08.03.2014 Views

Timing Diagrams for Spin Echo - ismrm

Timing Diagrams for Spin Echo - ismrm

Timing Diagrams for Spin Echo - ismrm

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Outline<br />

5.1 Pulse Sequences & Image Contrast <strong>for</strong> MRI<br />

<strong>Timing</strong> <strong>Diagrams</strong> <strong>for</strong> <strong>Spin</strong> <strong>Echo</strong><br />

pulse sequences including: spin echo, fast spin echo,<br />

inversion recovery, gradient echo and echo planar imaging<br />

Carolyn Kaut Roth, RT (R)(MR)(CT)(M)(CV) FSMRT<br />

CEO Imaging Education Associates<br />

www.imaginged.com<br />

candi@imaginged.com<br />

• <strong>Timing</strong> diagrams<br />

• What is a pulse sequence?<br />

• What is a spin echo?<br />

• Review <strong>Spin</strong> <strong>Echo</strong> & Fast spin echo<br />

• Inversion Recovery & Fast IR<br />

• Gradient <strong>Echo</strong><br />

Slide # 2<br />

What contrast characteristics in MR?<br />

How are images acquired in MR?<br />

• What contrast is available on CT<br />

• What contrast is available on MRI<br />

–T1<br />

–T2<br />

–PD<br />

Axial CT<br />

T1 PD T2<br />

• Pulse Sequences<br />

–SE<br />

–FSE<br />

–IR<br />

–Fast IR<br />

–GE<br />

–EPI<br />

T2 CSE<br />

12 minute scan<br />

T2 TSE (FSE)<br />

3 minute scan<br />

T2* EPI<br />

30 second scan<br />

Slide # 3<br />

Slide # 4<br />

To create MR images<br />

<strong>Timing</strong> Diagram<br />

RF Pulse<br />

• The patient is placed in<br />

the magnetic field<br />

–to align the spins<br />

• The RF pulse is applied<br />

–to excite the spins<br />

–at the Larmor Frequency<br />

Slice<br />

selection gradient<br />

Phase<br />

Encoding gradient<br />

Frequency<br />

encoding gradient<br />

MR signal<br />

• A pulse sequence is… a sequence of pulses<br />

• A timing diagram is the order and timing of pulses<br />

Slide # 5<br />

Slide # 6<br />

1


ECG<br />

What is this?<br />

TR (Repetition Time)<br />

90 0<br />

90 0<br />

Slide # 7<br />

Slide # 8<br />

<strong>Timing</strong> Diagram<br />

Short TR & Long TR Imaging<br />

TR (Repetition Time)<br />

TR, is the time<br />

between 90 0<br />

RF pulses<br />

These<br />

lines<br />

represent<br />

gradient<br />

pulses<br />

MR signal<br />

induced in the<br />

receiver coil<br />

RF Pulse<br />

Slice<br />

selection gradient<br />

Phase<br />

Encoding gradient<br />

Frequency<br />

encoding gradient<br />

MR signal<br />

90 0 180 0<br />

Short TR<br />

90 0 180 0 Long TR<br />

Slide # 9<br />

Slide # 10<br />

<strong>Timing</strong> <strong>Diagrams</strong> - Gradients<br />

Slice Selection<br />

Gradients<br />

SS (Z)<br />

PE (Y)<br />

FE (X)<br />

RF Pulse<br />

Slice<br />

selection gradient<br />

Phase<br />

Encoding gradient<br />

Frequency<br />

encoding gradient<br />

MR signal<br />

• If the magnetic field is<br />

homogeneous, the<br />

frequency is the same<br />

… head to feet<br />

• If the RF is applied…<br />

in this case the entire<br />

body would be excited<br />

Homogeneous magnetic field<br />

The frequency is the same<br />

from the head to the feet<br />

Slide # 11<br />

Slide # 12<br />

2


Selective Excitation<br />

Phase & Frequency Encoding<br />

•To excite a location<br />

within the imager, within<br />

the body..<br />

• A magnetic field<br />

gradient is applied<br />

• The RF pulse is applied<br />

that matches a location<br />

Homogeneous magnetic field<br />

gradient<br />

• Once the slice is selected…<br />

• Encoding along the other<br />

axes,<br />

–With gradients<br />

•R to L<br />

•A to P<br />

–For encoding<br />

•Phase encoding<br />

•Frequency encoding<br />

Gradient<br />

R to L<br />

Gradient<br />

A to P<br />

Gradient<br />

S to I<br />

Axial slice selection<br />

Homogeneous magnetic field<br />

Slide # 13With a linear gradient field applied<br />

Axial slice<br />

Slide # 14<br />

<strong>Timing</strong> Diagram- Signal<br />

MR Excitation Relaxation<br />

RF Pulse<br />

Slice<br />

selection gradient<br />

Bo<br />

Z<br />

Mz<br />

90 0 RF Pulse<br />

Z<br />

Z<br />

Phase<br />

Encoding gradient<br />

Mxy<br />

MR signal<br />

Frequency<br />

encoding gradient<br />

MR signal<br />

Y<br />

Alignment<br />

X<br />

Y<br />

Excitation<br />

X<br />

RF<br />

Receiver<br />

coil<br />

MR Signal<br />

FID<br />

Relaxation<br />

Slide # 15<br />

Slide # 16<br />

<strong>Timing</strong> Diagram - TE<br />

T2* Decay<br />

TR (Repetition Time)<br />

RF pulse<br />

T2* decay<br />

Mxy<br />

coil<br />

Axial T2* Brain Image<br />

TE (<strong>Echo</strong> Time)<br />

In phase Partially dephased Completely dephased<br />

Image with artifact<br />

Cleaned up the “SIC”<br />

Mx,y = transverse magentization<br />

Slide # 17<br />

Slide # 18<br />

3


Runners on the Race<br />

<strong>Spin</strong> <strong>Echo</strong> - Runners on the Race<br />

90 0 180 0<br />

FID<br />

FID<br />

Susceptibility artifacts<br />

<strong>Echo</strong><br />

spin echo, less artifacts<br />

Start<br />

I’m the<br />

fast<br />

guy<br />

90 0 180 0 Phase #3 cross<br />

Start<br />

Thought<br />

I was<br />

winning<br />

I’m on<br />

your<br />

heels<br />

Gotcha!<br />

Inhomogenieties<br />

Phase #1 start together<br />

and get apart<br />

Runners turn 180’<br />

Slide # 19<br />

Phase #2 after the 180<br />

Turn around apart<br />

Phase #4 starting line, together<br />

get apart again<br />

Slide # 20<br />

T2* and T2 Decay<br />

Is Susceptibility artifact always a bad thing?<br />

T2*<br />

T2 decay<br />

T2*<br />

T2 decay<br />

FID<br />

echo<br />

FID<br />

echo<br />

Axial T2* Brain<br />

Axial T2 Brain<br />

Axial T2* Brain<br />

Axial T2 Brain<br />

Slide # 21<br />

Slide # 22<br />

Gradient <strong>Echo</strong> - Runners on the Race<br />

Long TE – <strong>Spin</strong> <strong>Echo</strong> Imaging<br />

Start<br />

45 0 FID<br />

I’m the<br />

fast<br />

guy<br />

Start<br />

90 0 180 0<br />

½TE<br />

½TE<br />

T2WI axial<br />

I’m on<br />

your<br />

heels<br />

Inhomogenieties<br />

Phase #1 start together<br />

and get apart<br />

Phase #2 runners<br />

change places<br />

Phase #3 cross finish<br />

line, together<br />

Phase #4<br />

get apart again<br />

FID<br />

echo<br />

Long TE<br />

Slide # 23<br />

Slide # 24<br />

4


Short TE – <strong>Spin</strong> <strong>Echo</strong> Imaging<br />

A Few Fun Facts about T1 & T2<br />

90 0 180 0<br />

½TE<br />

½TE<br />

We cannot<br />

change….<br />

T1 recovery<br />

T2 decay<br />

unless we<br />

change<br />

Field strength<br />

Temperature<br />

or Add contrast<br />

agents!<br />

FID<br />

echo<br />

Short TE<br />

Slide # 25<br />

Slide # 26<br />

A Few Fun Facts about TR & TE<br />

A Few Fun Facts about T1 recovery<br />

Long TR<br />

Long TE<br />

T1 recovery<br />

T1 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

2000 ms <strong>for</strong><br />

water<br />

150 ms <strong>for</strong> fat<br />

Short TR<br />

We can change<br />

TR & TE<br />

And…<br />

TR goes with T1<br />

TE goes with T2<br />

Short TE<br />

TR<br />

Slide # 27<br />

Slide # 28<br />

A Few Fun Facts about T2 Decay<br />

A Few Fun Facts about Image Contrast<br />

T2 decay<br />

We cannot<br />

change….<br />

T1 recovery<br />

T2 decay<br />

unless we<br />

change<br />

Field strength<br />

Temperature<br />

or Add contrast<br />

agents!<br />

T1 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

2000 ms <strong>for</strong><br />

water<br />

150 ms <strong>for</strong> fat<br />

TE<br />

T2 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

200 ms <strong>for</strong><br />

water<br />

50 ms <strong>for</strong> fat<br />

We can change<br />

TR & TE<br />

And…<br />

TR goes with T1<br />

TE goes with T2<br />

T2 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

200 ms <strong>for</strong><br />

water<br />

50 ms <strong>for</strong> fat<br />

Slide # 29<br />

Slide # 30<br />

5


Let’s make a T1 image<br />

Let’s make a T2 image<br />

T1WI<br />

Short TR (500 ms)<br />

Short TE (20 ms)<br />

Bright fat<br />

T1 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

2000 ms <strong>for</strong><br />

water<br />

150 ms <strong>for</strong> fat<br />

T2WI<br />

Long TR (4000 ms)<br />

Long TE (100 ms)<br />

Bright water<br />

T1 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

2000 ms <strong>for</strong><br />

water<br />

150 ms <strong>for</strong> fat<br />

We can change<br />

TR & TE<br />

And…<br />

TR goes with T1<br />

TE goes with T2<br />

Short TR<br />

Short TE<br />

T2 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

200 ms <strong>for</strong><br />

water<br />

50 ms <strong>for</strong> fat<br />

We can change<br />

TR & TE<br />

And…<br />

TR goes with T1<br />

TE goes with T2<br />

Long TR<br />

Long TE<br />

T2 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

200 ms <strong>for</strong><br />

water<br />

50 ms <strong>for</strong> fat<br />

Slide # 31<br />

Slide # 32<br />

Let’s make a PD image<br />

Image Contrast Parameters<br />

PDWI<br />

T1 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

Long TR (4000 ms)<br />

Short TE (20 ms)<br />

Bright fat & water<br />

2000 ms <strong>for</strong><br />

water<br />

150 ms <strong>for</strong> fat<br />

We can change<br />

TR & TE<br />

And…<br />

TR goes with T1<br />

TE goes with T2<br />

Long TR<br />

T2 times at<br />

1.5T<br />

Are in the<br />

neighborhood<br />

of …<br />

200 ms <strong>for</strong><br />

water<br />

50 ms <strong>for</strong> fat<br />

T1WI<br />

Short TR<br />

Short TE<br />

Bright fat, short T1 time<br />

PDWI<br />

Long TR<br />

Short TE<br />

Bright fat & water<br />

T2WI<br />

Long TR<br />

Long TE<br />

Bright water, long T2 time<br />

Short TE<br />

Slide # 33<br />

Slide # 34<br />

<strong>Timing</strong> Diagram – RF and Gradient Pulses<br />

TR (Repetition Time)<br />

What is a Pulse Sequence?<br />

TR, is the time<br />

between 90 0<br />

RF pulses<br />

RF Pulse<br />

Slice<br />

selection gradient<br />

These<br />

lines<br />

represent<br />

gradient<br />

pulses<br />

Phase<br />

Encoding gradient<br />

Frequency<br />

encoding gradient<br />

<strong>Spin</strong> echo family<br />

Longer<br />

Scan<br />

times<br />

Better<br />

quality<br />

T1Weighted Image<br />

SE<br />

(TSE) FSE<br />

IR<br />

Fast IR<br />

PD Weighted Image<br />

SE<br />

(TSE) FSE<br />

FLAIR<br />

Fast FLAIR<br />

Looks like PD<br />

T2 Weighted Image<br />

SE<br />

FSE<br />

STIR<br />

Fast STIR<br />

Looks like T2<br />

MR signal<br />

induced in the<br />

receiver coil<br />

MR signal<br />

TE (<strong>Echo</strong> Time)<br />

Gradient echo family<br />

Faster<br />

Scan<br />

times<br />

lower<br />

quality<br />

(T1 FFE) GrE spoiled<br />

TOF MRA<br />

Enhanced MRA<br />

(PD FFE) GrE<br />

EPI Flair<br />

T2* Weighted Image<br />

(T2* FFE) GrE<br />

PC MRA<br />

EPI<br />

Perfusion<br />

Diffusion<br />

Slide # 35<br />

Slide # 36<br />

6


<strong>Timing</strong> Diagram – <strong>Spin</strong> <strong>Echo</strong><br />

Short TR & Long TR Imaging<br />

TR (Repetition Time)<br />

TR, is the time<br />

between 90 0<br />

RF pulses<br />

These<br />

lines<br />

represent<br />

gradient<br />

pulses<br />

TE is the time<br />

to the echo<br />

RF Pulse<br />

Slice<br />

selection gradient<br />

Phase<br />

Encoding gradient<br />

Frequency<br />

encoding gradient<br />

MR signal<br />

90 0 180 0<br />

Short TR<br />

90 0 180 0 Long TR<br />

TE (<strong>Echo</strong> Time)<br />

Slide # 37<br />

Slide # 38<br />

Long TE – <strong>Spin</strong> <strong>Echo</strong> Imaging<br />

Short TE – <strong>Spin</strong> <strong>Echo</strong> Imaging<br />

90 0 180 0<br />

90 0 180 0<br />

½TE<br />

½TE<br />

½TE<br />

½TE<br />

T2WI axial<br />

FID<br />

echo<br />

FID<br />

echo<br />

Long TE<br />

Short TE<br />

Slide # 39<br />

Slide # 40<br />

Dual <strong>Echo</strong> Imaging (2 <strong>for</strong> 1)<br />

Image Contrast Parameters<br />

90 0 180 0 180 0<br />

Proton density-TE1<br />

T2WI-TE2<br />

FID<br />

T2 decay<br />

echo echo<br />

TE 1<br />

TE 2<br />

T1WI<br />

@ 1.5T<br />

Short TR (500 ms)<br />

Short TE (20 ms or less)<br />

Bright fat<br />

Scan time about 2 minutes<br />

With 2 signal averages<br />

PDWI<br />

@ 1.5T<br />

Long TR (4000 ms = 4 seconds)<br />

Short TE (20 ms or less)<br />

Bright fat & water<br />

Scan time about 17 minutes<br />

With 2 signal averages<br />

T2WI<br />

@ 1.5T<br />

Long TR (4000 ms = 4 seconds)<br />

Long TE (100 ms)<br />

Bright water<br />

Scan time about 17 minutes<br />

With 2 signal averages<br />

Slide # 41<br />

Scan time <strong>for</strong> SE = TR * #PE’s * NSA<br />

Slide # 42<br />

7


Outline<br />

<strong>Spin</strong> <strong>Echo</strong> <strong>Timing</strong> Diagram & K-space<br />

TR<br />

• <strong>Timing</strong> diagrams<br />

• What is a pulse sequence?<br />

• What is a spin echo?<br />

• Review <strong>Spin</strong> <strong>Echo</strong> & Fast spin echo<br />

• Inversion Recovery & Fast IR<br />

• Gradient <strong>Echo</strong><br />

RF Pulse<br />

Slice selection<br />

gradient<br />

Phase<br />

encoding<br />

gradient<br />

Frequency<br />

encoding gradient<br />

MR signal<br />

TE<br />

p<br />

h<br />

a<br />

s<br />

e<br />

frequency<br />

K-space = raw data<br />

Scan time = TR x PE’s x NSA<br />

Slide # 43<br />

Slide # 44<br />

Dual <strong>Echo</strong> Imaging & K-space<br />

Fast <strong>Spin</strong> <strong>Echo</strong> Imaging & K-space (1 in ½ the time)<br />

90 0 180 0 180 0 K-space-TE1 K-space-TE2<br />

90 0 180 0 180 0 K-space (TSE)<br />

T2 decay<br />

FID echo echo<br />

FSE<br />

TE 2 image<br />

Twice as fast<br />

TE 1<br />

TE 2<br />

Proton density-TE1 T2WI-TE2<br />

Slide # 45<br />

Turbo spin echo (TSE)<br />

Fast <strong>Spin</strong> <strong>Echo</strong> (FSE) Rapid Acquisition<br />

Recalled <strong>Echo</strong> (RARE)<br />

Slide # 46<br />

Effective TE<br />

Target TE<br />

T2WI<br />

Fast <strong>Spin</strong> <strong>Echo</strong> Imaging <strong>for</strong> PDWI<br />

Fast <strong>Spin</strong> <strong>Echo</strong> Imaging <strong>for</strong> T2WI<br />

echo 3<br />

echo 1<br />

Phase<br />

Encoding<br />

Gradient<br />

echo 1<br />

Phase<br />

Encoding<br />

Gradient<br />

echo 3<br />

echo 4<br />

echo 2<br />

Frequency<br />

Encoding<br />

Gradient<br />

echo 1 echo 2 echo3 echo4<br />

echo 4<br />

20 ms 40ms 60 ms 80ms<br />

Frequency<br />

Encoding<br />

Gradient<br />

echo 2<br />

echo 1 echo 2 echo3 echo4<br />

20 ms 40ms 60 ms 80ms<br />

TR * #PE’s * NSA<br />

Scan time (FSE) =<br />

ETL<br />

TR * #PE’s * NSA<br />

Scan time (FSE) =<br />

ETL<br />

Slide # 47<br />

Slide # 48<br />

8


Single Shot Fast <strong>Spin</strong> <strong>Echo</strong> Imaging <strong>for</strong> T2WI (SSFSE)<br />

Image Contrast Parameters - fast spin echo<br />

Abnormalities seen on<br />

Ultrasound<br />

FDA OK <strong>for</strong> pregnancy<br />

if… benefit outweighs<br />

the risk<br />

If mommy fits<br />

Slide # 49<br />

Fetal MRI<br />

T1WI<br />

@ 1.5T<br />

Short TR (500 ms)<br />

Short TE (20 ms or less)<br />

Bright fat<br />

Scan time about 1 minute<br />

With 2 signal averages<br />

ETL of 2<br />

PDWI<br />

@ 1.5T<br />

Long TR (4000 ms = 4 seconds)<br />

Short TE (20 ms or less)<br />

Bright fat & water<br />

Scan time about 8.5 minutes<br />

With 2 signal averages<br />

ETL of 2<br />

Scan time <strong>for</strong> SE = TR * #PE’s * NSA<br />

Slide # 50<br />

T2WI<br />

@ 1.5T<br />

Long TR (4000 ms = 4 seconds)<br />

Long TE (100 ms)<br />

Bright water<br />

Scan time about 8.5 minutes<br />

With 2 signal averages<br />

ETL of 2<br />

ETL<br />

Outline<br />

• <strong>Timing</strong> diagrams<br />

• What is a pulse sequence?<br />

• What is a spin echo?<br />

• Review <strong>Spin</strong> <strong>Echo</strong> & Fast spin echo<br />

• Inversion Recovery & Fast IR<br />

• Gradient <strong>Echo</strong><br />

<strong>Spin</strong> <strong>Echo</strong> vs Inversion Recovery<br />

90 0 180 0 TR<br />

TI<br />

FID<br />

echo<br />

TR<br />

1800 180 0<br />

90 0<br />

FID<br />

echo<br />

Slide # 51<br />

Slide # 52<br />

Why an initializing 180 0 pulse<br />

T1 recovery from a 90 0 pulse<br />

90 0 180 0 TR<br />

Inversion Recovery – STIR (Short Tau Inversion Recovery)<br />

TI<br />

1800 180 0<br />

TR<br />

90 0<br />

TR<br />

T1 recovery from a 180 0 pulse<br />

Compared to the 90 0 pulse<br />

TI<br />

FID<br />

TR<br />

1800 180 0<br />

90 0<br />

echo<br />

FID<br />

TE<br />

echo<br />

TI<br />

FID<br />

echo<br />

T1 <strong>Spin</strong> <strong>Echo</strong><br />

lesion<br />

STIR<br />

Slide # 53<br />

Slide # 54<br />

9


Why an initializing 180 0 pulse<br />

STIR is NOT fatsat<br />

T1 recovery from a 90 0 pulse<br />

90 0 180 0 TR<br />

FID<br />

echo<br />

T1 recovery from a 180 0 pulse<br />

Compared to the 90 0 pulse<br />

TI<br />

180 0 180 0 TR<br />

90 0<br />

Bone contusion<br />

Short TI (fat crosses null point, suppressed)<br />

FID<br />

echo<br />

STIR will suppress gadolinium enhancing lesions<br />

Slide # 55<br />

Slide # 56<br />

FATSAT FSE vs STIR<br />

Inversion Recovery – FLAIR (Fluid Attenuated Inversion Recovery)<br />

TI<br />

180 0 TR<br />

90 0 180 0<br />

FID<br />

echo<br />

TE<br />

FSE<br />

STIR<br />

Slide # 57<br />

PD FLAIR Slide # 58 T1<br />

Why an initializing 180 0 pulse<br />

Fast Inversion Recovery – scan time<br />

T1 recovery from a 90 0 pulse<br />

90 0 180 0 TR<br />

echo 1<br />

echo 4<br />

Lymes disease<br />

T1SE<br />

T1 recovery from a 180 0 pulse<br />

Compared to the 90 0 pulse<br />

FLAIR<br />

Long TI (water crosses null point, suppressed)<br />

TI<br />

FID<br />

FID<br />

echo<br />

180 0 1800 180 0 1<br />

90 0<br />

90 0<br />

TR<br />

echo<br />

echo 3<br />

echo 2<br />

TR * #PE’s * NSA<br />

Scan time (FSE-IR) =<br />

ETL<br />

FLAIR<br />

T1SE<br />

Slide # 59<br />

Slide # 60<br />

10


Outline<br />

<strong>Spin</strong> <strong>Echo</strong> vs Gradient <strong>Echo</strong><br />

RF<br />

• <strong>Timing</strong> diagrams<br />

• What is a pulse sequence?<br />

• What is a spin echo?<br />

• Review <strong>Spin</strong> <strong>Echo</strong> & Fast spin echo<br />

• Inversion Recovery & Fast IR<br />

• Gradient <strong>Echo</strong><br />

Gz<br />

Gy<br />

Gx<br />

Signal<br />

90 0 180 0 Gz<br />

RF<br />

Flip angle<br />

Readout<br />

Gy<br />

Gx<br />

Signal<br />

Positive lobe<br />

Negative lobe<br />

Bipolar Gradient<br />

Slide # 61<br />

Slide # 62<br />

Gradient <strong>Echo</strong> – runners on the race<br />

Susceptibility Artifacts on Gradient <strong>Echo</strong><br />

Gx<br />

Readout<br />

Gradient<br />

Start<br />

45 0 FID<br />

I’m the<br />

fast<br />

guy<br />

Positive lobe<br />

Negative lobe<br />

Gradient echo<br />

Start<br />

I’m on<br />

your<br />

heels<br />

Inhomogenieties<br />

Phase #1 start together<br />

and get apart<br />

Phase #2 runners<br />

change places<br />

Phase #3 cross finish<br />

line, together<br />

Phase #4<br />

get apart again<br />

Axial T2* Brain<br />

Axial T2 Brain<br />

Slide # 63<br />

Slide # 64<br />

Flip Angle and Image Contrast<br />

Flip Angle and Signal Quality (SNR)<br />

Flip angle goes with TR<br />

TR goes with T1<br />

Big flip, more T1<br />

Little flip, less T1<br />

10 0 Flip<br />

30 0 Flip<br />

As Flip increases<br />

SNR increases<br />

To a point<br />

Ernst Angle<br />

angle <strong>for</strong> optimum SNR<br />

10 0 flip 20 0 flip 30 0 flip<br />

40 0 flip 50 0 flip 60 0 flip<br />

60 0 Flip 90 0 Flip<br />

70 0 flip 80 0 flip 90 0 flip<br />

Slide # 65<br />

Slide # 66<br />

11


Flip angle<br />

Steady State<br />

Bo<br />

Z<br />

RF<br />

Z<br />

Bo Z<br />

Mz<br />

RF<br />

Another<br />

RF<br />

Mz<br />

Y<br />

X<br />

Thermal<br />

Equilibrium<br />

Excitation<br />

45 0 flip angle<br />

A little<br />

relaxation<br />

occurs<br />

Another<br />

Excitation<br />

45 0 flip angle<br />

X<br />

X<br />

Steady State is the condition whereby<br />

Everything that relaxes is flipped again<br />

Y<br />

Y<br />

Transverse magnetization<br />

SS images demonstrate T2* effects<br />

Bright fluid<br />

Slide # 67<br />

Slide # 68<br />

Steady State Imaging<br />

Steady State VS Spoiled Gradient <strong>Echo</strong>es<br />

FIESTA – IAC’s<br />

Fast Imaging Employing a steady STAte<br />

Steady State images Shaded Surface Display 3D re<strong>for</strong>mats<br />

Steady State<br />

T2* FFE<br />

Coherent Gradient <strong>Echo</strong><br />

“Spoiled” (spoil away transverse)<br />

T1 FFE<br />

Incoherent Gradient <strong>Echo</strong><br />

Slide # 69<br />

Courtesy of Munich - Pasing<br />

Slide # 70<br />

3D Steady State vs 3D Spoiled Gradient <strong>Echo</strong>es<br />

Dynamic Enhanced (T1) Spoiled Gradient <strong>Echo</strong>es<br />

Pre gad<br />

3D Steady State<br />

T2* GrE images<br />

Spoiled Gradient <strong>Echo</strong>es<br />

T1 GrE images<br />

1st pass<br />

2nd pass<br />

3rd pass<br />

Slide # 71<br />

Slide # 72<br />

12


Chemical Shift Artifact on Gradient <strong>Echo</strong>es<br />

<strong>Spin</strong> <strong>Echo</strong> vs Gradient <strong>Echo</strong> (Flowing Blood)<br />

BO<br />

Gradient<br />

Induced<br />

in phase<br />

out of phase<br />

Gated <strong>Spin</strong> <strong>Echo</strong><br />

Gated Gradient <strong>Echo</strong><br />

Slide # 73<br />

Slide # 74<br />

Cardiac Perfusion<br />

Time of Flight (TOF) MR Angiography (MRA) – T1 Gradient <strong>Echo</strong><br />

3D Volume<br />

Source Images<br />

Source Images<br />

Re<strong>for</strong>matted<br />

MIP Image<br />

Collapsed Image<br />

Emory University, Atlanta, GA<br />

3D TOF<br />

Re<strong>for</strong>matted MIP Image<br />

2D TOF<br />

Slide # 75<br />

Subendocardial Defect<br />

Slide # 76<br />

Phase Contrast (PC) MR Angiography (MRA) – T2 Gradient <strong>Echo</strong><br />

Phase Contrast (PC) MR Angiography (MRA) – CSF Flow<br />

Diastole- dark flow<br />

Systole – white flow<br />

3D PC<br />

Axial Acquisition<br />

Sag 2D PC<br />

No flow 4 th vent - hydrocephalus<br />

Slow flow HA’s<br />

Slide # 77<br />

Slide # 78<br />

13


EPI Speed Compared to FSE<br />

Single-Shot vs. Multi Shot EPI<br />

FSE<br />

EPI<br />

90<br />

90<br />

180 echo<br />

180 echo<br />

180 echo<br />

180 echo<br />

180<br />

ESP = 5 - 20 ms<br />

echo<br />

Time < 500 Ms<br />

echo<br />

ESP = 0.5- 4 ms<br />

echo<br />

Time < 100 Ms<br />

echo<br />

echo<br />

echo<br />

echo<br />

•Single-Shot EPI fills all lines of<br />

k-space in a single TR period<br />

•Fastest Scan Times<br />

•Most useful <strong>for</strong> functional<br />

imaging techniques<br />

•Multi-Shot requires multiple<br />

passes through k-space to fill all<br />

phase lines<br />

•Reduced artifacts<br />

•Allows <strong>for</strong> higher spatial<br />

resolution<br />

•Longer scan times<br />

Multi-Shot:<br />

Whole brain<br />

acquired in<br />

90 Seconds<br />

512 x 256 matrix<br />

Single Shot:<br />

Whole brain<br />

acquired in<br />

4 seconds<br />

128 x 128 matrix<br />

Slide # 79<br />

6<br />

6<br />

Slide # 80<br />

Diffusion-Weighted Imaging<br />

b-value = 0<br />

Diffusion Gradients Sensitize the Image<br />

Contrast to the Molecular Motion of<br />

Extracelluar Water<br />

The greater the amount of motion, the darker the resultant MR signal<br />

Tissue Sample A<br />

Normal Diffusion<br />

Edema results in restricted diffusion<br />

Tissue Sample B<br />

Restricted Diffusion<br />

9<br />

0<br />

180<br />

T2-weighted Image<br />

(b-value = 0)<br />

Slide # 81<br />

Slide # 82<br />

b-value = 1000<br />

Diffusion Weighting and b-value<br />

b-value determines the strength of the diffusion gradients<br />

Increasing the b-value increased diffusion weighting<br />

9<br />

0<br />

180<br />

Diffusion-weighted Image<br />

(b-value = 1000)<br />

b-value = 0 b-value = 500 b-value = 1000<br />

Slide # 83<br />

Slide # 84<br />

14


Isotropic Diffusion<br />

Apparent Diffusion Coefficient (ADC)<br />

ADC expresses the amount of diffusion<br />

Individual Diffusion<br />

Measurements<br />

Mathematical<br />

Combination<br />

Isotropic<br />

Diffusion-Weighted<br />

Image<br />

Radiology 2001<br />

Creating an ADC image (or map) results<br />

in images where the pixel intensity<br />

represents abnormal ADC and<br />

eliminates high signal from<br />

"T2 shine-through"<br />

Mathematical<br />

Calculation<br />

b-value = 0<br />

T2-weighted<br />

b-value = 1000<br />

Diffusion-weighted + T2<br />

ADC map<br />

Reduced ADC = Reduced Signal<br />

Slide # 85<br />

Slide # 86<br />

Perfusion Acquisition<br />

Perfusion Contrast<br />

Time<br />

Series<br />

Gradient <strong>Echo</strong> EPI Acquisition<br />

repea<br />

repea<br />

repea<br />

. . . . . . t<br />

. . .<br />

t<br />

t<br />

Gd washes out of<br />

blood stream<br />

Brain Cell<br />

Small Magnetic<br />

Field Gradient<br />

Gd<br />

Gd<br />

Gd<br />

Gd<br />

Concentrated<br />

Gadolinium<br />

Results in a<br />

Larger Magnetic<br />

Field Gradient<br />

T2* shortening<br />

results in loss of<br />

MR signal<br />

Up to > 400<br />

images<br />

Gd changes<br />

T2* of blood<br />

Gradient <strong>Echo</strong> EPI<br />

TE = 60<br />

Gradient <strong>Echo</strong> EPI<br />

TE = 60<br />

Acquired at Peak Bolus<br />

Slide # 87<br />

Slide # 88<br />

Perfusion of Stroke<br />

BOLD (fMRI)<br />

Blood Oxygen Level Dependent<br />

•When neurons fire, blood flow is increased to that area<br />

of the brain<br />

•Oxygen level increases<br />

•Local magnetic field changes occur due to the<br />

paramagnetic characteristics of oxygenated blood<br />

•Slight change in MR signal<br />

•1% - 2% at 1.5 T<br />

•4% - 6% at 3.0 T<br />

•Area of signal change indicates area of activity<br />

•Images processed on workstation and data is<br />

superimposed over higher resolution anatomic image<br />

Bilateral Finger Tapping<br />

Normal<br />

Abnormal<br />

Image courtesy Stan<strong>for</strong>d University<br />

Slide # 89<br />

Slide # 90<br />

15


Outline<br />

5.1 Pulse Sequences & Image Contrast <strong>for</strong> MRI<br />

• <strong>Timing</strong> diagrams<br />

• What is a pulse sequence?<br />

• What is a spin echo?<br />

• Review <strong>Spin</strong> <strong>Echo</strong> & Fast spin echo<br />

• Inversion Recovery & Fast IR<br />

• Gradient <strong>Echo</strong><br />

<strong>Timing</strong> <strong>Diagrams</strong> <strong>for</strong> <strong>Spin</strong> <strong>Echo</strong><br />

pulse sequences including: spin echo, fast spin echo,<br />

inversion recovery, gradient echo and echo planar imaging<br />

Thank you <strong>for</strong> your attention!<br />

Click to take your post test and get your credits<br />

Carolyn Kaut Roth, RT (R)(MR)(CT)(M)(CV) FSMRT<br />

CEO Imaging Education Associates<br />

www.imaginged.com<br />

candi@imaginged.com<br />

Slide # 91<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!