05.03.2014 Views

Calculation of reduced matrix elements - IPNL

Calculation of reduced matrix elements - IPNL

Calculation of reduced matrix elements - IPNL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Calculation</strong> <strong>of</strong> <strong>reduced</strong> <strong>matrix</strong> <strong>elements</strong><br />

•〈 j‖1‖ j ′ 〉= ?<br />

We have<br />

〈 jm|1| j ′ m ′ 〉=〈 jm| j ′ m ′ 〉=δ j j ′δ mm ′. (1)<br />

On the other hand, we can use the fact that 1 is a number≡ascalar≡atensor operator <strong>of</strong><br />

rank 0:<br />

〈 jm|1| j ′ m ′ 〉=〈 jm|1 (0)<br />

0 | j′ m ′ 〉<br />

= (−1) 0〈j′ m ′ 00| jm〉<br />

√<br />

2 j+1<br />

〈 j‖1‖ j ′ 〉<br />

〈 jm 00| j ′ m ′ 〉 is zero unless| j−0| j ′ j+0 and m ′ = m+0 so<br />

〈 jm|1| j ′ m ′ 〈 jm 00| jm〉<br />

〉=δ j j ′δ mm ′ √ 〈 j‖1‖ j ′ 〉<br />

2 j+1<br />

Furthermore, we know that〈 jm 00| jm〉=1so finally<br />

Using eq. (1) and eq. (2) we obtain<br />

〈 jm|1| j ′ m ′ 〉= δ j j ′δ mm ′<br />

√<br />

2 j+1<br />

〈 j‖1‖ j ′ 〉. (2)<br />

〈 j‖1‖ j ′ 〉=δ j j ′√<br />

2 j+1.<br />

•〈 j‖j‖ j〉= ?<br />

j=( j x , j y , j z ) is a vector i.e. a tensor <strong>of</strong> rank 1 with spherical components j (1)<br />

0<br />

= j z and<br />

( )<br />

j (1)<br />

± = ∓ jx − i j y . We can write<br />

√<br />

1<br />

2<br />

The Wigner-Eckart theorem gives<br />

〈 jm| j (1)<br />

0 | jm′ 〉=m〈 jm| jm ′ 〉=mδ mm ′. (3)<br />

〈 jm| j (1)<br />

0 | jm′ 〉=(−1) 2〈jm′ 10| jm〉<br />

√ 〈 j‖j‖ j〉,<br />

2 j+1<br />

Using〈 jm ′ 10| jm〉=(−1) j−1+m√ ( ) j 1 j<br />

2 j+1<br />

m ′ one has<br />

0 -m<br />

( )<br />

〈 jm ′ | j (1)<br />

j 1 j<br />

0 | jm〉=(−1) j−1+m m ′ 〈 j‖j‖ j〉.<br />

0 -m<br />

1


The 3− j symbol has a simple value<br />

( ) j 1 j<br />

m ′ =−(−1) j+m m<br />

√ δ<br />

0 -m<br />

mm ′<br />

j(2 j+1)( j+1)<br />

we end up with ( j+m is integer so 2( j+m) is even)<br />

〈 jm| j (1)<br />

0 | jm′ 〉=<br />

Using eq. (3) and eq. (4) we obtain<br />

m<br />

√<br />

j(2 j+1)( j+1)<br />

δ mm ′〈 j‖j‖ j〉. (4)<br />

〈 j‖j‖ j〉= √ j(2 j+1)( j+1). (5)<br />

•〈 1‖σ‖ 1〉= ?<br />

2 2<br />

The spin (vector) operator is s= σ so 2<br />

〈 1 ‖σ‖ 1 〉= 2 2 2<br />

〈 1 ‖s‖ 1 〉 2 2<br />

and〈 1 ‖s‖ 1 〉 is a special case <strong>of</strong> eq. (5) with j=s and j= 1 so<br />

2 2 2<br />

〈 1 2 ‖σ‖ 1 2 〉= 2 √<br />

1<br />

2 (2× 1 2 + 1)( 1 2 + 1)=√ 6.<br />

2


•〈l a ‖Y (L) ‖l b 〉= ?<br />

The spherical harmonics Y (L)<br />

M<br />

(ˆr) are the coordinate representation <strong>of</strong> the 2L+1 spherical<br />

components <strong>of</strong> a tensor <strong>of</strong> rank L, the Wigner-Eckart theorem can be written (for example<br />

for M= 0)<br />

( )<br />

〈l a m a |Y (L)<br />

0 |l bm b 〉=(−1) l a−m a la L l b<br />

〈l<br />

-m a 0 m a ‖Y (L) ‖l b 〉. (6)<br />

b<br />

Furthermore using〈l b m b |ˆr〉=Y (l a)∗<br />

m a<br />

(ˆr) and〈ˆr|l a m a 〉=Y (l b)<br />

m b<br />

(ˆr) one has<br />

∫<br />

〈l a m a |Y (L)<br />

0 |l bm b 〉= dˆr Y (l a)∗<br />

m a<br />

(ˆr)Y (L)<br />

0 (ˆr)Y(l b)<br />

m b<br />

(ˆr)<br />

where L andl b can be coupled tolusing<br />

√<br />

∑<br />

Y (L)<br />

(2L+1)(2lb + 1)(2l+1)<br />

0 (ˆr)Y(l b)<br />

m b<br />

(ˆr)=<br />

4π<br />

so one has<br />

∑<br />

〈l a m a |Y (L)<br />

0 |l bm b 〉=<br />

lm<br />

lm<br />

√<br />

(2L+1)(2lb + 1)(2l+1)<br />

4π<br />

The integral gives<br />

∫ ∫<br />

dˆr Y (l a)∗<br />

m a<br />

(ˆr)Y m<br />

(l)∗ (ˆr)=(−1)m<br />

so<br />

〈l a m a |Y (L)<br />

0 |l bm b 〉=(−1) −m a<br />

Using the properties <strong>of</strong> the 3− j symbols<br />

( )( )<br />

L la l b L la l b<br />

=<br />

0 -m a m b 0 0 0<br />

so<br />

〈l a m a |Y (L)<br />

0 |l bm b 〉=(−1) −m a<br />

( )( )<br />

L l lb L l lb<br />

0 m m b 0 0 0<br />

( )( )∫<br />

L l lb L l lb<br />

0 m m b 0 0 0<br />

dˆr Y (l a)∗<br />

m a<br />

(ˆr)Y -m (l)∗ (ˆr)=(−1)m δ la lδ ma -m<br />

√<br />

(2L+1)(2la + 1)(2l b + 1)<br />

4π<br />

√<br />

(2L+1)(2la + 1)(2l b + 1)<br />

4π<br />

Y m<br />

(l)∗ (ˆr)<br />

dˆr Y (l a)∗<br />

m a<br />

( )( )<br />

L la l b L la l b<br />

.<br />

0 -m a m b 0 0 0<br />

( )( )<br />

la L l b la L l b<br />

δ<br />

-m a 0 m b 0 0 0<br />

ma m b<br />

Using eq. (6) and eq. (7) we obtain<br />

√<br />

〈l a ‖Y (L) ‖l b 〉=(−1) l (2L+1)(2la + 1)(2l<br />

a<br />

b + 1)<br />

4π<br />

(ˆr)Y (l)∗ (ˆr).<br />

( )( )<br />

la L l b la L l b<br />

δ<br />

-m a 0 m b 0 0 0<br />

ma m b<br />

.<br />

(7)<br />

( )<br />

la L l b<br />

.<br />

0 0 0<br />

m<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!