06.03.2014 Views

Effect of steel plant effluent on acid and alkaline - Integrated ...

Effect of steel plant effluent on acid and alkaline - Integrated ...

Effect of steel plant effluent on acid and alkaline - Integrated ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 1, No 6, 2011<br />

© Copyright 2010 All rights reserved <strong>Integrated</strong> Publishing Associati<strong>on</strong><br />

Research article ISSN 0976 – 4402<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver<br />

<strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio Linn. (1758)<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Studies in Life sciences, Pt.Ravishankar Shukla University, Raipur (CG)<br />

adinpod@yahoo.co.in<br />

ABSTRACT<br />

Fishes are aquatic <strong>and</strong> poikilothermic animals. Hence, their existence <strong>and</strong> performance is<br />

dominated by the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> their envir<strong>on</strong>ment. Polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water bodies forces them to<br />

acclimatize to various factors thus imposing a c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> stress <strong>on</strong> their lives.<br />

This ability to detect sudden changes in envir<strong>on</strong>ment <strong>and</strong> m<strong>on</strong>itoring short or l<strong>on</strong>g term<br />

changes in water quality makes the fish efficient biomarkers. The Bhilai Steel Plant is<br />

situated 30 kilometers (west) <str<strong>on</strong>g>of</str<strong>on</strong>g> Raipur, the capital <str<strong>on</strong>g>of</str<strong>on</strong>g> Chhattisgarh. Besides good quality<br />

<str<strong>on</strong>g>steel</str<strong>on</strong>g>, it also produces important by products, such as, Coal tar, Naphthalene <strong>and</strong> Benzol.<br />

Effluents generated are dumped into the two local rivers, the Kharo<strong>on</strong> <strong>and</strong> the She<strong>on</strong>ath<br />

through various channels. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the physico­chemical c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> the different<br />

<str<strong>on</strong>g>effluent</str<strong>on</strong>g>s reveals the coke oven <str<strong>on</strong>g>effluent</str<strong>on</strong>g> to c<strong>on</strong>tain a high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> phenol, besides the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> other toxic substances <strong>and</strong> hence is not expected to be c<strong>on</strong>genial for the existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fish. Comm<strong>on</strong> Carp (Cyprinus carpio Linn, 1758) were exposed to different c<strong>on</strong>centrati<strong>on</strong>s<br />

(10,20,30%)<str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>effluent</str<strong>on</strong>g> for a short term durati<strong>on</strong> <strong>and</strong> changes in <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong><br />

phosphatases recorded in the three organs,viz.,gills,liver <strong>and</strong> g<strong>on</strong>ads at different time points<br />

(48,96 <strong>and</strong> 160 hours).The various c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effluent</str<strong>on</strong>g> were found to alter the<br />

<strong>acid</strong>ic <strong>and</strong> <strong>alkaline</strong> phosphatase activity in the three organs. Hence, the results from present<br />

investigati<strong>on</strong>s may be useful in the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental stress in the aquatic<br />

ecosystem.<br />

Key words: Steel <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g>, Alkaline phosphatases, Acid phosphatases, Cyprinus carpio<br />

Linn.<br />

1. Introducti<strong>on</strong><br />

Water, a universal solvent, is an essence for life <strong>on</strong> earth. Hence, discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> various toxic<br />

chemicals <strong>and</strong> substances into water makes life difficult. Fishes are aquatic <strong>and</strong><br />

poikilothermic animals. Hence, their existence <strong>and</strong> performance is dominated by the quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their envir<strong>on</strong>ment. C<strong>on</strong>diti<strong>on</strong>s in large bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> water although are relatively stable, a<br />

greater magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental change exists in smaller bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> water, particularly in<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> man ­made stressors. Thus, in the aquatic envir<strong>on</strong>ment, life goes <strong>on</strong> under<br />

dynamic <strong>and</strong> unstable circumstances, forcing fishes to acclimatize to various factors, such as,<br />

changes in populati<strong>on</strong> density, pressure, temperature, dissolved gases, light, pH, etc, which<br />

impose a c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> stress <strong>on</strong> their lives <strong>and</strong> predispose them to diseases.<br />

The term ‘Stress’ means the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all the physiological resp<strong>on</strong>ses by which an animal tries<br />

to maintain or reestablish a normal metabolism in the face <str<strong>on</strong>g>of</str<strong>on</strong>g> physical <strong>and</strong> chemical forces<br />

(Selye, 1950). In other words, stress is a state produced by an envir<strong>on</strong>mental or other factor,<br />

which extends the adaptive resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> an animal bey<strong>on</strong>d the normal range or which disturbs<br />

the normal functi<strong>on</strong>ing to such an extent that in either case the chances <str<strong>on</strong>g>of</str<strong>on</strong>g> survival are<br />

Received <strong>on</strong> January, 2011 Published <strong>on</strong> April 2011 1305


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

significantly reduced (Brett, 1958). A series <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological, biochemical <strong>and</strong><br />

physiological changes occur as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> stress <strong>and</strong> c<strong>on</strong>stitute the General Adaptati<strong>on</strong><br />

Syndrome (Wedemeyer et al,1999). Hence, studying the changes in biochemical c<strong>on</strong>stituents<br />

<strong>and</strong> enzyme activities <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues are important to determine the nature <strong>and</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicants<br />

effects <strong>on</strong> organisms (Murthy, 1985; Heath, 1987) <strong>and</strong> can provide an early warning that<br />

polluti<strong>on</strong> is reaching harmful levels. With their ability to detect sudden changes in<br />

envir<strong>on</strong>ment <strong>and</strong> m<strong>on</strong>itor short or l<strong>on</strong>g term changes in water quality, fishes thus make<br />

efficient biomarkers.<br />

Phenol <strong>and</strong> phenolic compounds are stressful envir<strong>on</strong>mental factors which because <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

lipophilic properties present a threat against natural envir<strong>on</strong>ment <strong>and</strong> also to human health<br />

(Hori et al., 2006).They have been found to induce genotoxic (Jagetia <strong>and</strong> Aruna, 1997),<br />

carcinogenic (Tsutsui et al., 1997) <strong>and</strong> immunotoxic effects (Taysse et al., 1995)<strong>on</strong> fish<br />

health, besides causing reducti<strong>on</strong> in fish weight <strong>and</strong> fertility (Saha et al., 1999). Some<br />

phenolic compounds, such as, Polycyclic Aromatic Hydrocarb<strong>on</strong>s <strong>and</strong> Polychlorinated<br />

biphenyls are Endocrine disrupters (Kashiwada et al., 2002; Pait <strong>and</strong> Nels<strong>on</strong>, 2003; Tollefsen,<br />

2006; Barse et al., 2006; Martin­Skilt<strong>on</strong> et al., 2006) <strong>and</strong> adversely affect fish metabolism<br />

(Gupta et al., 1983; Abdel­Hameid, 1994). Most importantly, phenol has been listed in the<br />

NRWQC as a priority pollutant with an organoleptic effect criteri<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 300µg/l<br />

(USEPA,2009).Hence, it is very toxic to fish <strong>and</strong> has a unique quality <str<strong>on</strong>g>of</str<strong>on</strong>g> tainting the taste <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fish if present in marine envir<strong>on</strong>ments at 0.1­1.0 ppm (Kirk <strong>and</strong> Othmer,1982;<br />

Neff,2002).Thus, the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> taking into c<strong>on</strong>siderati<strong>on</strong> phenol intoxicati<strong>on</strong> in natural<br />

aquatic habitats becomes evident.<br />

Alkaline phosphatase (ALP) (EC 3.1.3.1) is a hydrolase enzyme resp<strong>on</strong>sible for removing<br />

phosphate groups from many types <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules, such as, nucleotides, proteins <strong>and</strong> alkaloids.<br />

It is a P­stress marker enzyme most effective in an <strong>alkaline</strong> envir<strong>on</strong>ment, that catalyzes the<br />

hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorous compounds <strong>and</strong> the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphoryl groups to an acceptor<br />

molecule. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> catalytic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme is inversely proporti<strong>on</strong>al to the<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic phosphate in the ambient envir<strong>on</strong>ment (Dyhrman & Palanik 1999).<br />

This enzyme could serve as a good indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> intoxicati<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> its sensitivity to<br />

metallic salts (Boge et al, 1992).Acid phosphatase,<strong>on</strong> the other h<strong>and</strong> is a phosphatase which<br />

frees attached phosphate groups from other molecules during digesti<strong>on</strong>. It is a<br />

lysosomal ,hydrolytic enzyme with an <strong>acid</strong> pH optimum .It takes part in the dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dead cells <strong>and</strong> as such serves as a good indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> stress c<strong>on</strong>diti<strong>on</strong> in the biological system<br />

(Gupta et al, 1983; Verma et al., 1984).<br />

The gills are the most delicate structures <str<strong>on</strong>g>of</str<strong>on</strong>g> the teleost body <strong>and</strong> their vulnerability has thus<br />

c<strong>on</strong>siderable importance because <str<strong>on</strong>g>of</str<strong>on</strong>g> their external locati<strong>on</strong> <strong>and</strong> necessarily intimate c<strong>on</strong>tact<br />

with water, which means that they are liable to damage by any irritant material in the water<br />

whether dissolved or suspended (Roberts ,1978). Therefore, they are potentially useful to<br />

m<strong>on</strong>itor the health <str<strong>on</strong>g>of</str<strong>on</strong>g> fish (Pawert et al, 1998; Mallatt ,1985 <strong>and</strong> Mallatt et al,1995).<br />

The Bhilai Steel Plant is an integrated <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> situated 30 kilometers (west) <str<strong>on</strong>g>of</str<strong>on</strong>g> Raipur, the<br />

capital <str<strong>on</strong>g>of</str<strong>on</strong>g> Chhattisgarh. Besides the major marketable product that is good quality <str<strong>on</strong>g>steel</str<strong>on</strong>g>, it<br />

also produces important by products, such as, Coal tar, Naphthalene <strong>and</strong> Benzol, which is<br />

further rectified to Benzene, Toluene <strong>and</strong> Xylene. Effluents generated in the three main units<br />

are further dumped into the two local rivers, the Kharo<strong>on</strong> <strong>and</strong> the She<strong>on</strong>ath through various<br />

channels. The coke oven <str<strong>on</strong>g>effluent</str<strong>on</strong>g> has str<strong>on</strong>g phenolic odour <strong>and</strong> c<strong>on</strong>tains a high amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phenol, besides the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> other toxic substances (Sinha, 1999, PhD Thesis). It is<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1306


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

primarily used for irrigati<strong>on</strong> purposes by the local villagers, since it causes skin rashes in<br />

humans <strong>and</strong> cattle. The soil texture <str<strong>on</strong>g>of</str<strong>on</strong>g> the embankment appears to be oily black. All these<br />

factors raise many questi<strong>on</strong>s about the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> food fishes. Hence,<br />

this work was undertaken in an attempt to study the stress resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes to the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>effluent</str<strong>on</strong>g>. Cyprinus carpio Linn.1758 (Comm<strong>on</strong> carp):Family Cyprinidae, a widespread<br />

freshwater fish <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe <strong>and</strong> Asia was taken as the model fish.<br />

2. Materials <strong>and</strong> Methods<br />

Healthy <strong>and</strong> disease free Carps (Cyprinus carpio Linn., 1758) within the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 80­100 gm<br />

weight <strong>and</strong> 18­22 cms. length were acclimatized for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 days at 28±1 o C in an<br />

aquarium tank <str<strong>on</strong>g>of</str<strong>on</strong>g> size (4x3 ft.) <strong>and</strong> fed with fish food during the period. Effluent generated<br />

by the coke oven batteries <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bhilai Steel <str<strong>on</strong>g>plant</str<strong>on</strong>g> was collected from the discharge point at<br />

Purena nala, near Bhilai­ 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> district Durg (Chhattisgarh) <strong>and</strong> its various physico­chemical<br />

characteristics viz., pH, C<strong>on</strong>ductivity, Turbidity, Total solids, Total Dissolved<br />

Solids(TDS),Total Suspended Solids(TSS),Oil­Grease, Total Alkalinity, Chlorides, Sulphates,<br />

Total Hardness, Ca, Mg, Na, K, Fe, Phenol, Nitrates measured by the expertise available at<br />

the Polluti<strong>on</strong> laboratory, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Studies in Chemistry,Pt.Ravishankar Shukla<br />

University,Raipur.<br />

Short term exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the fishes to three different c<strong>on</strong>centrati<strong>on</strong>s (10, 20 <strong>and</strong> 30 %) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

whole <str<strong>on</strong>g>effluent</str<strong>on</strong>g>, taken separately in glass aquaria <str<strong>on</strong>g>of</str<strong>on</strong>g> size (3x2 ft) al<strong>on</strong>g with normal tap water<br />

for c<strong>on</strong>trol, was d<strong>on</strong>e for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 7days. Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh samples <str<strong>on</strong>g>of</str<strong>on</strong>g> liver, gills <strong>and</strong><br />

g<strong>on</strong>ads was d<strong>on</strong>e after sacrificing the fishes at 3 time points, ie.,48,96 <strong>and</strong> 160 hours.<br />

Aerati<strong>on</strong> <strong>and</strong> feeding at fixed time was d<strong>on</strong>e throughout the experiment. Homogenate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fresh tissue was prepared in 0.9% ice cold saline to approximately 10% w/v <strong>and</strong> supernatant<br />

used for enzyme assay after centrifugati<strong>on</strong> at 3000 rpm at 4 o C for 15 minutes. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Alkaline <strong>and</strong> <strong>acid</strong> phosphatases was d<strong>on</strong>e by the method <str<strong>on</strong>g>of</str<strong>on</strong>g> Fiske & Subba Rao<br />

(1925).Protein was determined by the method <str<strong>on</strong>g>of</str<strong>on</strong>g> Lowry et al,1951. The results obtained were<br />

expressed as µg Pi/mg protein/hour <strong>and</strong> statistically analyzed by ANOVA using COSTAT.<br />

3. Results<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the physico­chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole <str<strong>on</strong>g>effluent</str<strong>on</strong>g> generated by the coke<br />

oven batteries <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bhilai Steel Plant in the m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> January shows phenol c<strong>on</strong>tent to be<br />

0.37 mg/l, besides other toxic substances ,such as, Total Dissolved solids ,Total Suspended<br />

Solids ,Oil grease, Total Alkalinity, Chloride, Total Hardness etc.which have exceeded their<br />

Natural recommended water quality criteria values for freshwater fish according to<br />

USEPA,2010 Short term exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio to the different c<strong>on</strong>centrati<strong>on</strong>s<br />

(10%,20%,30%) <str<strong>on</strong>g>of</str<strong>on</strong>g> this whole <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>and</strong> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alkaline <strong>and</strong> Acid phosphatases in<br />

the Gills, Liver <strong>and</strong> G<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> exposed fishes vis­avis normal reveal the following features<br />

Table 1: Physico­chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> coke oven whole <str<strong>on</strong>g>effluent</str<strong>on</strong>g> (Bhilai Steel Plant)<br />

obtained from origin point <str<strong>on</strong>g>of</str<strong>on</strong>g> Purena channel (Jan,2010). (NRWQC for freshwater fish,<br />

USEPA,2010 in parenthesis)<br />

pH 7.189 ± 1.894<br />

C<strong>on</strong>ductivity(milli siemens) 0.529 ± 0.162<br />

Turbidity (NTU) 0.103 ± 0.069<br />

Total solids (mg/l) 0.538 ± 0.255<br />

Total Dissolved solids (mg/l)(15,000) 0.386 ± 0.210<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1307


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

Total Suspended Solids (mg/l)(80) 0.158 ± 0.090<br />

Oil grease(mg/l)(0.01) 21.308 ± 6.073<br />

Total Alkalinity(mg/l)(20) 107.137± 43.371<br />

Chloride(mg/l) (86) 107.923 ± 48.911<br />

Sulphates(mg/l) 35.855 ± 24.422<br />

Total Hardness(mg/l)(100) 204.975 ± 52.744<br />

Ca(mg/l) 136.034 ± 37.236<br />

Mg(mg/l) 77.015 ± 30.181<br />

Na(mg/l) 30.011 ± 8.571<br />

K(mg/l) 56.826 ± 37.834<br />

Fe(mg/l) 0.133 ± 0.075<br />

Phenol(mg/l)(0.3) 0.378 ± 0.466<br />

Nitrates(mg/l) 51.249 ± 12.956<br />

Table 2: Alkaline (ALP) <strong>and</strong> Acid phosphatases (ACP) in organs <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <strong>and</strong> <str<strong>on</strong>g>effluent</str<strong>on</strong>g><br />

exposed Cyprinus carpio. Results expressed in µg Pi/mg protein/hour(Mean ± SD).<br />

ORGAN<br />

GILLS<br />

LIVER<br />

GONADS<br />

DURATION<br />

OF<br />

NORMAL<br />

E10<br />

(Effluent 10%)<br />

E20<br />

(Effluent 20%)<br />

E30<br />

(Effluent 30%)<br />

EXPOSURE<br />

( hours) ALP ACP ALP ACP ALP ACP ALP ACP<br />

48 7.121±<br />

0.643<br />

1.187±<br />

0.536<br />

1.229±<br />

0.811<br />

4.752±<br />

5.677<br />

1.399±<br />

0.304<br />

2.207±<br />

2.512<br />

2.476±<br />

0.152<br />

96 1.233± 1.010± 2.781± 0.818± 1.581± 0.527± 0.351±<br />

1.379 0.552 3.779 0.077 0.249 0.083 0.166<br />

160 1.045± 6.042± 0.307± 1.475± 2.032± 0.610± 1.016±<br />

1.267 6.654 0.087 1.043 0.383 0.479 0.862<br />

48 0.461± 0.299± 0.283± 0.660± 0.714± 0.878± 0.195±<br />

0.261 0.033 0.067 0.133 0.078 0.155 0.275<br />

96 0.670± 0.503± 0.385± 0.651± 0.855± 1.179± 0.846±<br />

0.237 0.316 0.042 0.168 0.292 0.333 0.342<br />

160 0.226± 1.391± 1.782± 0.792± 1.570± 0.444± 0.939±<br />

0.046 0.137 0.093 0.187 0.097 0.145 0.000<br />

1.280± 0.753± 1.033± 0.517± 1.509± 2.372± 0.461±<br />

48<br />

1.171 0.426 0.244 0.244 0.305 0.000 0.000<br />

1.390± 1.063± 1.073± 0.626± 2.414± 2.085± 8.612±<br />

96<br />

1.040 0.116 0.506 0.126 0.000 0.155 0.530<br />

3.297± 1.030± 0.678± 1.356± 1.993± 0.664± 0.987±<br />

160<br />

1.166 0.583 0.411 0.274 0.313 0.313 0.465<br />

1.184±<br />

0.457<br />

0.703±<br />

0.331<br />

2.371±<br />

0.479<br />

0.473±<br />

0.354<br />

0.665±<br />

0.085<br />

0.704±<br />

0.221<br />

4.491±<br />

1.140<br />

2.122±<br />

0.530<br />

1.481±<br />

1.164<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1308


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

Table 3: Percent change vis­avis normal in Alkaline (ALP) <strong>and</strong> Acid phosphatase (ACP) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organs <str<strong>on</strong>g>of</str<strong>on</strong>g> C.carpio exposed to <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g>.<br />

ORGANS<br />

GILLS<br />

LIVER<br />

GONADS<br />

DURATION<br />

OF<br />

E10 E20 E30<br />

EXPOSURE<br />

(hours)<br />

ALP ACP ALP ACP ALP ACP<br />

48 ­82.72 +299.16 ­80.34 +85.71 ­65.17 ­0.84<br />

96 +126.02 ­18.81 +28.46 ­47.52 ­71.54 ­30.69<br />

160 ­70.48 ­75.5 +93.33 ­89.9 ­2.86 ­60.76<br />

48 ­39.13 +120 +54.35 +193.33 ­58.7 +56.67<br />

96 ­43.28 +30 +26.87 +136 +26.87 +32<br />

160 +673.91 ­43.17 +582.61 ­68.35 +308.7 ­49.64<br />

48 ­19.53 ­30.67 +17.97 +216 ­64.06 +498.67<br />

96 ­23.02 ­40.57 +73.38 +96.23 +519.42 +100<br />

160 ­79.39 +32.04 ­39.7 ­35.92 ­70 +43.69<br />

Table 4: TWO WAY ANOVA: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Effluent <strong>and</strong> Time <strong>on</strong> Acipase <strong>and</strong> Alkpase activity<br />

in gills <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio:<br />

Variables Factors F df p<br />

Acipase Activity<br />

Alkpase Activity<br />

Effluent C<strong>on</strong>centrati<strong>on</strong> (EC): 0.497 3,23 0.69 ns<br />

Time: 1.127 2,23 0.36 ns<br />

EC x Time: 0.96 6,23 0.49 ns<br />

Effluent C<strong>on</strong>centrati<strong>on</strong> (EC): 2.61 3,23 0.99 ns<br />

Time: 5.16 2,23 < 0.05<br />

EC x Time: 4.21 6,23 < 0.05<br />

Table 5: TWO WAY ANOVA: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Effluent <strong>and</strong> Time <strong>on</strong> Liver <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio:<br />

Variables Factors F df p<br />

Acipase Activity<br />

Alkpase Activity<br />

Effluent C<strong>on</strong>centrati<strong>on</strong> (EC): 1.102 3,23 0.386 ns<br />

Time: 3.01 2,23 0.087 ns<br />

EC x Time: 6.30 6,23 < 0.01<br />

Effluent C<strong>on</strong>centrati<strong>on</strong> (EC): 10.46 3,23 < 0.01<br />

Time: 28.83 2,23 < 0.001<br />

EC x Time: 11.14 6,23 < 0.001<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1309


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

Table 6: TWO WAY ANOVA: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Effluent <strong>and</strong> Time <strong>on</strong> G<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio:<br />

Variables Factors F df p<br />

Acipase Activity<br />

Alkpase Activity<br />

Effluent C<strong>on</strong>centrati<strong>on</strong> (EC): 14.22 3,23 < 0.001<br />

Time: 5.27 2,23 < 0.05<br />

EC x Time: 5.89 6,23 < 0.01<br />

Effluent C<strong>on</strong>centrati<strong>on</strong> (EC): 14.23 3,23 < 0.001<br />

Time: 26.91 2,23 < 0.001<br />

EC x Time: 26.77 6,23 < 0.001<br />

3.1 Gills<br />

1. Alkaline phosphatase (Fig.1a &b)<br />

· E10(Effluent 10%)­An initial decline <str<strong>on</strong>g>of</str<strong>on</strong>g> 82.72 % compared from normal is shown in<br />

Alkpase in the first 48 hours, followed by a steep rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 126% in 96 hours <strong>and</strong> drastically<br />

declining by 70.48% in 160 hours.<br />

· E20(Effluent 20%)­Shows an initial % decline <str<strong>on</strong>g>of</str<strong>on</strong>g> 80.34in 48 hours followed by a % hike<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 28.46 in 96 hours <strong>and</strong> 93.33 in 160 hours.<br />

· E30(Effluent 30%)­ Shows an initial % decline <str<strong>on</strong>g>of</str<strong>on</strong>g> 65.17 in 48 hours followed by a<br />

gradual decline by 71.54% in 96 hours , subsequently rising back to normal(100%) in<br />

160 hours.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> ALP <str<strong>on</strong>g>of</str<strong>on</strong>g> gill was found statistically n<strong>on</strong> significant by<br />

ANOVA. However, durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure (F=5.16; P


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

· E10 (Effluent 10%)­Shows a gradual % decline <str<strong>on</strong>g>of</str<strong>on</strong>g> 39.13 to 43.28 followed by a steep rise<br />

by 673.91%.<br />

· E20 (Effluent 20%)­Shows an initial % hike <str<strong>on</strong>g>of</str<strong>on</strong>g> 54.34 followed by 26.86 <strong>and</strong> a steep rise<br />

by 582.6%.<br />

· E30 (Effluent 30%)­%decline by 58.69 is followed a % hike <str<strong>on</strong>g>of</str<strong>on</strong>g> 26.86 <strong>and</strong> 308.69%.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> ALP <str<strong>on</strong>g>of</str<strong>on</strong>g> liver was found statistically significant (F=10.46;<br />

P


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

· E30 (Effluent 30%)­Acpase although shoots by 498.67% ,but declines gradually to<br />

100% <strong>and</strong> 43.69% above normal.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> ACP <str<strong>on</strong>g>of</str<strong>on</strong>g> g<strong>on</strong>ad was found to be highly significant<br />

statistically by ANOVA (F=14.22; P


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

Acid phosphatase <strong>on</strong> the other h<strong>and</strong>, shows a picture inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> Alkaline phosphatase <strong>and</strong><br />

rises (although insignificantly) above normal in the first 48 hours followed by a fall below<br />

normal in 160 hours in gills. Maximum rise above normal followed by resumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal<br />

values is found to be highest in E10 in gills. Similar picture is shown by liver being<br />

maximum in E20 followed by E10 <strong>and</strong> E30.In g<strong>on</strong>ads ,maximum rise above normal in first<br />

48 hours, is shown in E30 followed by E20 <strong>and</strong> E10. This result is in agreement with the<br />

significant increase in ACP in kidney <str<strong>on</strong>g>of</str<strong>on</strong>g> the catfish, Heterpneustes fossilis after intoxicati<strong>on</strong><br />

with cadmium (Sastry <strong>and</strong> Subhadra, 1985). Similar increase <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma <strong>and</strong> liver <strong>acid</strong><br />

phosphatase has been reported in the teleosts, Bryc<strong>on</strong> cephalus (matrinxã) following exposure<br />

to methyl parathi<strong>on</strong>. The increase was associated either with the decrease in stability <str<strong>on</strong>g>of</str<strong>on</strong>g> liver<br />

lysosome membrane or with liver damage (Moraes et al., 1998). The enzyme ACP is known<br />

to be associated with lyososomal activity. The authors agree with Gill et al., 1992 that the<br />

<strong>acid</strong> phosphatase elevati<strong>on</strong> reflects proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomes in attempt to sequester the<br />

toxic xenobiotic. The present author agrees with Neskovic et al., 1993 <strong>and</strong> Adham et al.,<br />

1997 that <strong>alkaline</strong> <strong>and</strong> <strong>acid</strong> phosphatases prove to be quite sensitive in assessing sublethal<br />

water intoxicosis in fish . The present data reveal that the different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coke<br />

oven <str<strong>on</strong>g>effluent</str<strong>on</strong>g> i.e. 10%, 20% <strong>and</strong> 30% alter the <strong>acid</strong>ic <strong>and</strong> <strong>alkaline</strong> phosphatase activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Cyprinus carpio in different organs. Hence, the results from present investigati<strong>on</strong>s may be<br />

useful in the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental stress in the aquatic ecosystem so that attempts<br />

could be made to reduce the chemical compounds <strong>and</strong> heavy metals in freshwater ecosystem<br />

by pretreatment before discharging in to the aquatic ecosystem.<br />

Acknowledgement<br />

The author expresses her deep sense <str<strong>on</strong>g>of</str<strong>on</strong>g> gratitude to Dr. Shamsh Pervez, Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor,<br />

SoS in Chemistry,Pt.Ravishankar Shukla University <strong>and</strong> his Polluti<strong>on</strong> Lab team for analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the physico­ chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effluent</str<strong>on</strong>g>. Sincere thanks are also due to School<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> studies in Lifescience for providing laboratory facilities.<br />

5. References<br />

1. Abdel­Hameid, N. A. H. (1994): <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> some pollutants <strong>on</strong> biological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oreochromis niloticus. M. Sc. thesis, Benha Branch: Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Zagazig<br />

University.<br />

2. Adham K. G.. Hassan I. F., Taha N. <strong>and</strong> Amin T. H. (1997): Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> in<br />

lake Maryut <strong>and</strong> other locati<strong>on</strong>s<strong>on</strong> Clarias lazera. In: Workshop <strong>on</strong> lake Maryut,<br />

polluti<strong>on</strong> problems <strong>and</strong> proposals for restorati<strong>on</strong> <strong>and</strong> better management, april 27­<br />

30,1994. Goethe Institute Alex<strong>and</strong>ria, Egypt, pp. 12.<br />

3. Akanji M. A., Olagoke O. A. <strong>and</strong> Oloyede O. B. (1993):<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabisulphite <strong>on</strong> the integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> the kidney cellular system.<br />

Toxicol., 81: pp 173­179.<br />

4. American Public Health Associati<strong>on</strong> (1975):St<strong>and</strong>ard methods for the examinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>and</strong> waste water (14 th ed.). New York, APHA, Washingt<strong>on</strong>, D. C. pp. 1193.<br />

5. Barse A.V., Chakrabarti T., Ghosh T.K., Pal A.K. <strong>and</strong> Jadhao S.B. (2006): One<br />

tenth dose <str<strong>on</strong>g>of</str<strong>on</strong>g> LC50 <str<strong>on</strong>g>of</str<strong>on</strong>g> 4­tertbutylphenol causes endocrine disrupti<strong>on</strong> <strong>and</strong> metabolic<br />

changes in Cyprinus carpio. Pesticide Biochem. Physiol., 86(3): pp 172­179.<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1313


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

6. Boge G., Leydet M. & Houvet V., (1992):The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> hexavalent chromium <strong>on</strong><br />

the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>alkaline</strong> phosphatase in the intestine <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainbow trout<br />

(Oncorhynchus mykiss), Aquatic Toxicol, pp 23:247.<br />

7. Brett J. R., (1958):Implicati<strong>on</strong>s <strong>and</strong> assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental stress. Pages 69­<br />

77 in the investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish power problems. H. R., Macmillan Lectures in<br />

Fishries, University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia.<br />

8. Das, B. K. <strong>and</strong> S. C. Mukherjee, 2003. Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> cypermethrin in Labeo rohita<br />

fingerlings:Biochemical enzymatic <strong>and</strong> haematological c<strong>on</strong>sequence. Comp.<br />

Biochem. Physiol. Toxicol. Pharmacol., 137: pp 325­333.<br />

9. Dyhrman S. T. & Palanik B., (1999):Phosphate stress in cultures <strong>and</strong> field<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Propocentrum minimum detected by single cell<br />

<strong>alkaline</strong> phosphatase assay, Applied envir<strong>on</strong>mental Microbiol, 65:3205.<br />

10. Fiske C. H., <strong>and</strong> Subbarow Y. J., (1925):The colorimetric estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Phosphorous. Biol. Chem., 66:375.<br />

11. Gasser K. W., <strong>and</strong> Kirschner, L. B., (1987):J. Comp. Physiol. B 157: pp 469­475.<br />

12. Gill T. S., Tewari H. <strong>and</strong> P<strong>and</strong>e J. (1992). Short <strong>and</strong> l<strong>on</strong>g­ term effects <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>on</strong><br />

the rosy carb (Puntius c<strong>on</strong>ch<strong>on</strong>ius). Ecotoxicol. Envir<strong>on</strong> Saf., 23: pp 294­297.<br />

13. Gupta S., Dalela R. C. <strong>and</strong> Saxena P. K. 1983. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> phenolic compounds <strong>on</strong><br />

in vivo activity <str<strong>on</strong>g>of</str<strong>on</strong>g> transaminases in certain tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish Notopterus<br />

notopterus. Envir<strong>on</strong>. Res., 32:pp 8­13.<br />

14. Heath A. G. (1987). <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental pollutants <strong>on</strong> early fish development.<br />

Rev. Aqual. Sci., 1: pp 45­73.<br />

15. Hori T.S.F., Avilez I. M., Inoue L. K. <strong>and</strong> Moraes G. (2006). Metabolical changes<br />

induced by chr<strong>on</strong>ic phenol exposure in matrinxã Bryc<strong>on</strong> cephalus (teleostei:<br />

char<strong>acid</strong>ae), juveniles. Comp. Biochem. Physiol., 143(1) : pp 67­72.<br />

16. Jagetia G. C. <strong>and</strong> Aruna R., (1997). Hydroquin<strong>on</strong>e increases the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

micr<strong>on</strong>uclei in a dose­dependent manner in mouse b<strong>on</strong>e marrow. Toxicol. Lett., 39:<br />

pp 205­213.<br />

17. Kashiwada S., Ishikawa H., Miayamoto N., Ohnishi Y. <strong>and</strong> Magara Y., (2002).<br />

Fish test for endocrinedisrupti<strong>on</strong> <strong>and</strong> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Japanese rivers.<br />

Water Res., 36: pp 2161­2166.<br />

18. Kirk,RE <strong>and</strong> Othmer,DF (1982): Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Technology. 3rd ed.,<br />

Volumes 1­26. New York, NY: John Wiley <strong>and</strong> S<strong>on</strong>s, 1978­1984.,p. V17­ 382 .<br />

19. Lowry O. H., Rosebrough N. J., Farr A. L., <strong>and</strong> R<strong>and</strong>all R. J., (1951) Protein<br />

a. measurement with the folin phenol reagent, J Biol Chern, 4:pp 193­265.<br />

20. Mallatt J., (1985). Fish gill structural changes induced by toxicants <strong>and</strong> other<br />

irritants: A statistical review. Can. J. Fish. Aquat. Sci., 42:pp 630­648.<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1314


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

21. Mallatt J., Bailey F., Lampa J. S., Mare A., Evans A. <strong>and</strong> Brumbaugh S. (1995). A<br />

fish gill system for quantifying the ultrastructrual effects <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

stressors: Methylmercury, kep<strong>on</strong>e, <strong>and</strong> heat shock. Can. J. Fish. Aquat. Sci., 52:pp<br />

1165­1182.<br />

22. Martin­Skilt<strong>on</strong> R., Coughtrie M. W. H. <strong>and</strong> Porte C., (2006). Sulfotransferase<br />

activities towards xenobiotics <strong>and</strong> estradiol in two marine fish species (Mullus<br />

barbatus <strong>and</strong> Lepidorhombus boscii): Characterizati<strong>on</strong> <strong>and</strong> inhibiti<strong>on</strong> by endocrine<br />

disrupters. Aquat. Toxicol., 79: pp 24­30.<br />

23. Moraes G., De Aguiar L. H. <strong>and</strong> Correa C. F., (1998):Metabolic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

pesticide methyl parathi<strong>on</strong> (Folidol 600®) <strong>on</strong> Bryc<strong>on</strong> cephalus (matrinxã), teleosts<br />

fish. Symposium Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al C<strong>on</strong>gress <strong>on</strong> the Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish.<br />

24. Murthy A.S. (1985). Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticides to Fish, Vol. 1. CRC Press, Boca<br />

Rat<strong>on</strong>, FL, USA.<br />

25. Neff, J M (2002):Phenols in ocean. In: Bioaccumulati<strong>on</strong> in marine organisms:<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil well produced water (Publisher: Elsevier Ltd),Ch.12, pg 203.<br />

26. Neskovic N. K., Elezovic I., Karan V., Poleksic V., Budimir M. (1993):Acute <strong>and</strong><br />

subacute toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> atrazine to carp (Cyprinus carpio L.). Ecotoxicology <strong>and</strong><br />

Envir<strong>on</strong>mental Safety, 25: pp 173­182.<br />

27. Ogueji E. O. <strong>and</strong> Auta J., (2007). Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical effects <str<strong>on</strong>g>of</str<strong>on</strong>g> acute<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lambda­Cyhalothrin <strong>on</strong> African catfish, Clarias gariepinus­<br />

Teguls. J. Fish Int., 2: pp 86­90.<br />

28. Onikienko F. A., (1963):Enzymatic changes from early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> intoxicati<strong>on</strong> with<br />

small doses <str<strong>on</strong>g>of</str<strong>on</strong>g> chloroorganic insecticides. Giginea. I. Fiziol. Ruda. Pro. Toksilol.<br />

Klinika (Kietcv: Gos IZ. Med. Lit. UKHS) 77.<br />

29. Pait A. S. <strong>and</strong> Nels<strong>on</strong> J.O., (2003). Vitellogenesis in male Fundulus heteroclitus<br />

(Killifish) induced by selected estrogenic compounds. Aquat. Toxicol., 64: pp 331­<br />

342.<br />

30. Pawert M., Muller R. <strong>and</strong> Triebskorn R., (1998):Ultrastructural changes in fish<br />

gills as biomarker to assess small stream polluti<strong>on</strong>. Tissue <strong>and</strong> Cell. 30: pp 617­626.<br />

a. R<strong>and</strong> G. M. <strong>and</strong> Petrocelli S. M. (1984) Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic toxicology<br />

methods <strong>and</strong> applicati<strong>on</strong>s. McGraw­Hill Internati<strong>on</strong>al Book Company, New York,<br />

p. 666.<br />

31. Roberts R.J. (1978). The pathophysiology <strong>and</strong> systemic pathology <str<strong>on</strong>g>of</str<strong>on</strong>g> teleosts, <strong>and</strong><br />

laboratory methods. In: ‘Fish pathology’. 1st (Ed.), Bailliere Tindall, L<strong>on</strong>d<strong>on</strong>, UK.<br />

pp. 235­246.<br />

32. Saha N.C., Bhunia F. <strong>and</strong> Kaviraj A., (1999). Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> phenol to fish <strong>and</strong><br />

aquatic ecosystem. Bull. Envir<strong>on</strong>. C<strong>on</strong>tam. Toxicol., 63: pp 195­202.<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1315


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>steel</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>effluent</str<strong>on</strong>g> <strong>on</strong> <strong>acid</strong> <strong>and</strong> <strong>alkaline</strong> phosphatases <str<strong>on</strong>g>of</str<strong>on</strong>g> gills, liver <strong>and</strong> g<strong>on</strong>ads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyprinus carpio<br />

Linn. (1758)<br />

33. Sastry K. V., <strong>and</strong> Subhadra K., (1985):In vivo effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cadmium <strong>on</strong> some enzyme<br />

activities in tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> the freshwater catfish, Heteropneustes fossilis. Envir<strong>on</strong>. Res.,<br />

36(1): pp 32­45<br />

34. Selye H., (1950):Stress <strong>and</strong> the general adaptati<strong>on</strong> syndrome. Brit. Med. J., 1 :<br />

pp1383­1392.<br />

35. Sinha S., (1999):Industrial <str<strong>on</strong>g>effluent</str<strong>on</strong>g>s <strong>and</strong> microorganisms inhabiting it (PhD thesis).<br />

36. Sunm<strong>on</strong>u T. O., Owolabi O. D., Oloyede O. B., (2009):Anthracene induced<br />

enzymatic changes as stress indicators in African Catfish, Heterobranchus<br />

bidorsalis Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>froy Saint Hilaire, 1809. Res J Envir<strong>on</strong>. Sci. 3(6):pp 677­686.<br />

37. Sunm<strong>on</strong>u, T. O. <strong>and</strong> Oloyede O. B., (2009): Changes in liver enzyme activities in<br />

African catfish (Clarius gariepinus) exposed to crude oil. Asian Fish Sci., 19: pp<br />

97­183.<br />

38. Taysse L., Troutaud D., Khan N.A. <strong>and</strong> Deschaux P., (1995). Structure activity<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> phenolic compounds (phenol, pyrocatechol <strong>and</strong> hydroquin<strong>on</strong>e) <strong>on</strong><br />

natural lyphocytotoxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> carp (Cyprinus carpio). Toxicol., 98: pp 207­214.<br />

39. Tollefsen K.E., (2006). Binding <str<strong>on</strong>g>of</str<strong>on</strong>g> alkylphenols <strong>and</strong> alkylated n<strong>on</strong>­pholics to the<br />

rainbow trout (Oncorhynchus mykiss) plasma sex steroid­binding protein.<br />

Ecotoxicol. Envir<strong>on</strong>. Saf., 56 (3): pp 215­225.<br />

40. Tsutsui T., Hayashi N., Maizumi H., Huff J. <strong>and</strong> Barret J.C., (1997). Benzenecatechol­,<br />

hydroquin<strong>on</strong>e­ <strong>and</strong> phenol­induced cell­transformati<strong>on</strong>, gene mutati<strong>on</strong>,<br />

chromosome aberrati<strong>on</strong>s, aneuploidy, sister chromatid exchanges <strong>and</strong> unscheduled<br />

DNA synthesis in Syrian hamster embryo cell. Mutat. Res., 373: pp 112­123.<br />

41. United States Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency (2009): Nati<strong>on</strong>al recommended<br />

water quality criteria. http://www.epa.gov/ost/criteria/wqctable/<br />

42. Valarmathi S. <strong>and</strong> Azariah J., (2003): <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper chloride <strong>on</strong> the enzyme<br />

activities <str<strong>on</strong>g>of</str<strong>on</strong>g> the Crab, Sesarma quadratum (Fabricius). Tark J Biol. 27: pp 253­<br />

256.<br />

43. Verma S., Saxena M., <strong>and</strong> T<strong>on</strong>k I., (1984):The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Ider 20 <strong>on</strong> the<br />

biochemical <strong>and</strong> enzymes in the liver <str<strong>on</strong>g>of</str<strong>on</strong>g> Clarias batrachus. Envir<strong>on</strong>. Pollu., 33: pp<br />

245­ 255.<br />

44. Wang C., Zhao Y. R., Ding X., Wei W., <strong>and</strong> Zuo Z., (2006). <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tributylin,<br />

benzo (a) pyrene <strong>and</strong> their mixture <strong>on</strong> antioxidant defence systems in Sebasticus<br />

marmoratus. Ecotoxicol. Envir<strong>on</strong>. Saf., 65: pp 381­387.<br />

45. Wedemeyer , G. R., Meyer F. P <strong>and</strong> Smith L. (eds.), (1999) In : Envir<strong>on</strong>mental<br />

stress <strong>and</strong> fish diseases. Narendra Publishing House, Delhi, India, pp 107.<br />

Chetna Bakde, Aditi Niyogi Poddar<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences Volume 1 No.6, 2011<br />

1316

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!