07.03.2014 Views

Linear Matrix Inequalities in Control

Linear Matrix Inequalities in Control

Linear Matrix Inequalities in Control

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>L<strong>in</strong>ear</strong> <strong>Matrix</strong> <strong>Inequalities</strong> (LMI)<br />

<strong>in</strong> <strong>Control</strong><br />

Wojciech Koz<strong>in</strong>ski PhD<br />

Warsaw University of Technology<br />

Faculty of Electrical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Institute of <strong>Control</strong> and Industrial Electronics<br />

Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 2<br />

<strong>Control</strong> – classical vs. modern (1)<br />

• Classical control offers (almost) no guaranty on<br />

performance or robustness of the closed loop,<br />

• „Optimistic” design start<strong>in</strong>g from desired closed loop<br />

behaviour,<br />

• Classical control techniques (only some possibilities):<br />

– pole placement,<br />

– LQR approach,<br />

– lead and lag units,<br />

– root locus,<br />

– algebraic approach (solv<strong>in</strong>g diophant<strong>in</strong>e equation),<br />

KSO materiały do wykładu 2008/09 3<br />

1


<strong>Control</strong> – classical vs. modern (2)<br />

• Modern control techniques,<br />

– H analysis and synthesis,<br />

– H 2<br />

analysis and synthesis,<br />

– mixed criteria (+ pole placement),<br />

• They offer upper bounds estimates on performance and<br />

robustness of the closed loop,<br />

• They can tackle difficult problems,<br />

• Some disadvantages (high order controllers, a lot of<br />

mathematics, unable to solve some important problems).<br />

KSO materiały do wykładu 2008/09 4<br />

Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 5<br />

Optimisation approach (general)<br />

w<br />

p<br />

u<br />

Δ<br />

P<br />

K<br />

q<br />

y<br />

z<br />

x<br />

q<br />

y<br />

z<br />

u<br />

p<br />

Ax B1<br />

p B2w<br />

B3u<br />

C x D p D w D u<br />

q<br />

C x<br />

y<br />

Czx<br />

K y<br />

q<br />

D<br />

D<br />

q1<br />

y1<br />

z1<br />

p<br />

p<br />

q2<br />

D<br />

y2<br />

w<br />

D w D u<br />

z2<br />

q3<br />

z3<br />

f<strong>in</strong>d<br />

m<strong>in</strong><br />

K<br />

T<br />

zw p<br />

forall<br />

KSO materiały do wykładu 2008/09 6<br />

2


Optimisation approach (2)<br />

scalar signal norms<br />

L<br />

L 2<br />

norm - amplitude<br />

f ( t)<br />

sup f ( t)<br />

f<br />

t 0<br />

norm - energy<br />

1<br />

( d<br />

2<br />

2<br />

2<br />

f t)<br />

dt fˆ(<br />

)<br />

2<br />

0<br />

2<br />

KSO materiały do wykładu 2008/09 7<br />

Optimisation approach (3)<br />

system norm H<br />

System description (causal, with L 2 ga<strong>in</strong> γ>=0)<br />

x ( t)<br />

Ax(<br />

t)<br />

Bf ( t)<br />

y(<br />

t)<br />

Cx(<br />

t)<br />

Df ( t)<br />

H(<br />

s)<br />

C(<br />

sI<br />

Norm def<strong>in</strong>ition L 2 ga<strong>in</strong><br />

T<br />

T<br />

2<br />

2<br />

y(<br />

t)<br />

dt<br />

c<br />

0<br />

0<br />

H sup H(<br />

j<br />

R<br />

2<br />

f ( t)<br />

dt<br />

Norm <strong>in</strong>terpretation<br />

) H<br />

sup max<br />

R<br />

( H(<br />

j<br />

A)<br />

))<br />

1<br />

B<br />

D<br />

KSO materiały do wykładu 2008/09 8<br />

Optimisation approach (4)<br />

system norm H calculations<br />

Theorem<br />

Let A be a Hurwitz (stable) matrix. Then the L 2 ga<strong>in</strong> of the<br />

system is less than γ if and only if max(<br />

D)<br />

and the matrix<br />

F<br />

2<br />

A B(<br />

I<br />

T T<br />

C C C D(<br />

T 1 T<br />

D D)<br />

D C<br />

2 T 1 T<br />

I D D)<br />

D C<br />

2 T 1 T<br />

B(<br />

I D D)<br />

B<br />

T T 2 T<br />

A C D(<br />

I D D)<br />

1<br />

B<br />

does not have eigenvalues on the imag<strong>in</strong>ary axis.<br />

H<strong>in</strong>t : use bisection method.<br />

KSO materiały do wykładu 2008/09 9<br />

3


H<br />

2<br />

2<br />

Optimisation approach (5)<br />

– norm H 2<br />

If the <strong>in</strong>put <strong>in</strong>to system is white noise then output<br />

variance is called H 2 norm<br />

lim E y(<br />

t)<br />

t<br />

0<br />

2<br />

H<br />

If h(t) is impulse response matrix of the system, then<br />

T<br />

trace(<br />

h(<br />

t)<br />

h(<br />

t))<br />

dt<br />

2<br />

2<br />

1<br />

2<br />

T<br />

trace(<br />

H(<br />

j ) H(<br />

j )) d<br />

KSO materiały do wykładu 2008/09 10<br />

Optimisation approach (6)<br />

system norm calculations<br />

H 2<br />

Theorem:<br />

Let A be a Hurwitz matrix. The H 2 norm of the system is<br />

<strong>in</strong>f<strong>in</strong>ite if D 0.<br />

Otherwise, it equals:<br />

2<br />

T<br />

( ) trace T<br />

H trace CPC ( B QB)<br />

2<br />

Where P=P T and Q=Q T are the unique solutions of the<br />

Lapunov equations:<br />

AP<br />

T<br />

PA<br />

BB<br />

T<br />

T<br />

T<br />

0;<br />

A Q QA C C<br />

0<br />

KSO materiały do wykładu 2008/09 11<br />

Optimisation approach (7)<br />

<strong>L<strong>in</strong>ear</strong> Fractional Transformation (LFT)<br />

z1<br />

y1<br />

M<br />

l<br />

w1<br />

u1<br />

z1<br />

y<br />

u<br />

T<br />

1<br />

1<br />

zw1<br />

w1<br />

M<br />

u<br />

l<br />

y<br />

F<br />

1<br />

M<br />

M<br />

11<br />

21<br />

M<br />

M<br />

12<br />

22<br />

w1<br />

u<br />

1<br />

1<br />

l<br />

( M,<br />

l<br />

) M11<br />

M12<br />

l<br />

( I M22<br />

l<br />

) M21<br />

1<br />

z2<br />

y2<br />

u<br />

M<br />

u2<br />

w 2<br />

z2<br />

y<br />

u<br />

T<br />

2<br />

2<br />

zw2<br />

w2<br />

M<br />

u<br />

u<br />

F<br />

y<br />

2<br />

M<br />

M<br />

11<br />

21<br />

M<br />

M<br />

12<br />

22<br />

w2<br />

u<br />

2<br />

1<br />

u( M,<br />

u)<br />

M22<br />

M21<br />

u(<br />

I M11<br />

u)<br />

M12<br />

2<br />

KSO materiały do wykładu 2008/09 12<br />

4


Optimisation approach (8)<br />

Analysis - example<br />

w<br />

u<br />

e<br />

F C Go<br />

q<br />

Δ<br />

+<br />

p<br />

z<br />

-<br />

G<br />

0<br />

1<br />

; C<br />

2<br />

s<br />

F<strong>in</strong>d the largest<br />

2.35(1 s)<br />

;<br />

(1 0.1s<br />

)<br />

F<br />

1.2<br />

;<br />

s 1.2<br />

and ma<strong>in</strong>ta<strong>in</strong> stability<br />

KSO materiały do wykładu 2008/09 13<br />

Optimisation approach (9)<br />

Synthesis - example<br />

w<br />

-<br />

1<br />

s<br />

-<br />

10<br />

z<br />

Gi(s) G i<br />

( s)<br />

;<br />

2<br />

s as b<br />

x<br />

K a 1..3 ; b 8..12 ;<br />

For all plants G i (s) f<strong>in</strong>d stabilis<strong>in</strong>g<br />

static state space controller K.<br />

KSO materiały do wykładu 2008/09 14<br />

Optimisation approach (10)<br />

when the synthesis is well-posed?<br />

w<br />

u<br />

P(s)<br />

K(s)<br />

Closed loop description:<br />

cl<br />

y<br />

z<br />

x<br />

Ax B1w<br />

B2u<br />

z C1x<br />

D11w<br />

D12u<br />

y C x D w D u<br />

x f<br />

u<br />

2<br />

A x<br />

C x<br />

f<br />

f<br />

KSO materiały do wykładu 2008/09 15<br />

f<br />

f<br />

21<br />

D y<br />

22<br />

B y<br />

x A x B w x<br />

cl cl cl<br />

xcl<br />

z Cclxcl<br />

Dclw<br />

x<br />

f<br />

M<strong>in</strong>imize some measure ( T ) ( F ( P,<br />

K))<br />

w z<br />

l<br />

f<br />

f<br />

5


Optimisation approach (11)<br />

when the synthesis is well-posed?<br />

A<br />

C<br />

cl<br />

cl<br />

A B2D f<br />

C2<br />

B C<br />

C<br />

1<br />

f<br />

12<br />

2<br />

D D C<br />

f<br />

2<br />

B2C<br />

f<br />

A<br />

f<br />

D C ; D<br />

12<br />

; B<br />

f<br />

cl<br />

cl<br />

B1<br />

Df<br />

D<br />

B D<br />

D<br />

11<br />

f<br />

21<br />

12<br />

21<br />

D D D<br />

1. Simultanouos stabilisability of the pair (A,B 2 ) and observability of the pair<br />

(C 2 ,A).<br />

2. D-matrix conditions:<br />

1. D 22 =0,<br />

2. D cl =0 (if H 2 norm is used),<br />

3. often D 11 =0 required (Robust Toolbox),<br />

4. D 12 full column rank matrix,<br />

5. D 21 full row rank matrix.<br />

f<br />

21<br />

KSO materiały do wykładu 2008/09 16<br />

Optimisation approach (warn<strong>in</strong>g)<br />

• Many (all ?) control analysis and synthesis problems can be formulated<br />

as optimisation problems.<br />

• Only some of them can be transformed <strong>in</strong>to LMI (not BMI), solvable<br />

problems (e.g. there exists no general output controller synthesis for<br />

uncerta<strong>in</strong> plant – like LFT framework).<br />

• As LMI – the price is paid <strong>in</strong> large number of slack (Lapunov)<br />

variables.<br />

• Many <strong>in</strong>terest<strong>in</strong>g papers on BMI solvers and non-smooth, non-convex<br />

optimisation have been published recently. P.Apkarian ONERA-CERT,<br />

D. Noll Uni Toulouse, M.Overton, Uni of New York.<br />

KSO materiały do wykładu 2008/09 17<br />

Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 18<br />

6


Computer tools support<br />

• Matlab ® Robust <strong>Control</strong> Toolbox<br />

• Public doma<strong>in</strong> SDP-solvers (Matlab ® based):<br />

– SP (Boyd & Vanderberghe) –old,<br />

– SeDuMi (Sturm, now – McMaster University),<br />

• Public doma<strong>in</strong> preprocessors<br />

– YALMIP (Löfberg <strong>in</strong> ETH Zurich):<br />

• Many other possibilities (see YALMIP www<br />

page)<br />

KSO materiały do wykładu 2008/09 19<br />

Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 20<br />

F(<br />

x)<br />

LMI Primer (1) - def<strong>in</strong>ition<br />

LMI is a matrix dependent on vector x<br />

F<br />

0<br />

m<br />

i 1<br />

T<br />

z Fz<br />

x i<br />

F i<br />

0,<br />

z<br />

0<br />

where m<br />

x R , Fi<br />

Positive def<strong>in</strong>ite matrix F is such that<br />

0, z<br />

n<br />

R .<br />

n n<br />

If LMI has a solution (is feasible) then the solution is a<br />

non empty set. The solution set is convex.<br />

x|<br />

F(<br />

x)<br />

0<br />

KSO materiały do wykładu 2008/09 21<br />

R<br />

7


LMI Primer (2)<br />

There are many LMIs which have the same solution:<br />

Let M R<br />

n n<br />

; det( M)<br />

0 and x M z<br />

then by congruence can be obta<strong>in</strong>ed:<br />

T<br />

T T<br />

T<br />

A 0 x Ax 0 z M AMz 0 M AM<br />

An example:<br />

A B<br />

0<br />

C D<br />

0 I A B<br />

I 0 C D<br />

0 I<br />

0<br />

I 0<br />

D C<br />

0<br />

B A<br />

0<br />

KSO materiały do wykładu 2008/09 22<br />

LMI Primer (3)<br />

Multiple LMIs can be expressed as a s<strong>in</strong>gle LMI.<br />

Set def<strong>in</strong>ed by by q LMIs:<br />

F(<br />

x)<br />

1<br />

F ( x)<br />

2<br />

0; F ( x)<br />

An equivalent s<strong>in</strong>gle LMI:<br />

where<br />

q<br />

0;...; F ( x)<br />

m<br />

0<br />

xiFi<br />

x<br />

i 1<br />

F<br />

1 2<br />

q<br />

diag F ( x)<br />

F ( x)<br />

... F ( ) 0<br />

1 2<br />

q<br />

Fi diagFi<br />

Fi<br />

... Fi<br />

; i 0,1 ,..., m<br />

0<br />

KSO materiały do wykładu 2008/09 23<br />

LMI Primer (4)<br />

<strong>L<strong>in</strong>ear</strong> constra<strong>in</strong>ts can be expressed as an LMI:<br />

General l<strong>in</strong>ear constra<strong>in</strong>t:<br />

Ax<br />

b<br />

where<br />

n<br />

b R ,<br />

A<br />

R<br />

,<br />

n m<br />

x<br />

m<br />

R .<br />

can be converted to n scalar <strong>in</strong>equalities <strong>in</strong> LMI form<br />

m<br />

bi Aijx<br />

j<br />

0; i 1,...,<br />

n<br />

j 1<br />

and then <strong>in</strong>to s<strong>in</strong>gle LMI.<br />

KSO materiały do wykładu 2008/09 24<br />

8


LMI Primer (5)<br />

The Schur complement lemma:<br />

Converts convex nonl<strong>in</strong>ear <strong>in</strong>equality<br />

R(<br />

x)<br />

where<br />

0,<br />

Q(<br />

x)<br />

1 T<br />

S(<br />

x)<br />

R(<br />

x)<br />

S(<br />

x)<br />

T<br />

T<br />

Q( x)<br />

Q(<br />

x)<br />

, R(<br />

x)<br />

R(<br />

x)<br />

0 and S(<br />

x)<br />

<strong>in</strong>to the equivalent LMI<br />

Q(<br />

x)<br />

T<br />

S(<br />

x)<br />

S(<br />

x)<br />

R(<br />

x)<br />

Very important lemma!<br />

0<br />

0<br />

depend aff<strong>in</strong>ely on x<br />

KSO materiały do wykładu 2008/09 25<br />

The condition<br />

( A(<br />

x))<br />

1<br />

I<br />

A(<br />

x)<br />

T<br />

LMI Primer (6)<br />

Maximum s<strong>in</strong>gular value: is def<strong>in</strong>ed as:<br />

T<br />

( A(<br />

x))<br />

max(<br />

A(<br />

x)<br />

A(<br />

x)<br />

)<br />

where matrix A(x) depends aff<strong>in</strong>ely on x<br />

( A(<br />

x))<br />

1 can be expressed as a LMI<br />

A(<br />

x)<br />

A(<br />

x)<br />

A(<br />

x)<br />

0<br />

I<br />

T<br />

I I<br />

A(<br />

x)<br />

A(<br />

x)<br />

T<br />

0<br />

KSO materiały do wykładu 2008/09 26<br />

whereP<br />

LMI Primer (7)<br />

Algebraic Riccati <strong>in</strong>equality:<br />

T<br />

1 T<br />

A P PA PBR B P Q 0<br />

P<br />

T<br />

T<br />

0; Q Q ; R 0;<br />

can be expressed as a LMI<br />

T<br />

A P PA<br />

T<br />

B P<br />

Q<br />

PB<br />

R<br />

0;<br />

P<br />

0.<br />

KSO materiały do wykładu 2008/09 27<br />

9


LMI Primer (8)<br />

• Three types of LMI problems<br />

– feasibility problem LMIP,<br />

A(x) 0<br />

– eigenvalue problem EVP,<br />

m<strong>in</strong>imum c T x subject to A(x) 0<br />

– generalised eigenvalue problem GEVP,<br />

m<strong>in</strong>imum λ subject to A( x)<br />

B(<br />

x);<br />

B(<br />

x)<br />

0; C(<br />

x)<br />

where<br />

T<br />

T<br />

B ( x)<br />

B(<br />

x)<br />

0; A(<br />

x)<br />

A(<br />

x)<br />

0.<br />

KSO materiały do wykładu 2008/09 28<br />

Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 29<br />

Basic LMI tools for control (1)<br />

Stability<br />

Autonomous l<strong>in</strong>ear system<br />

x<br />

Ax<br />

T<br />

Lapunov function V( x)<br />

x Px 0 except x<br />

Condition on it’s derivative:<br />

dV(<br />

x)<br />

dt<br />

x Px<br />

T<br />

x Px<br />

T T<br />

x ( A P<br />

LMI for stability A T P PA<br />

0<br />

PA)<br />

x<br />

0<br />

P<br />

0<br />

T<br />

A P<br />

0<br />

PA<br />

0<br />

KSO materiały do wykładu 2008/09 30<br />

10


Basic LMI tools for control (2)<br />

Stability<br />

Equivalence between LMI def<strong>in</strong>ition and matrix formula<br />

p1<br />

p2<br />

Example for n=2 P<br />

0<br />

p p<br />

A T P PA<br />

2a<br />

p1<br />

a<br />

11<br />

12<br />

a12<br />

0<br />

a<br />

a<br />

11<br />

12<br />

a<br />

a<br />

21<br />

22<br />

11<br />

p1<br />

p<br />

2<br />

2<br />

2a21<br />

p2<br />

a a<br />

22<br />

p2<br />

p<br />

3<br />

3<br />

a11<br />

a<br />

2a<br />

12<br />

p1<br />

p<br />

2<br />

22<br />

p2<br />

p<br />

3<br />

a<br />

a<br />

11<br />

21<br />

0<br />

p3<br />

a<br />

21<br />

a<br />

a<br />

12<br />

22<br />

a<br />

2a<br />

21<br />

22<br />

KSO materiały do wykładu 2008/09 31<br />

Basic LMI tools for control (3)<br />

Stability<br />

Additional conditions on s-plane regions<br />

Guaranteed damp<strong>in</strong>g<br />

C stab<br />

{ s C | re(<br />

s)<br />

} s s 2 0<br />

Maximal damp<strong>in</strong>g and oscillation<br />

r s q<br />

C stab<br />

{ s C | s q r}<br />

0<br />

s q r<br />

Vertical strip<br />

( s s)<br />

2<br />

2<br />

0<br />

C stab<br />

{ s C |<br />

1<br />

re(<br />

s)<br />

2}<br />

0<br />

0 ( s s)<br />

2<br />

1<br />

KSO materiały do wykładu 2008/09 32<br />

Basic LMI tools for control (4)<br />

Stability<br />

Theorem:<br />

All eigenvalues of the real matrix A are <strong>in</strong> the region<br />

described by C<br />

stab<br />

{ s C|<br />

P Qs<br />

T<br />

Q s 0}<br />

with P<br />

T<br />

P<br />

if and only if there exists symmetric matrix X=X T >0<br />

p X<br />

p<br />

11<br />

k1<br />

X<br />

q11AX<br />

<br />

q AX<br />

k1<br />

T<br />

q11XA<br />

<br />

<br />

T<br />

q XA<br />

1k<br />

T<br />

p1<br />

k<br />

X q1<br />

k<br />

AX qk1XA<br />

<br />

T<br />

p X q AX q XA<br />

kk<br />

kk<br />

kk<br />

0<br />

Equivalent LMI us<strong>in</strong>g Kronecker multiplication:<br />

P X Q AX<br />

Q<br />

T<br />

XA<br />

T<br />

0<br />

KSO materiały do wykładu 2008/09 33<br />

11


Basic LMI tools for control (6)<br />

Stability – example - feasibility<br />

For given real matrix A check<br />

it its eigenvalues are <strong>in</strong>side<br />

the selected region:<br />

• usage of previously presented<br />

theorem,<br />

• feasibility type problem,<br />

r<br />

-4 -2<br />

q=-3<br />

Im<br />

1<br />

Re<br />

0<br />

-1<br />

KSO materiały do wykładu 2008/09 34<br />

Optimiser: SeDuMi<br />

Demo no.1<br />

Preprocesor: YALMIP<br />

Given is matrix A with eigenvalues -1 j1. If radius of the<br />

circle with orig<strong>in</strong> (-3,0) is greater then sqrt(5) the problem<br />

is feasible, otherwise unfeasible.<br />

KSO materiały do wykładu 2008/09 35<br />

Basic LMI tools for control (7)<br />

Stability of non-l<strong>in</strong>ear/time-vary<strong>in</strong>g<br />

Two admissible descriptions of autonomous non-l<strong>in</strong>ear<br />

or time vary<strong>in</strong>g system <strong>in</strong> form of convex hull of matrices:<br />

x t)<br />

A(<br />

t)<br />

x(<br />

t),<br />

A(<br />

t)<br />

Co{<br />

A,<br />

A ,... A }<br />

(<br />

1 2 L<br />

L<br />

x ( t)<br />

A(<br />

t)<br />

x(<br />

t),<br />

A(<br />

t)<br />

LMIs to prove stability:<br />

i<br />

A i<br />

i 1<br />

T<br />

P P 0<br />

T<br />

Ai P PAi<br />

0, i 1,...,<br />

L<br />

,<br />

i<br />

0,<br />

L<br />

i<br />

i 1<br />

1.<br />

KSO materiały do wykładu 2008/09 36<br />

12


Basic LMI tools for control (8)<br />

Bounded real lemma<br />

The system def<strong>in</strong>ition<br />

x Ax Bu<br />

G(<br />

s)<br />

sup ( G(<br />

s))<br />

sup ( G(<br />

j ))<br />

Re( s)<br />

0<br />

R<br />

y Cx Du<br />

x(0)<br />

0<br />

G(<br />

s)<br />

1<br />

C(<br />

sI A)<br />

B<br />

M<strong>in</strong>imize γ 2 subject to:<br />

T<br />

T<br />

T<br />

A P PA C C PB C D<br />

T T<br />

T 2<br />

B P D C D D I<br />

D<br />

F<strong>in</strong>d (the upper bound)<br />

0; P<br />

P<br />

T<br />

0<br />

KSO materiały do wykładu 2008/09 37<br />

Basic LMI tools for control (9)<br />

S-procedure (simplified)<br />

If there exist symmetric matrices T 0 ,...,T p and nonnegative<br />

numbers<br />

1<br />

0,...,<br />

p<br />

0 such that<br />

T<br />

0<br />

i<br />

p<br />

1<br />

iT i<br />

0<br />

T<br />

T<br />

then x T0 x 0; x 0if<br />

x Ti<br />

x 0; i 1, ,<br />

p.<br />

For p=1 the reverse is true.<br />

KSO materiały do wykładu 2008/09 38<br />

Basic LMI tools for control (10)<br />

S-procedure example<br />

There are two condtions given for P<br />

P<br />

T<br />

0,<br />

0 and any<br />

T<br />

T<br />

A P PA<br />

T<br />

B P<br />

PB<br />

0<br />

0<br />

T C T C<br />

T<br />

A P<br />

PA<br />

T<br />

B P<br />

T<br />

C C<br />

PB<br />

I<br />

0; P<br />

P<br />

T<br />

T .<br />

Us<strong>in</strong>g S-procedure one can obta<strong>in</strong> LMIs:<br />

0;<br />

0<br />

KSO materiały do wykładu 2008/09 39<br />

13


Basic LMI tools for control (11)<br />

H <strong>in</strong>f norm calculations<br />

For system:<br />

x<br />

y<br />

Ax<br />

Cx<br />

M<strong>in</strong>imize γ subject to:<br />

T<br />

A X XA<br />

T<br />

B X<br />

C<br />

XB<br />

I<br />

D<br />

T<br />

C<br />

T<br />

D<br />

I<br />

Bu<br />

Du<br />

0; X<br />

Variable γ is the upper bound of H <strong>in</strong>f<br />

0; whereX<br />

T<br />

X .<br />

KSO materiały do wykładu 2008/09 40<br />

Optimiser: SeDuMi<br />

Let<br />

G( s)<br />

2<br />

s<br />

10<br />

2s<br />

10<br />

Demo no.2<br />

The state space representation is<br />

A<br />

2<br />

8<br />

1.25<br />

; B<br />

0<br />

Preprocesor: YALMIP<br />

1<br />

; C<br />

0<br />

0 1.25; D 0.<br />

F<strong>in</strong>d norm H <strong>in</strong>f and compare it with the result of Matlab ®<br />

function.<br />

KSO materiały do wykładu 2008/09 41<br />

Basic LMI tools for control (12)<br />

H 2 norm calculations<br />

For system:<br />

x<br />

y<br />

Ax<br />

Cx<br />

Bu<br />

M<strong>in</strong>imize trace(Q) subject to:<br />

T T<br />

AP PA BB 0<br />

Q<br />

PC<br />

T<br />

whereP<br />

CP<br />

P<br />

T<br />

P , Q<br />

0; P<br />

0<br />

T<br />

Q .<br />

KSO materiały do wykładu 2008/09 42<br />

14


Optimiser: SeDuMi<br />

Demo no.3<br />

Preprocesor: YALMIP<br />

Let<br />

G( s)<br />

2<br />

s<br />

10<br />

2s<br />

10<br />

The state space representation is<br />

A<br />

2<br />

8<br />

1.25<br />

; B<br />

0<br />

1<br />

; C<br />

0<br />

0<br />

1.25; D<br />

0.<br />

F<strong>in</strong>d norm H 2 and compare it with the result of Matlab ®<br />

function.<br />

KSO materiały do wykładu 2008/09 43<br />

Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 44<br />

Analysis (1)<br />

Robustness problems<br />

1. Robust stability,<br />

2. Robust performance.<br />

Question: what is the biggest admissible Δ ?<br />

G G G 0<br />

( I )<br />

G 0<br />

Δ<br />

Δ<br />

G0<br />

G0<br />

KSO materiały do wykładu 2008/09 45<br />

15


Analysis (2)<br />

Uncerta<strong>in</strong>ity descriptions<br />

1. Norm-bounded uncerta<strong>in</strong>ity without structure<br />

1<br />

( s)<br />

W(<br />

s)<br />

2. Norm-bounded uncerta<strong>in</strong>ity with structure<br />

Δ partitioned <strong>in</strong>to blocks with their own bounds<br />

3. Sector-bounded uncerta<strong>in</strong>ity (dynamic or static)<br />

mapp<strong>in</strong>g : u L y L<br />

0<br />

( y(<br />

t)<br />

2<br />

T<br />

au(<br />

t))<br />

( y(<br />

t)<br />

2<br />

bu(<br />

t))<br />

dt<br />

1<br />

0<br />

KSO materiały do wykładu 2008/09 46<br />

Analysis (3)<br />

Robust stability – problem statement<br />

w<br />

p<br />

Δ<br />

P<br />

q<br />

z<br />

x<br />

q<br />

z<br />

p<br />

Ax B1<br />

p B2w<br />

C1x<br />

D11p<br />

D12w<br />

C2x<br />

D21p<br />

D22w<br />

q<br />

1<br />

Is the system stable for all admissible Δ?<br />

KSO materiały do wykładu 2008/09 47<br />

M<br />

1<br />

Analysis (3)<br />

Robust stability – LMIs<br />

T<br />

A P PA<br />

T<br />

B P<br />

PB<br />

0<br />

B<br />

B 1<br />

B 2<br />

M<br />

2<br />

C2<br />

0<br />

D<br />

0<br />

21<br />

T<br />

22<br />

D<br />

I<br />

I<br />

0<br />

0<br />

2<br />

I<br />

C2<br />

0<br />

D<br />

0<br />

21<br />

D<br />

I<br />

22<br />

M<br />

3<br />

C1<br />

D<br />

0 I<br />

11<br />

T<br />

D12<br />

I 0<br />

0 0 I<br />

C1<br />

D11<br />

D<br />

0 I 0<br />

m<strong>in</strong> s.<br />

t.(<br />

M1 M2<br />

M3<br />

0; P 0;<br />

12<br />

0)<br />

KSO materiały do wykładu 2008/09 48<br />

16


Analysis (4)<br />

Robust stability – example<br />

q Δ<br />

k<br />

w<br />

u<br />

e<br />

F C G o<br />

k<br />

p<br />

z<br />

2<br />

k<br />

q<br />

z<br />

2<br />

k G0C(<br />

I G0C)<br />

1<br />

k(<br />

I G C)<br />

0<br />

1<br />

kG0CF(<br />

I<br />

G CF(<br />

I<br />

0<br />

G0C)<br />

G C)<br />

0<br />

1<br />

1<br />

p<br />

w<br />

KSO materiały do wykładu 2008/09 49<br />

A<br />

C<br />

A<br />

Analysis (5)<br />

Robust stability – example<br />

G<br />

0<br />

C1<br />

C<br />

k max<br />

2<br />

0<br />

1<br />

; C<br />

2<br />

s<br />

B0Dr<br />

C<br />

BrC0<br />

0<br />

kC0<br />

C<br />

0<br />

0<br />

0.748<br />

B0Cr<br />

Ar<br />

0<br />

2.35(1 s)<br />

; F<br />

(1 0.1s<br />

)<br />

0 0<br />

; D<br />

0 0<br />

B0Dr<br />

C<br />

f<br />

BrC<br />

f<br />

A<br />

f<br />

D<br />

D<br />

11<br />

21<br />

; B<br />

D<br />

D<br />

12<br />

22<br />

1.2<br />

;<br />

s 1.2<br />

B0Dr<br />

k<br />

Brk<br />

0<br />

0<br />

k<br />

0<br />

0<br />

KSO materiały do wykładu 2008/09 50<br />

;<br />

B0Dr<br />

Df<br />

Br<br />

Df<br />

B<br />

f<br />

;<br />

Demo no.4<br />

Optimiser: SeDuMi<br />

Preprocesor: YALMIP<br />

Run the presented example with some simulations to<br />

confirm the result.<br />

KSO materiały do wykładu 2008/09 51<br />

17


Analysis (6)<br />

Integral Quadratic Constra<strong>in</strong>ts (IQC)<br />

Powerful method for <strong>in</strong>vestigat<strong>in</strong>g stability of uncerta<strong>in</strong> systems<br />

.<br />

Let pˆ and qˆ<br />

be Fourier Transforms of p and q signals.<br />

.<br />

IQC is def<strong>in</strong>ed by ( j ) where<br />

pˆ(<br />

j<br />

qˆ(<br />

j<br />

)<br />

)<br />

*<br />

( j<br />

pˆ(<br />

j<br />

)<br />

qˆ(<br />

j<br />

)<br />

d<br />

)<br />

0<br />

KSO materiały do wykładu 2008/09 52<br />

Analysis (7)<br />

Integral Quadratic Constra<strong>in</strong>ts (IQC)<br />

For autonomous system<br />

x<br />

( t)<br />

Ax(<br />

t)<br />

B p(<br />

t)<br />

q(<br />

t)<br />

p(<br />

t)<br />

C x(<br />

t)<br />

q<br />

q(<br />

t);<br />

p<br />

D p(<br />

t)<br />

qp<br />

01<br />

For small ε>0 it is true<br />

H(<br />

j )<br />

I<br />

*<br />

H(<br />

j )<br />

( j )<br />

I<br />

H(<br />

s)<br />

C ( sI<br />

1<br />

A)<br />

B<br />

KSO materiały do wykładu 2008/09 53<br />

q<br />

2 I for all<br />

Kalman-Yakubovich-Popov (KYP) lemma converts this<br />

condition <strong>in</strong>to LMI.<br />

R<br />

p<br />

D<br />

qp<br />

Analysis (8)<br />

Integral Quadratic Constra<strong>in</strong>ts (IQC)<br />

Kalman-Yakubovich-Popov (KYP) lemma:<br />

Let the pair of matrices (A,B) is stabilisable and matrix A has no<br />

eigenvalues on imag<strong>in</strong>ary axis. Then the statements are equivalent:<br />

( j<br />

1<br />

I A)<br />

B<br />

I<br />

T<br />

PA A P<br />

T<br />

B P<br />

*<br />

PB<br />

0<br />

( j<br />

1<br />

I A)<br />

B<br />

I<br />

0, P<br />

There is powerful Matlab ® toolbox called iqc-beta (from MIT).<br />

P<br />

T<br />

0,<br />

0<br />

0,<br />

KSO materiały do wykładu 2008/09 54<br />

18


Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 55<br />

Synthesis (1)<br />

What can be done with<strong>in</strong> LMI framework?<br />

• Design of static, state controller for uncerta<strong>in</strong><br />

plants with H 2 /H <strong>in</strong>f norm m<strong>in</strong>imization, pole<br />

placement,<br />

• Design of dynamic, output controller for nom<strong>in</strong>al<br />

plants with H 2 /H <strong>in</strong>f norm m<strong>in</strong>imization, pole<br />

placement,<br />

• Design of dynamic, output controller for uncerta<strong>in</strong><br />

plants with H 2 /H <strong>in</strong>f norm m<strong>in</strong>imization, pole<br />

placement, if uncerta<strong>in</strong>ity measurment is available<br />

(so called ga<strong>in</strong>-schedul<strong>in</strong>g).<br />

KSO materiały do wykładu 2008/09 56<br />

Synthesis (2)<br />

Typical strategy<br />

Pole placement and H <strong>in</strong>f +H 2 norms m<strong>in</strong>imisation,<br />

• Select the pole placement region and run the test to<br />

check, if it is feasible,<br />

• M<strong>in</strong>imise H <strong>in</strong>f norm to f<strong>in</strong>d the smallest possible one<br />

and controller,<br />

• For several, greater but fixed values of H <strong>in</strong>f norm<br />

m<strong>in</strong>imise H 2 norms,<br />

• Plot H 2 norms versus H <strong>in</strong>f fixed norms (Pareto like<br />

curve),<br />

• Select trade-off po<strong>in</strong>t or discard the design.<br />

KSO materiały do wykładu 2008/09 57<br />

19


Synthesis (3)<br />

Design of static, state controller<br />

w<br />

x<br />

z<br />

+<br />

u<br />

A x<br />

p<br />

C x<br />

p<br />

u Kx<br />

G<br />

K<br />

x<br />

B ( w<br />

p<br />

D ( w<br />

p<br />

z<br />

u)<br />

u)<br />

x<br />

z<br />

z<br />

z<br />

2<br />

w<br />

u<br />

KSO materiały do wykładu 2008/09 58<br />

P<br />

K<br />

x<br />

z2<br />

z<strong>in</strong>f<br />

z<br />

Ax Buu<br />

Bww<br />

C x D<br />

uu<br />

D<br />

ww<br />

C2x<br />

D2uu<br />

D2<br />

ww<br />

C x D u D w<br />

z<br />

zu<br />

zw<br />

2<br />

Synthesis (4)<br />

Design of static, state controller<br />

Norms def<strong>in</strong>itions (<strong>in</strong> signal terms)<br />

<strong>Matrix</strong> def<strong>in</strong>itions for general setup<br />

B<br />

C<br />

C<br />

C<br />

u<br />

z<br />

B ;<br />

p<br />

C ;<br />

Cp<br />

;<br />

0<br />

C ;<br />

p<br />

p<br />

B<br />

D<br />

w<br />

D<br />

D<br />

zu<br />

B ;<br />

u<br />

2u<br />

p<br />

D ;<br />

p<br />

D ;<br />

p<br />

Dp<br />

;<br />

1<br />

D<br />

zw<br />

D<br />

D<br />

w<br />

2w<br />

D ;<br />

p<br />

z w z;<br />

z2<br />

1 D ;<br />

p<br />

Dp<br />

;<br />

0<br />

z<br />

u<br />

KSO materiały do wykładu 2008/09 59<br />

Optimiser: SeDuMi<br />

G(<br />

s)<br />

1<br />

2<br />

s<br />

Demo no.5<br />

Preprocesor: YALMIP<br />

a) Pole placement and H <strong>in</strong>f m<strong>in</strong>imisation to obta<strong>in</strong> lower<br />

bound,<br />

b) Several runs – pole placement and H 2 m<strong>in</strong>imisation for<br />

fixed values H <strong>in</strong>f ,; generate Pareto-like curve,<br />

c) Pole placement and H <strong>in</strong>f + H 2 m<strong>in</strong>imisation.<br />

KSO materiały do wykładu 2008/09 60<br />

20


Synthesis (5)<br />

Design of static, state controller<br />

Analysis of the design (closed loop)<br />

x A x B w; x x; A A B K B B ;<br />

u<br />

z<br />

z<br />

z<br />

cl<br />

2<br />

cl<br />

cl<br />

cl<br />

K xcl;<br />

( C D<br />

uK)<br />

x<br />

( C2<br />

D2u<br />

K)<br />

xcl<br />

( C D K)<br />

x<br />

z<br />

zu<br />

cl<br />

If norm H 2 is used then<br />

cl<br />

cl<br />

D<br />

ww;<br />

D2<br />

ww;<br />

D w;<br />

D 2w<br />

zw<br />

0.<br />

cl<br />

;<br />

cl w<br />

KSO materiały do wykładu 2008/09 61<br />

u<br />

Synthesis (6)<br />

Design of static, state controller<br />

Another structure for uncerta<strong>in</strong> plants.<br />

w<br />

-<br />

e<br />

1/s<br />

v<br />

+<br />

u<br />

G<br />

K<br />

x<br />

z<br />

No problems with static ga<strong>in</strong>.<br />

KSO materiały do wykładu 2008/09 62<br />

Optimiser: SeDuMi<br />

Demo no.6<br />

10<br />

s)<br />

;<br />

s as b<br />

1..3 ; b 8..12 ;<br />

G i<br />

(<br />

2<br />

a<br />

Preprocesor: YALMIP<br />

Design state space controller for all „corner” plants<br />

us<strong>in</strong>g pole-placement.<br />

KSO materiały do wykładu 2008/09 63<br />

21


Synthesis (7)<br />

Design of dynamic, output controller<br />

w<br />

-<br />

u<br />

x Ax<br />

z Cx<br />

k<br />

x<br />

u<br />

Ak<br />

x<br />

C x<br />

k<br />

z<br />

G<br />

y<br />

Gk<br />

B(<br />

w u)<br />

D(<br />

w u)<br />

k<br />

k<br />

Bk<br />

y<br />

D y<br />

k<br />

w<br />

u<br />

P<br />

Gk<br />

z w z;<br />

z2<br />

y<br />

z<br />

u<br />

z2<br />

z<strong>in</strong>f<br />

z<br />

Design norms as an example<br />

KSO materiały do wykładu 2008/09 64<br />

Synthesis (8)<br />

Design of dynamic, output controller<br />

General design setup<br />

x<br />

Ax Buu<br />

Bww<br />

z C x D<br />

uu<br />

D<br />

ww<br />

z2<br />

C2x<br />

D2uu<br />

D2<br />

ww<br />

y C x D u D w<br />

z<br />

C x<br />

z<br />

y<br />

- H 2 norm<br />

yu<br />

D u<br />

D<br />

zu<br />

D D<br />

D<br />

yw<br />

zw<br />

w<br />

D<br />

2u<br />

k yw 2w<br />

D-matrix considerations:<br />

- well-posed feedback<br />

det( I D k<br />

Dyu)<br />

0<br />

- plant (usually) strictly proper<br />

D D yu<br />

0; D 0.<br />

0<br />

yw<br />

- well-posed optimization<br />

D w<br />

0;<br />

D2u<br />

0.<br />

- freedom to select<br />

0; D or D 0<br />

k<br />

0<br />

k<br />

KSO materiały do wykładu 2008/09 65<br />

Synthesis (9)<br />

Design of dynamic, output controller<br />

Structure of the closed loop and conversion rules:<br />

B B;<br />

B B;<br />

w<br />

z u<br />

w<br />

G<br />

C C;<br />

D D;<br />

D<br />

-<br />

u<br />

w<br />

u<br />

y C D<br />

Gk C2<br />

; D2u<br />

; D2<br />

w<br />

0 1<br />

Norms def<strong>in</strong>ed by:<br />

z w z;<br />

z2<br />

z<br />

u<br />

C<br />

C<br />

y<br />

z<br />

C;<br />

C;<br />

D<br />

D<br />

D;<br />

D;<br />

D;<br />

D;<br />

KSO materiały do wykładu 2008/09 66<br />

yu<br />

zu<br />

D<br />

D<br />

yw<br />

zw<br />

1;<br />

0<br />

0<br />

;<br />

22


Demo no.7<br />

Optimiser: SeDuMi<br />

Preprocesor: YALMIP<br />

1<br />

G(<br />

s)<br />

2<br />

s<br />

Design output, feedback controller us<strong>in</strong>g pole placement,<br />

and H <strong>in</strong>f + H 2 m<strong>in</strong>imisation.<br />

KSO materiały do wykładu 2008/09 67<br />

Synthesis (10)<br />

Design of dynamic, output controller<br />

Another closed loop structure and conversion rules<br />

w<br />

-<br />

y<br />

Gk<br />

u<br />

G<br />

Norms def<strong>in</strong>ed by:<br />

z w z;<br />

z2<br />

z<br />

u<br />

z<br />

Bu<br />

C<br />

C<br />

C<br />

C<br />

2<br />

y<br />

z<br />

B;<br />

Bw<br />

0;<br />

C;<br />

D<br />

C<br />

; D<br />

0<br />

C;<br />

D<br />

C;<br />

D<br />

zu<br />

u<br />

2u<br />

yu<br />

D;<br />

D<br />

D;<br />

D<br />

D;<br />

D<br />

zw<br />

2w<br />

yw<br />

w<br />

D<br />

; D<br />

1<br />

0;<br />

1;<br />

1;<br />

0<br />

;<br />

0<br />

KSO materiały do wykładu 2008/09 68<br />

Demo no.8<br />

Optimiser: SeDuMi<br />

Preprocesor: YALMIP<br />

G(<br />

s)<br />

1<br />

2<br />

s<br />

Design output, feedforward controller us<strong>in</strong>g pole placement,<br />

and H <strong>in</strong>f + H 2 m<strong>in</strong>imisation.<br />

KSO materiały do wykładu 2008/09 69<br />

23


Synthesis (11)<br />

H-<strong>in</strong>f loop shap<strong>in</strong>g<br />

z1<br />

W1<br />

w<br />

-<br />

y<br />

K<br />

u<br />

G<br />

d<br />

+<br />

W3<br />

z3<br />

z<br />

Basic idea:<br />

W1<br />

( s)<br />

S(<br />

s)<br />

W ( s)<br />

T(<br />

s)<br />

3<br />

1<br />

The sensitivity functions:<br />

L(<br />

s)<br />

S(<br />

s)<br />

T(<br />

s)<br />

G(<br />

s)<br />

K(<br />

s)<br />

( I<br />

( I<br />

G(<br />

s)<br />

K(<br />

s))<br />

1<br />

( I<br />

L(<br />

s))<br />

1<br />

G(<br />

s)<br />

K(<br />

s))<br />

G(<br />

s)<br />

K(<br />

s)<br />

I<br />

1<br />

S(<br />

s)<br />

( I<br />

1<br />

L(<br />

s))<br />

L(<br />

s)<br />

KSO materiały do wykładu 2008/09 70<br />

Optimisation setup:<br />

w<br />

m<strong>in</strong><br />

K<br />

u<br />

T<br />

P<br />

K<br />

w z<br />

Synthesis (12)<br />

H-<strong>in</strong>f loop shap<strong>in</strong>g<br />

y<br />

( s)<br />

z1<br />

z3<br />

z<br />

„Clever” selection of the<br />

z<strong>in</strong>f<br />

z1<br />

z3<br />

y<br />

x<br />

z<br />

y<br />

z<br />

w<br />

P<br />

u<br />

C x<br />

W1<br />

0<br />

I<br />

D u<br />

WG<br />

1<br />

W3G<br />

G<br />

Ax Buu<br />

Bww<br />

C x D<br />

uu<br />

D<br />

ww<br />

C x D u D w<br />

z<br />

y<br />

yu<br />

zu<br />

yw<br />

D w<br />

zw<br />

w<br />

u<br />

KSO materiały do wykładu 2008/09 71<br />

Demo no.9<br />

Optimiser: SeDuMi<br />

Preprocesor: YALMIP<br />

G ( s)<br />

1<br />

G ( s)<br />

2<br />

G ( s)<br />

3<br />

1 a<br />

2<br />

s ( s a)<br />

G0<br />

( I );<br />

1<br />

2 2<br />

2<br />

s ( s 2s<br />

)<br />

G0<br />

( I );<br />

1 s 1 b s<br />

e ;<br />

2<br />

2<br />

s s b s<br />

G0<br />

( I );<br />

filters W 1 and W 3<br />

1<br />

2<br />

2<br />

3<br />

KSO materiały do wykładu 2008/09 72<br />

( s)<br />

1<br />

( s)<br />

( s)<br />

3<br />

2<br />

s<br />

;<br />

s a<br />

2<br />

s 2s<br />

2<br />

s 2s<br />

2s<br />

;<br />

b s<br />

2<br />

;<br />

Design controller by the loop shap<strong>in</strong>g method tak<strong>in</strong>g <strong>in</strong>to<br />

account all possible neglected dynamics.<br />

24


Synthesis (13)<br />

Model predictive control (MPC)<br />

• For actual plant state x(k), f<strong>in</strong>d next M control u(k)<br />

steps (by optimisation), know<strong>in</strong>g next N (future)<br />

reference values. M


Demo no.10<br />

Optimiser: SeDuMi<br />

Preprocesor: YALMIP<br />

1. LQR control with control signal saturation<br />

(overshoot),<br />

2. MPC optimal control – no <strong>in</strong>put signal saturation,<br />

3. MPC control with <strong>in</strong>put signal saturation (LMI)<br />

KSO materiały do wykładu 2008/09 76<br />

Synthesis (16)<br />

Ga<strong>in</strong> Scheduled H-<strong>in</strong>f <strong>Control</strong>ler<br />

w<br />

p<br />

u<br />

?<br />

P(s)<br />

K(s)<br />

?<br />

y<br />

q<br />

z<br />

The plant description<br />

x<br />

A(<br />

) x B1<br />

( ) w B2<br />

( ) u<br />

z C1<br />

( ) x D11(<br />

) w D12(<br />

) u<br />

y C ( ) x D ( ) w<br />

A<br />

:<br />

R<br />

n<br />

2<br />

, D<br />

n<br />

1<br />

KSO materiały do wykładu 2008/09 77<br />

21<br />

p1<br />

m2<br />

12<br />

R ,<br />

<br />

T<br />

L<br />

D<br />

The unknown parametres form<br />

a hypercube<br />

( t)<br />

, t<br />

i<br />

i<br />

i<br />

0<br />

21<br />

R<br />

p2<br />

m1<br />

Synthesis (17)<br />

Ga<strong>in</strong> Scheduled H-<strong>in</strong>f <strong>Control</strong>ler<br />

w<br />

p<br />

u<br />

?<br />

P(s)<br />

K(s)<br />

?<br />

y<br />

q<br />

z<br />

F<strong>in</strong>d a dynamic controller<br />

x<br />

u<br />

K<br />

AK<br />

( ) x<br />

C ( ) x<br />

K<br />

K<br />

K<br />

BK<br />

( ) y<br />

D ( ) y<br />

which ensures <strong>in</strong>ternal stability<br />

and a guaranteed L 2<br />

-ga<strong>in</strong><br />

T<br />

0<br />

T<br />

z zd<br />

T<br />

2 T<br />

0<br />

K<br />

w wd ,<br />

T<br />

0<br />

KSO materiały do wykładu 2008/09 78<br />

26


Synthesis (18)<br />

Ga<strong>in</strong> Scheduled H-<strong>in</strong>f <strong>Control</strong>ler<br />

• Ga<strong>in</strong> scheduled H-<strong>in</strong>f controller can be<br />

calculated <strong>in</strong> three steps:<br />

1. After the application of elim<strong>in</strong>ation lemma one can<br />

obta<strong>in</strong> Lapunov matrices X and Y for all vertices of<br />

hypercube.<br />

2. For each vertex of hypercube calculate the vertex<br />

controller.<br />

3. For each value of parameter calculate the<br />

correspond<strong>in</strong>g controller and use it <strong>in</strong> the control.<br />

KSO materiały do wykładu 2008/09 79<br />

Synthesis (19)<br />

Elim<strong>in</strong>ation Lemma<br />

• Def<strong>in</strong>ition. An orthogonal complement of given<br />

matrix N is any maximal rank matrix, such that<br />

T<br />

N N 0 and N N 0.<br />

n k n m<br />

T n n<br />

• Lemma. Let M R , N R , H H R<br />

The follow<strong>in</strong>g statements are equivalent:<br />

m k<br />

1. There exists X R such that<br />

T T T<br />

NXM MX N H 0<br />

2. The follow<strong>in</strong>g two conditions hold<br />

N HN<br />

T<br />

M HM<br />

T<br />

0<br />

0<br />

KSO materiały do wykładu 2008/09 80<br />

Synthesis (20)<br />

Ga<strong>in</strong> Scheduled H-<strong>in</strong>f <strong>Control</strong>ler<br />

Step 1. Solve 2*2 L +1 LMIs for X and Y Lapunov matrices<br />

NX<br />

0<br />

0<br />

I<br />

T<br />

T<br />

XA A X<br />

T<br />

B1<br />

X<br />

C<br />

1<br />

XB1<br />

I<br />

D<br />

11<br />

T<br />

C1<br />

T<br />

D11<br />

I<br />

NX<br />

0<br />

0<br />

I<br />

0<br />

Where:<br />

N X<br />

null( C 2<br />

D21<br />

)<br />

)<br />

NY<br />

0<br />

0<br />

I<br />

T<br />

T<br />

YA AY<br />

C Y<br />

B<br />

1<br />

T<br />

1<br />

T<br />

YC1<br />

I<br />

D<br />

T<br />

11<br />

B1<br />

D11<br />

I<br />

NY<br />

0<br />

0<br />

I<br />

0<br />

N<br />

Y<br />

null<br />

T T<br />

( B2<br />

D12<br />

X<br />

I<br />

I<br />

Y<br />

0<br />

KSO materiały do wykładu 2008/09 81<br />

27


Synthesis (21)<br />

Ga<strong>in</strong> Scheduled H-<strong>in</strong>f <strong>Control</strong>ler<br />

Step 2. Calculate controller for each vertex of hypercube<br />

by solv<strong>in</strong>g LMI. Some constra<strong>in</strong>ts can be added.<br />

XCl<br />

0<br />

T<br />

T T<br />

XCl<br />

0<br />

P KQ Q K P<br />

0 I<br />

0 I<br />

0<br />

where:<br />

AK<br />

B I X Y I<br />

K<br />

K<br />

XCl<br />

T T<br />

C D 0 M N 0<br />

MN T I YX<br />

0<br />

K<br />

A0<br />

X<br />

Cl<br />

X<br />

Cl<br />

A0<br />

T<br />

B0<br />

X<br />

Cl<br />

C<br />

K<br />

XClB0<br />

I<br />

D<br />

NB: Not all symbols are def<strong>in</strong>ed (see next slide).<br />

11<br />

T<br />

C0<br />

T<br />

T<br />

D11<br />

; P B 0 D12<br />

; Q C D21<br />

I<br />

KSO materiały do wykładu 2008/09 82<br />

0<br />

Synthesis (22)<br />

Ga<strong>in</strong> Scheduled H-<strong>in</strong>f <strong>Control</strong>ler<br />

Step 2. (cont<strong>in</strong>ued)<br />

Extended plant parameters<br />

A 0 B1<br />

0<br />

A0<br />

; B0<br />

; B<br />

0 0 0 I<br />

D<br />

12<br />

0<br />

k<br />

D ; D<br />

12<br />

k<br />

21<br />

0<br />

D<br />

21<br />

Closed loop description<br />

A<br />

C<br />

Cl<br />

Cl<br />

B<br />

D<br />

Cl<br />

Cl<br />

A0<br />

C<br />

0<br />

B0<br />

D<br />

11<br />

;<br />

k<br />

B<br />

D<br />

12<br />

k<br />

B2<br />

; C0<br />

0<br />

A<br />

C<br />

K<br />

K<br />

BK<br />

D<br />

K<br />

C<br />

C<br />

1<br />

0 ; C<br />

D<br />

21<br />

0<br />

C<br />

2<br />

Ik<br />

k<br />

;<br />

0<br />

KSO materiały do wykładu 2008/09 83<br />

Synthesis (23)<br />

Ga<strong>in</strong> Scheduled H-<strong>in</strong>f <strong>Control</strong>ler<br />

Step 3. <strong>Control</strong>ler for given value of parameter.<br />

Case of one parameter:<br />

( t)<br />

, t<br />

There are two controllers<br />

0<br />

K and K<br />

For given value of parameter θ<br />

;<br />

0<br />

1<br />

K (1 )K<br />

K<br />

Extension for multiparameter case. Possible simplifications.<br />

KSO materiały do wykładu 2008/09 84<br />

28


Optimiser: SeDuMi<br />

Demo no.11<br />

Preprocesor: YALMIP<br />

For the plant with measurable, time-vary<strong>in</strong>g parameter a<br />

design the ga<strong>in</strong> schedul<strong>in</strong>g controller.<br />

1<br />

G( s)<br />

; a 1.0 <br />

s(<br />

s a)<br />

1.0<br />

KSO materiały do wykładu 2008/09 85<br />

Scope of the lecture<br />

• <strong>Control</strong> – classical vs. modern<br />

• Optimisation approach<br />

• Computer tools support<br />

• LMI primer<br />

• Basic LMI tools for control<br />

• Analysis<br />

• Synthesis<br />

• Conclusions<br />

KSO materiały do wykładu 2008/09 86<br />

Conclusions<br />

• New (~15 years old) control analysis and control synthesis<br />

tool,<br />

• Active field of research with many unsolved problems:<br />

– BMI as natural formulation of control problems,<br />

but not convex,<br />

– suboptimal, low order controllers, controllers with structure (nonsmooth,<br />

non-convex algorithms).<br />

– output controllers for uncerta<strong>in</strong> plants,<br />

– synthesis for systems with delays, saturations,<br />

KSO materiały do wykładu 2008/09 87<br />

29


Thank you for your attention!<br />

KSO materiały do wykładu 2008/09 88<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!