08.03.2014 Views

Compact SiPM based Detector Module for Time-of-Flight PET/MR

Compact SiPM based Detector Module for Time-of-Flight PET/MR

Compact SiPM based Detector Module for Time-of-Flight PET/MR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Compact</strong> <strong>SiPM</strong> <strong>based</strong> <strong>Detector</strong> <strong>Module</strong> <strong>for</strong><br />

<strong>Time</strong>-<strong>of</strong>-<strong>Flight</strong> <strong>PET</strong>/<strong>MR</strong><br />

M. Ritzert 1 , V. Mlotok 1 , I. Perić 1 , P. Fischer 1 ,<br />

C. Piemonte 2 , N. Zorzi 2 , T. Solf 3 , V. Schulz 3 , A. Thon 3<br />

1 Institute <strong>for</strong> Computer Engineering<br />

Heidelberg University, Mannheim, Germany<br />

2 Fondazione Bruno Kessler<br />

Trento, Italy<br />

3 Philips Research Europe<br />

Aachen, Germany<br />

Realtime Conference, Beijing, 2009<br />

RTC, 2009 1


Project Overview<br />

I Project funded by the European Union in FP7.<br />

I Develop a compact <strong>PET</strong> detector module <strong>for</strong> use in a<br />

simultaneous ToF <strong>PET</strong>/<strong>MR</strong> detector, scalable to a<br />

whole-body scanner.<br />

I Develop novel reconstruction algorithms to make<br />

good use <strong>of</strong> the available in<strong>for</strong>mation (<strong>MR</strong> <strong>based</strong><br />

attenuation and motion correction).<br />

RTC, 2009 2


Requirements <strong>for</strong> the <strong>PET</strong> <strong>Detector</strong><br />

I <strong>MR</strong> compatible design, i.e. no magnetic components,<br />

especially no PMTs, inside the magnet, no wire loops.<br />

I Fit inside the little available space inside the <strong>MR</strong><br />

scanner.<br />

1. Develop a compact detector module.<br />

2. Require few wire and other connections through the<br />

<strong>MR</strong> scanner.<br />

I No relevant per<strong>for</strong>mance degredation by <strong>MR</strong><br />

gradients and HF signals from <strong>MR</strong> operation.<br />

I Sub-nanosecond timing <strong>for</strong> ToF <strong>PET</strong>.<br />

I Several thousand channels even in a “small” animal<br />

scanner.<br />

I Rugged design to withstand the vibrations inside an<br />

<strong>MR</strong> scanner.<br />

RTC, 2009 3


State <strong>of</strong> the Art in Simultaneous <strong>PET</strong>/<strong>MR</strong><br />

I Use a light guide to guide the scintillation light to PMT<br />

detectors outside the magnet.<br />

Drawback: Lots <strong>of</strong> optical fibres, bad light yield.<br />

I APD detectors with first<br />

amplification stage inside<br />

the field, all other<br />

processing outside the B<br />

field.<br />

Drawback: Lots <strong>of</strong><br />

connections required,<br />

potential <strong>of</strong> large noise<br />

pickup on long wires.<br />

→ Not scalable.<br />

M. Judenh<strong>of</strong>er et al., “Simultaneous <strong>PET</strong>-<strong>MR</strong>I:<br />

a new approach <strong>for</strong> functional and morphological<br />

imaging,” Nature Medicine 14, 459 - 465<br />

(2008)<br />

RTC, 2009 4


Our Approach<br />

Put everything inside the tube:<br />

I Light detection<br />

I Amplification<br />

I Digitization<br />

I <strong>Time</strong>stamping<br />

I Serialization<br />

→ Only few data connections <strong>for</strong> a large number <strong>of</strong><br />

channels.<br />

RTC, 2009 5


Methods<br />

I Highly integrated<br />

electronics.<br />

I Very compact module<br />

design.<br />

I Large area <strong>SiPM</strong><br />

detectors.<br />

I Aggressive mechanics<br />

and cooling.<br />

I Differential architecture<br />

<strong>for</strong> EMI robustness. Actual size: 33×33 mm².<br />

I Modular concept with<br />

defined interfaces on the<br />

connectors.<br />

RTC, 2009 6


Block Diagram<br />

Power<br />

3 rd PCB 2 nd PCB 1 st PCB<br />

LDO<br />

to DAQ<br />

FPGA<br />

Readout<br />

Readout<br />

ASIC<br />

ASIC<br />

Impedance<br />

Matching<br />

DACs<br />

digital<br />

analog<br />

to HV<br />

suply<br />

RTC, 2009 7


Top PCB: <strong>Detector</strong>s<br />

I 64 channels.<br />

I 4×4 mm² <strong>SiPM</strong>s.<br />

I 4×4 monolithic arrays <strong>of</strong> 2×2 silicon<br />

photomultipliers.<br />

→ Entire surface covered by <strong>SiPM</strong>s<br />

→ High packing fraction.<br />

I Passive components required to<br />

interface to the ASICs located on<br />

the bottom side <strong>of</strong> the PCB.<br />

RTC, 2009 8


Middle PCB: Hit Digitizing<br />

I Two readout ASICs, each handling<br />

32 <strong>SiPM</strong> channels.<br />

I Self-triggering by leading-edge<br />

discriminator.<br />

I 100 ps FWHM coincidence timing<br />

resolution.<br />

I 20 bit timestamps.<br />

I 9 bit ADC <strong>for</strong> energy readout.<br />

I Digitization <strong>of</strong> absolute arrival time<br />

and signal energy.<br />

I All-digitial, differential output to the<br />

FPGA.<br />

RTC, 2009 9


Bottom PCB: Control, Processing<br />

I Xilinx Spartan FPGA <strong>for</strong><br />

I Control <strong>of</strong> the ASICs.<br />

I Hit data preprocessing.<br />

I Interfacing between the ASICs and<br />

the system.<br />

I DACs to generate bias voltages <strong>for</strong><br />

the ASICs and <strong>SiPM</strong> devices.<br />

I Interface to DAQ: Several LVDS<br />

connections.<br />

I Local analog power regulation.<br />

RTC, 2009 10


Test Setup<br />

I Testboard<br />

containing a single<br />

PCB stack and<br />

interface to USB.<br />

I Light-tight box <strong>for</strong><br />

measurements<br />

with <strong>SiPM</strong>s.<br />

I <strong>Detector</strong> board replaced with dummy board<br />

connecting pulse inputs to SMA connectors <strong>for</strong> ASIC<br />

characterization.<br />

I Linux-<strong>based</strong> data acquisition and data analysis.<br />

RTC, 2009 11


Results – Setup Verification<br />

Counts<br />

25 k<br />

20 k<br />

15 k<br />

10 k<br />

5 k<br />

Measurement<br />

19.7% FWHM<br />

0<br />

0 400 800 1200<br />

Energy [keV]<br />

22 Na spectrum measured with a single LYSO crystal<br />

standing on one <strong>SiPM</strong>. Bad optical coupling! → Bad<br />

resolution.<br />

But: Proves that the entire stack works as expected!<br />

RTC, 2009 12


Results – Discriminator Threshold<br />

100<br />

Triggers Seen [%]<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Measurement<br />

3.0 m ± 626 µV<br />

2 2.5 3 3.5 4 4.5<br />

Trigger Voltage [mV]<br />

RTC, 2009 13


Results – Threshold Dispersion I<br />

Discriminator Schematics<br />

Threshold<br />

Setting<br />

differential<br />

pair input<br />

Pulse Input<br />

Expected Behavior<br />

Disabled<br />

several σ noise<br />

Trigger<br />

Out<br />

Trigger Rate<br />

0<br />

bar range<br />

in next plot<br />

Threshold Setting<br />

RTC, 2009 14


Results – Threshold Dispersion II<br />

60 m<br />

Threshold Setting [V]<br />

40 m<br />

20 m<br />

0<br />

-20 m<br />

-40 m<br />

0 10 20 30 40 50 60 70<br />

Channel<br />

RTC, 2009 15


Results – Threshold Dispersion III<br />

I Bar <strong>of</strong>fset: Switching <strong>of</strong>fset <strong>of</strong> a differential pair <strong>of</strong><br />

NMOS transistors in close proximity.<br />

I Effects: Large threshold dispersion between<br />

channels, limit on lowest possible threshold.<br />

I Compensation circuit implemented in next generation<br />

ASIC.<br />

RTC, 2009 16


Future System Integration<br />

I Motherboard PCB with<br />

six (3×2) stacks with<br />

minimal spacing.<br />

I Large FPGA to process<br />

the data and send it <strong>of</strong>f<br />

via Gigabit Ethernet.<br />

I Box to firmly hold the<br />

components and provide<br />

the infrastructure <strong>for</strong><br />

cooling.<br />

RTC, 2009 17


Outlook<br />

I Improved ASIC<br />

I Decreased discriminator threshold dispersion.<br />

I Lower power consumption.<br />

I Should be back from fabrication just today.<br />

I Operation with full crystal array.<br />

I Measure per<strong>for</strong>mance in <strong>MR</strong>.<br />

RTC, 2009 18


Acknowledgements<br />

This project is supported by the European Union under the<br />

7 th framework program (Grant Agreement #201651).<br />

RTC, 2009 19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!