρ pol g cm −3 * * * * 1.6 Density <str<strong>on</strong>g>of</str<strong>on</strong>g> polysaccharide matrices; Rickwood (1984), Hard<strong>in</strong>g (1995)<br />

ρ bac g cm −3 * * * * 1.064 Density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l cells, determ<strong>in</strong>ed for <str<strong>on</strong>g>bacteria</str<strong>on</strong>g><br />

recovered from AGG 0.8 (see ‘Discussi<strong>on</strong>’)<br />

ε (AGG 0.2 ) − * * − − 0.72−0.93 Porosity (ε) for each size class was derived us<strong>in</strong>g the empirical<br />

ε (AGG 0.8 ) − − * * 0.93−0.98 relati<strong>on</strong>ship between D and ε (see ‘Results’)<br />

α (AGG 0.2 ) − * − − − 0.002−0.004 α for each size class was calculated by divid<strong>in</strong>g total <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

α (AGG 0.8 ) − * * * 0.036−0.080 volume (= <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance derived us<strong>in</strong>g the empirical relati<strong>on</strong>ship<br />

between <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l abundance and D × average<br />

<str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l cell volume) by total <strong>aggregate</strong> volume determ<strong>in</strong>ed by<br />

the Coulter counter method (see ‘Results’)<br />

ϕ (AGG 0.2 − * * * − 2.80 Dimensi<strong>on</strong>less coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> form resistance<br />

or AGG 0.8 )<br />

ϕ (AGG 0.8 ) − − − * 2.42


270<br />

Aquat Microb Ecol 70: 261–272, 2013<br />

Table 3. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed and predicted <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> (v) for the <strong>aggregate</strong>s AGG 0.8 and AGG 0.2 . Observed v data<br />

were obta<strong>in</strong>ed from the November experiment for both AGG 0.2 and AGG 0.8 . % deviati<strong>on</strong>: deviati<strong>on</strong> between the observed v and predicted v<br />

for AGG 0.2 , % reducti<strong>on</strong>: reducti<strong>on</strong> <strong>in</strong> the predicted v <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.8 compared to the predicted v <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.2 . ESD: equivalent spherical diameter<br />

ESD AGG 0.2 (cm s −1 ) AGG 0.8 (cm s −1 )<br />

(μm) Observed Predicted Deviati<strong>on</strong> Observed Reducti<strong>on</strong> Predicted Reducti<strong>on</strong> Predicted Reducti<strong>on</strong> Predicted Reducti<strong>on</strong><br />

(parameter (%) (%) (parameter (%) (parameter (%) (parameter (%)<br />

set 1) set 2) set 3) set 4)<br />

62 0.0115 0.0122 −5.6 0.0028 75.6 0.0118 3.0 0.0029 76.4 0.0033 72.8<br />

73 0.0107 0.0124 −15.0 0.0031 71.5 0.0119 3.8 0.0029 76.2 0.0034 72.5<br />

86 0.0116 0.0119 −3.1 0.0033 71.6 0.0114 4.7 0.0029 75.4 0.0034 71.6<br />

101 0.0127 0.0113 10.6 0.0038 69.8 0.0107 5.8 0.0029 74.4 0.0034 70.4<br />

119 0.0136 0.0118 13.1 0.0043 68.4 0.0110 7.1 0.0030 74.7 0.0035 70.8<br />

Mean 0.0120 0.0119 0.8 0.0035 71.2 0.0113 4.9 0.0029 75.4 0.0034 71.6<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> AGG 0.2 . The difference between the predicted<br />

v and the observed v for AGG 0.8 was m<strong>in</strong>imized<br />

when ϕ was 2.42 (parameter set 4; Table 3),<br />

yield<strong>in</strong>g an average reducti<strong>on</strong> value (71.6%) close to<br />

the observed value (71.2%).<br />

The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ and the exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other<br />

parameters us<strong>in</strong>g the modified Stokes model (Eq. 5)<br />

have limitati<strong>on</strong>s, especially regard<strong>in</strong>g the simplificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particle geometry. Our model lacks explicit<br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong> fractal dimensi<strong>on</strong>, which<br />

is an important geometric property <strong>in</strong>fluenc<strong>in</strong>g<br />

<strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> velocities (Logan & Wilk<strong>in</strong>s<strong>on</strong><br />

1990, Vahedi & Gorczyca 2012). Keep<strong>in</strong>g these limitati<strong>on</strong>s<br />

<strong>in</strong> m<strong>in</strong>d, we stress that the estimated ϕ would<br />

reflect not <strong>on</strong>ly the form resistance but also other<br />

hydrodynamic forces not exam<strong>in</strong>ed here (Logan &<br />

Wilk<strong>in</strong>s<strong>on</strong> 1990). N<strong>on</strong>etheless, the above results c<strong>on</strong>cern<strong>in</strong>g<br />

the sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted v to different<br />

parameter sett<strong>in</strong>gs can be used to <strong>in</strong>fer the pr<strong>in</strong>cipal<br />

mechanism by which v was reduced as a c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l col<strong>on</strong>izati<strong>on</strong>. We suggest that the<br />

<strong>in</strong>crease <strong>in</strong> ε, due to <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l enzymatic cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>aggregate</strong> matrices, was ma<strong>in</strong>ly resp<strong>on</strong>sible for the<br />

lower v for AGG 0.8 relative to AGG 0.2 . Bacterial cell<br />

volume (α) and morphology (ϕ) also c<strong>on</strong>tributed to<br />

the change <strong>in</strong> v, although their c<strong>on</strong>tributi<strong>on</strong>s were<br />

not as large as that <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity.<br />

Implicati<strong>on</strong>s for material cycl<strong>in</strong>g <strong>in</strong> mar<strong>in</strong>e<br />

envir<strong>on</strong>ments<br />

The <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> velocities that we determ<strong>in</strong>ed<br />

<strong>in</strong> the present study (0.003 to 0.014 cm s −1 ) are<br />

with<strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>settl<strong>in</strong>g</strong> velocities reported <strong>in</strong> the<br />

literature for mar<strong>in</strong>e particles <str<strong>on</strong>g>of</str<strong>on</strong>g> similar size (approximately<br />

50 to 100 μm) classes (0.002 to 0.149 cm s −1 ;<br />

Fennessy et al. 1994, Christiansen et al. 2002, Xia<br />

et al. 2004). These particles, which are with<strong>in</strong> the<br />

smaller size range <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e <strong>settl<strong>in</strong>g</strong> particles (Sim<strong>on</strong><br />

et al. 2002, McD<strong>on</strong>nell & Buesseler 2012), are abundant<br />

<strong>in</strong> seawater and can account for a large fracti<strong>on</strong><br />

(up to 20%) <str<strong>on</strong>g>of</str<strong>on</strong>g> total carb<strong>on</strong> s<strong>in</strong>k<strong>in</strong>g fluxes, as recently<br />

estimated for the subtropical Sargasso Sea (McD<strong>on</strong>nell<br />

& Buesseler 2012). In additi<strong>on</strong>, smaller s<strong>in</strong>k<strong>in</strong>g<br />

particles, especially sticky microgels, can serve as<br />

the precursors <str<strong>on</strong>g>of</str<strong>on</strong>g> larger <strong>aggregate</strong>s (Verdugo 2012),<br />

<strong>in</strong>dicat<strong>in</strong>g that changes <strong>in</strong> <strong>settl<strong>in</strong>g</strong> velocities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smaller particles can alter the depth-dependent<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> larger <strong>aggregate</strong> formati<strong>on</strong> <strong>in</strong> water<br />

columns. C<strong>on</strong>sider<strong>in</strong>g the timescale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l col<strong>on</strong>izati<strong>on</strong><br />

and growth <strong>on</strong> fresh <strong>aggregate</strong>s <strong>in</strong> the upper<br />

ocean (day) and the length scale <str<strong>on</strong>g>of</str<strong>on</strong>g> small <strong>aggregate</strong>s<br />

<strong>settl<strong>in</strong>g</strong> at this timescale (10 to 100 m), <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

porosity enhancement can be an effective mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> suppress<strong>in</strong>g the export <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>organic</strong> carb<strong>on</strong> and<br />

other bioelements to depth layers below the euphotic<br />

z<strong>on</strong>e. We also note that changes <strong>in</strong> the porosity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>aggregate</strong>s due to <str<strong>on</strong>g>attached</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l acti<strong>on</strong> have<br />

implicati<strong>on</strong>s for the regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid exchange<br />

between <strong>in</strong>terstitial spaces and the ambient water <strong>in</strong><br />

<strong>aggregate</strong>s. K<strong>in</strong>dler et al. (2010) suggested that more<br />

porous <strong>aggregate</strong>s can reta<strong>in</strong> water for l<strong>on</strong>ger at density<br />

<strong>in</strong>terfaces because <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong>-limited fluid<br />

entra<strong>in</strong>ment <strong>in</strong> the <strong>in</strong>terstitial spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s.<br />

Bacterial enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong> porosity can be<br />

an important mechanism that promotes <strong>aggregate</strong><br />

accumulati<strong>on</strong> at density <strong>in</strong>terfaces, a prom<strong>in</strong>ent phenomen<strong>on</strong><br />

widely observed <strong>in</strong> oceanic envir<strong>on</strong>ments<br />

(Alldredge & Gotschalk 1988, MacIntyre et al. 1995).<br />

In additi<strong>on</strong>, <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l porosity enhancement may<br />

result <strong>in</strong> a higher retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved <strong>organic</strong> carb<strong>on</strong><br />

<strong>in</strong> the <strong>in</strong>terstitial spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aggregate</strong>s, which<br />

may accelerate the downward delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved<br />

<strong>organic</strong> carb<strong>on</strong> mediated by <strong>settl<strong>in</strong>g</strong> <strong>aggregate</strong>s (Alldredge<br />

2000).


Yamada et al.: How <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> affect <strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

271<br />

Natural <strong>aggregate</strong>s <strong>in</strong> mar<strong>in</strong>e waters are complex<br />

and variable mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>organic</strong> and <strong>in</strong><strong>organic</strong> comp<strong>on</strong>ents.<br />

They are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dense source particles, such as diatom frustules and<br />

dust (Ploug et al. 2008, Iversen & Ploug 2010).<br />

Depend<strong>in</strong>g <strong>on</strong> the nature and compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>aggregate</strong>s, the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l effects <strong>on</strong> the<br />

<strong>aggregate</strong> <strong>settl<strong>in</strong>g</strong> velocities might deviate from the<br />

present results. For example, <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l effects <strong>on</strong> the<br />

<strong>settl<strong>in</strong>g</strong> velocities would be less pr<strong>on</strong>ounced for the<br />

<strong>aggregate</strong>s with a low c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> polysaccharides<br />

and a high c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral particles because <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

enzymatic cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers may hardly<br />

modify bulk physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> such <strong>aggregate</strong>s.<br />

It is important for future studies to exam<strong>in</strong>e the relati<strong>on</strong>ship<br />

between <strong>aggregate</strong> compositi<strong>on</strong>s and the<br />

extent and mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l effects <strong>on</strong> <strong>aggregate</strong><br />

<strong>settl<strong>in</strong>g</strong> velocities.<br />

Acknowledgements. The present study was supported by<br />

the CREST project (awarded to K.K.) and JSPS KAKENHI<br />

Grant Number 24241003 (awarded to T.N. and H.F.). Y.Y.<br />

was supported by the Graduate Program for Leaders <strong>in</strong> Life<br />

Innovati<strong>on</strong> (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo).<br />

LITERATURE CITED<br />

Agrawal YC, Pottsmith HC (2000) Instruments for particle<br />

size and <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> observati<strong>on</strong>s <strong>in</strong> sediment transport.<br />

Mar Geol 168: 89−114<br />

Alldredge AL (1979) The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic<br />

<strong>aggregate</strong>s <strong>in</strong> two neritic seas. Limnol Oceanogr<br />

24: 855−866<br />

Alldredge AL (2000) Interstitial dissolved <strong>organic</strong> carb<strong>on</strong><br />

(DOC) c<strong>on</strong>centrati<strong>on</strong>s with<strong>in</strong> s<strong>in</strong>k<strong>in</strong>g mar<strong>in</strong>e <strong>aggregate</strong>s<br />

and their potential c<strong>on</strong>tributi<strong>on</strong> to carb<strong>on</strong> flux. Limnol<br />

Oceanogr 45: 1245−1253<br />

Alldredge AL, Gotschalk C (1988) In situ <strong>settl<strong>in</strong>g</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mar<strong>in</strong>e snow. Limnol Oceanogr 33: 339−351<br />

Alldredge AL, Passow U, Logan B (1993) The existence,<br />

abundance, and significance <str<strong>on</strong>g>of</str<strong>on</strong>g> large transparent<br />

exopolymer particles <strong>in</strong> the ocean. Deep-Sea Res I 140:<br />

1131−1140<br />

Azam F, Malfatti F (2007) Microbial structur<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e<br />

ecosystems. Nat Rev Microbiol 5: 782−791<br />

Borch NH, Kirchman DL (1997) C<strong>on</strong>centrati<strong>on</strong> and compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved comb<strong>in</strong>ed neutral sugars (polysaccharides)<br />

<strong>in</strong> seawater determ<strong>in</strong>ed by HPLC-PAD. Mar Chem<br />

57: 85−95<br />

Ch<strong>in</strong> W, Orellana MV, Verdugo P (1998) Sp<strong>on</strong>taneous<br />

assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e dissolved <strong>organic</strong> matter <strong>in</strong>to polymer<br />

gels. Nature 391: 568−572<br />

Christiansen C, Edelvang K, Emeis K, Graf G and others<br />

(2002) Material transport from the nearshore to the bas<strong>in</strong>al<br />

envir<strong>on</strong>ment <strong>in</strong> the southern Baltic Sea: I. Processes<br />

and mass estimates. J Mar Syst 35: 133−150<br />

Cowen JP (1992) Morphological study <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

capsules: implicati<strong>on</strong>s for mar<strong>in</strong>e <strong>aggregate</strong>s. Mar Biol<br />

114: 85−95<br />

De La Rocha CL, Passow U (2007) Factors <strong>in</strong>fluenc<strong>in</strong>g the<br />

s<strong>in</strong>k<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> POC and the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the biological carb<strong>on</strong><br />

pump. Deep-Sea Res II 54: 639−658<br />

Fennessy MJ, Dyer KR, Huntley DA (1994) An <strong>in</strong>strument to<br />

measure the size and <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flocs <strong>in</strong> situ. Mar<br />

Geol 117: 107−117<br />

Fisher NS, Nolan CV, Fowler SW (1991) Scaveng<strong>in</strong>g and<br />

retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metals by zooplankt<strong>on</strong> fecal pellets and mar<strong>in</strong>e<br />

snow. Deep-Sea Res A 38: 1261−1275<br />

F<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>f NP, Millard RC Jr (1983) Algorithms for computati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental properties <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater. UNESCO<br />

Tech Pap Mar Sci 44<br />

Gooday GW (1990) Physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chit<strong>in</strong> and chitosan. Biodegradati<strong>on</strong> 1: 177−190<br />

Grossart HP, Berman T, Sim<strong>on</strong> M, Pohlmann K (1998) Occurrence<br />

and microbial dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic <strong>organic</strong><br />

<strong>aggregate</strong>s (lake snow) <strong>in</strong> Lake K<strong>in</strong>neret, Israel, <strong>in</strong> fall.<br />

Aquat Microb Ecol 14: 59−67<br />

Hard<strong>in</strong>g SE (1995) Some recent developments <strong>in</strong> the size<br />

and shape analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dustrial polysaccharides <strong>in</strong> soluti<strong>on</strong><br />

us<strong>in</strong>g sedimentati<strong>on</strong> analysis <strong>in</strong> the analytical ultracentrifuge.<br />

Carbohydr Polym 28: 227−237<br />

Hoppe HG (1983) Significance <str<strong>on</strong>g>of</str<strong>on</strong>g> exoenzymatic activities <strong>in</strong><br />

the ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> brackish water: measurements by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:<br />

299−308<br />

Inoue K, Nishimura M, Nayak BB, Kogure K (2007) Separati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e <str<strong>on</strong>g>bacteria</str<strong>on</strong>g> accord<strong>in</strong>g to buoyant density by<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> the density-dependent cell sort<strong>in</strong>g method. Appl<br />

Envir<strong>on</strong> Microbiol 73: 1049−1053<br />

Iversen MH, Ploug H (2010) Ballast m<strong>in</strong>erals and the s<strong>in</strong>k<strong>in</strong>g<br />

carb<strong>on</strong> flux <strong>in</strong> the ocean: carb<strong>on</strong>-specific respirati<strong>on</strong><br />

rates and s<strong>in</strong>k<strong>in</strong>g <strong>velocity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e snow <strong>aggregate</strong>s.<br />

Biogeosciences 7: 2613−2624<br />

K<strong>in</strong>dler K, Khalili A, Stocker R (2010) Diffusi<strong>on</strong>-limited<br />

retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porous particles at density <strong>in</strong>terfaces. Proc<br />

Natl Acad Sci USA 107: 22163−22168<br />

Logan BE, Hunt JR (1987) Advantages to microbes <str<strong>on</strong>g>of</str<strong>on</strong>g> growth<br />

<strong>in</strong> permeable <strong>aggregate</strong>s <strong>in</strong> mar<strong>in</strong>e systems. Limnol<br />

Oceanogr 32: 1034−1048<br />

Logan BE, Wilk<strong>in</strong>s<strong>on</strong> DB (1990) Fractal geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e<br />

snow and other biological <strong>aggregate</strong>s. Limnol Oceanogr<br />

35: 130−136<br />

Logan BE, Grossart HP, Sim<strong>on</strong> M (1994) Direct observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>, TEP and <strong>aggregate</strong>s <strong>on</strong> polycarb<strong>on</strong>ate<br />

filters us<strong>in</strong>g brightfield microscopy. J Plankt<strong>on</strong> Res 16:<br />

1811−1815<br />

MacIntyre SA, Alldredge AL, Gotschalk C (1995) Accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e snow at density disc<strong>on</strong>t<strong>in</strong>uities <strong>in</strong> the<br />

water column. Limnol Oceanogr 40: 449−468<br />

Mari X, Kiørboe T (1996) Abundance, size distributi<strong>on</strong> and<br />

<str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent exopolymer particles<br />

(TEP) <strong>in</strong> the Kattegat. J Plankt<strong>on</strong> Res 18: 969−986<br />

Massana R, Gasol JM, Bjørnsen PK, Blackburn N and others<br />

(1997) Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l size via image analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> epifluorescence preparati<strong>on</strong>s: descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>expensive<br />

system and soluti<strong>on</strong>s to some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most comm<strong>on</strong><br />

problems. Sci Mar 61: 397−407<br />

McD<strong>on</strong>nell AM, Buesseler KO (2012) A new method for the<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>k<strong>in</strong>g particle fluxes from measurements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the particle size distributi<strong>on</strong>, average s<strong>in</strong>k<strong>in</strong>g <strong>velocity</strong>, and<br />

carb<strong>on</strong> c<strong>on</strong>tent. Limnol Oceanogr Methods 10: 329−346<br />

Myklestad SM, Skånøy E, Hestmann S (1997) A sensitive<br />

and rapid method for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved m<strong>on</strong>o- and<br />

polysaccharides <strong>in</strong> seawater. Mar Chem 56: 279−286


272<br />

Aquat Microb Ecol 70: 261–272, 2013<br />

Nagata T (2008) Organic matter-<str<strong>on</strong>g>bacteria</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> seawater.<br />

In: Kirchman DL (ed) Microbial ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

oceans, 2nd edn. John Wiley & S<strong>on</strong>s, New York, NY,<br />

p 207−241<br />

Nakamura S, Nambu M, Ishizuka T, Hattori H and others<br />

(2008) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolled release <str<strong>on</strong>g>of</str<strong>on</strong>g> fibroblast growth<br />

factor-2 from chitosan/fucoidan micro complex-hydrogel<br />

<strong>on</strong> <strong>in</strong> vitro and <strong>in</strong> vivo vascularizati<strong>on</strong>. J Biomed Mater<br />

Res A 85: 619−627<br />

Noble RT, Fuhrman JA (1998) Use <str<strong>on</strong>g>of</str<strong>on</strong>g> SYBR Green I for rapid<br />

epifluorescence counts <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e viruses and <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>.<br />

Appl Envir<strong>on</strong> Microbiol 14: 113−118<br />

Oliver RL, K<strong>in</strong>near AJ, Ganf GG (1981) Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> three freshwater phytoplankters by density<br />

gradient centrifugati<strong>on</strong>. Limnol Oceanogr 26: 285−294<br />

Owen MW (1971) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence <strong>on</strong> the <strong>settl<strong>in</strong>g</strong><br />

velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> silt flocs. In: Sedimentati<strong>on</strong> <strong>in</strong> estuaries and<br />

rivermouths. Proc 14th IAHR C<strong>on</strong>gr, Paris, 4: 27−32<br />

Passow U (2002) Transparent exopolymer particles (TEP) <strong>in</strong><br />

aquatic envir<strong>on</strong>ments. Prog Oceanogr 55: 287−333<br />

Passow U, Alldredge AL (1994) Distributi<strong>on</strong>, size, and <str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l<br />

col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent exopolymer particles<br />

(TEP) <strong>in</strong> the ocean. Mar Ecol Prog Ser 113: 185−198<br />

Passow U, Carls<strong>on</strong> CA (2012) The biological pump <strong>in</strong> a high<br />

CO 2 world. Mar Ecol Prog Ser 470: 249−271<br />

Passow U, De La Rocha CL (2006) Accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral<br />

ballast <strong>on</strong> <strong>organic</strong> <strong>aggregate</strong>s. Global Biogeochem<br />

Cycles 20: GB1013, doi: 10.1029/2005GB002579<br />

Passow U, Shipe RF, Murray A, Pak DK, Brzez<strong>in</strong>ski MA, Alldredge<br />

AL (2001) Orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent exopolymer particles<br />

(TEP) and their role <strong>in</strong> the sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate<br />

matter. C<strong>on</strong>t Shelf Res 21: 327−346<br />

Ploug H, Passow U (2007) Direct measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusivity<br />

with<strong>in</strong> diatom <strong>aggregate</strong>s c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g transparent ex -<br />

poly mer particles. Limnol Oceanogr 52: 1−6<br />

Ploug H, Iversen MH, Koski M, Buitenhuis ET (2008) Producti<strong>on</strong>,<br />

oxygen respirati<strong>on</strong> rates, and s<strong>in</strong>k<strong>in</strong>g <strong>velocity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

copepod fecal pellets: direct measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> ballast<strong>in</strong>g<br />

by opal and calcite. Limnol Oceanogr 53: 469−476<br />

Porter KG, Feig YS (1980) The use <str<strong>on</strong>g>of</str<strong>on</strong>g> DAPI for identify<strong>in</strong>g<br />

and count<strong>in</strong>g aquatic micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora. Limnol Oceanogr 25:<br />

943−948<br />

Editorial resp<strong>on</strong>sibility: Gerhard Herndl,<br />

Vienna, Austria<br />

Poulicek M, Gaill F, G<str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>in</strong>et G (1998) Chit<strong>in</strong> biodegradati<strong>on</strong><br />

<strong>in</strong> mar<strong>in</strong>e envir<strong>on</strong>ments. In: van Bergen PF, Stankiewicz<br />

BA (eds) Nitrogen-c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g macromolecules <strong>in</strong> the<br />

bio- and geosphere. American Chemical Society, Wash<strong>in</strong>gt<strong>on</strong>,<br />

DC, p 163−210<br />

Rickwood D (1984) Centrifugati<strong>on</strong>: a practical approach,<br />

2nd edn. IRL Press, Oxford<br />

Schuster S, Herndl GJ (1995) Formati<strong>on</strong> and significance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transparent exopolymeric particles <strong>in</strong> the northern<br />

Adriatic Sea. Mar Ecol Prog Ser 124: 227−236<br />

Sim<strong>on</strong> M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial<br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>organic</strong> <strong>aggregate</strong>s <strong>in</strong> aquatic ecosystems.<br />

Aquat Microb Ecol 28: 175−211<br />

Sterl<strong>in</strong>g MC Jr, B<strong>on</strong>ner JS, Ernest ANS, Page CA, Autenrieth<br />

RL (2004) Characteriz<strong>in</strong>g aquatic sediment−oil<br />

<strong>aggregate</strong>s us<strong>in</strong>g <strong>in</strong> situ <strong>in</strong>struments. Mar Pollut Bull 48:<br />

533−542<br />

Stoderegger K, Herndl GJ (1998) Producti<strong>on</strong> and release <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>bacteria</str<strong>on</strong>g>l capsular material and its subsequent utilizati<strong>on</strong><br />

by mar<strong>in</strong>e bacterioplankt<strong>on</strong>. Limnol Oceanogr 43:<br />

877−884<br />

Sugimoto K, Fukuda H, Baki MA, Koike I (2007) Bacterial<br />

c<strong>on</strong>tributi<strong>on</strong>s to formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent exopolymer<br />

particles (TEP) and seas<strong>on</strong>al trends <strong>in</strong> coastal waters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sagami Bay, Japan. Aquat Microb Ecol 46: 31−41<br />

Vahedi A, Gorczyca B (2012) Predict<strong>in</strong>g the <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flocs formed <strong>in</strong> water treatment us<strong>in</strong>g multiple fractal<br />

dimensi<strong>on</strong>s. Water Res 46: 4188−4194<br />

Verdugo P (2012) Mar<strong>in</strong>e microgels. Annu Rev Mar Sci 4:<br />

375−400<br />

Xia XM, Li Y, Yang H, Wu CY, S<strong>in</strong>g TH, P<strong>on</strong>g HK (2004)<br />

Observati<strong>on</strong>s <strong>on</strong> the size and <strong>settl<strong>in</strong>g</strong> <strong>velocity</strong> distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> suspended sediment <strong>in</strong> the Pearl River Estuary,<br />

Ch<strong>in</strong>a. C<strong>on</strong>t Shelf Res 24: 1809−1826<br />

Zhou J, Mopper K, Passow U (1998) The role <str<strong>on</strong>g>of</str<strong>on</strong>g> surfaceactive<br />

carbohydrates <strong>in</strong> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent<br />

exopolymer particles by bubble adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater.<br />

Limnol Oceanogr 43: 1860−1871<br />

Ziervogel K, Arnosti C (2008) Polysaccharide hydrolysis <strong>in</strong><br />

<strong>aggregate</strong>s and free enzyme activity <strong>in</strong> <strong>aggregate</strong>-free<br />

seawater from the north-eastern Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico. Envir<strong>on</strong><br />

Microbiol 10: 289−299<br />

Submitted: May 13, 2013; Accepted: August 14, 2013<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s received from author(s): October 11, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!