09.03.2014 Views

Optimal time control for reservoir optimization - NTNU

Optimal time control for reservoir optimization - NTNU

Optimal time control for reservoir optimization - NTNU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong><br />

<strong>optimization</strong><br />

Agus Hasan and Bjarne Foss<br />

Department of Engineering Cybernetics <strong>NTNU</strong><br />

IO-Center <strong>NTNU</strong><br />

October 31, 2012<br />

1 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


IO-Center <strong>NTNU</strong><br />

IO-Center Collaborators<br />

2 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


IO-Center <strong>NTNU</strong><br />

On going projects on production <strong>optimization</strong><br />

Short-term <strong>optimization</strong><br />

Production Optimization at Marlim Field (MINLP) → Vidar Gunnerud,<br />

Petrobras.<br />

Dual Control and MPC → Tor Aksel N. Heirung, Carnegie Mellon University.<br />

Trustworthy Production Optimization → Bjarne Grimstad, BP.<br />

Dynamics Production Optimization of Oil Fields at Urucu → Andres Codas<br />

Duarte, Kongsberg.<br />

Long-term <strong>optimization</strong><br />

Joining Well Placement and Well Control Decisions → Mathias Bellout,<br />

Stan<strong>for</strong>d University, IBM, Total.<br />

Optimization of Late-life Shale-well Systems → Brage Rugstad Knudsen,<br />

Carnegie Mellon University, Statoil, IBM.<br />

Optimization and Control of Petroleum Reservoir (Voador and Troll Field) →<br />

Agus Hasan, SINTEF, Statoil, Petrobras.<br />

The Norne Benchmark → Richard Rwechungura, Statoil.<br />

Long-term and Short-term <strong>optimization</strong><br />

Incorporating Long-term and Short-term Production Optimization →<br />

Mansoureh Jesmani.<br />

Completed projects<br />

Gradient-based Methods <strong>for</strong> Production Optimization of Oil Reservoirs → Eka<br />

Suwartadi, SINTEF.<br />

Integrated Field Modeling and Optimization → Silvya Rahmawati, PERA AS.<br />

3 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


IO-Center <strong>NTNU</strong><br />

SPE-Applied Technical Workshop 2013<br />

Title : Integrated 4D Seismic & Production Data <strong>for</strong> Reservoir Management –<br />

Application to Norne (Norway)<br />

Place : Radisson BLU Royal Garden Hotel, Trondheim Norway<br />

Time : 25th – 27th June 2013<br />

Comparative case study<br />

To utilize production and 4D seismic data from the full field Norne<br />

Data, http://www.ipt.ntnu.no/~norne/, Package 2 Full Field Model 2013.<br />

Exercise Description to include data integration<br />

To utilize more seismic data<br />

4 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Outline<br />

IO-Center <strong>NTNU</strong><br />

1 Introduction<br />

2 Reservoir and well model<br />

3 Gradient computation<br />

4 Numerical example<br />

5 Conclusions<br />

5 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


CLRM<br />

Introduction<br />

6 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


<strong>Optimal</strong> <strong>control</strong><br />

Introduction<br />

The optimal <strong>control</strong> problem may be stated in a canonical<br />

<strong>for</strong>m as follows<br />

max<br />

u<br />

J(u) = ψ(x(T )) +<br />

∫ T<br />

0<br />

L(x(t), u(t)) dt<br />

Subject to ẋ(t) = A(x(t))x(t) + B(x(t))u(t)<br />

x(0) = ¯x 0<br />

u(t) ∈ U, ∀t ∈ [0, T ]<br />

✁ ✁✕ U = {q ∈ R m : u min ≤ q ≤ u max }<br />

✁<br />

✁ ✁<br />

Control Input<br />

7 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


<strong>Optimal</strong> <strong>control</strong><br />

Introduction<br />

The optimal <strong>control</strong> problem may be stated in a canonical<br />

<strong>for</strong>m as follows<br />

max<br />

u<br />

J(u) = ψ(x(T )) +<br />

∫ T<br />

0<br />

L(x(t), u(t)) dt<br />

Subject to ẋ(t) = A(x(t))x(t) + B(x(t))u(t)<br />

x(0) = ¯x 0<br />

u(t) ∈ U, ∀t ∈ [0, T ]<br />

✁ ✁✕ U = {q ∈ R m : u min ≤ q ≤ u max }<br />

✁<br />

✁ ✁<br />

Control Input<br />

7 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Motivation<br />

Introduction<br />

u<br />

✻<br />

1<br />

✻<br />

❄<br />

∂J<br />

=? ∂u<br />

✻<br />

❄<br />

0<br />

✻<br />

t 1<br />

❄<br />

t 2<br />

✲<br />

t<br />

8 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Motivation<br />

Introduction<br />

u<br />

✻<br />

1<br />

✻<br />

❄<br />

∂J<br />

=? ∂u<br />

✻<br />

❄<br />

0<br />

✻<br />

t 1<br />

❄<br />

t 2<br />

✲<br />

t<br />

8 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Motivation<br />

Introduction<br />

u<br />

✻<br />

1<br />

✻<br />

❄<br />

∂J<br />

=? ∂u<br />

✻<br />

❄<br />

0<br />

✻<br />

t 1<br />

❄<br />

t 2<br />

✲<br />

t<br />

8 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Motivation<br />

Introduction<br />

u<br />

✻<br />

1<br />

0<br />

✛✲<br />

∂J<br />

∂J<br />

✛✲<br />

∂t 1<br />

=?<br />

∂t 2<br />

=?<br />

t 1 t 2<br />

✲<br />

t<br />

9 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Motivation<br />

Introduction<br />

u<br />

✻<br />

1<br />

0<br />

✛✲<br />

∂J<br />

∂J<br />

✛✲<br />

∂t 1<br />

=?<br />

∂t 2<br />

=?<br />

t 1 t 2<br />

✲<br />

t<br />

9 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Motivation<br />

Introduction<br />

u<br />

✻<br />

1<br />

0<br />

✛✲<br />

∂J<br />

∂J<br />

✛✲<br />

∂t 1<br />

=?<br />

∂t 2<br />

=?<br />

t 1 t 2<br />

✲<br />

t<br />

9 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Reservoir and well model<br />

State space representation<br />

The standard black oil <strong>for</strong>mulation <strong>for</strong> oil-water system may be written in<br />

the following PDE<br />

(<br />

∂<br />

∂t (φρ o[1 − s]) = ∇ · k k )<br />

ro<br />

ρ o ∇p + q o<br />

µ o<br />

(<br />

∂<br />

∂t (φρ ws) = ∇ · k k )<br />

rw<br />

ρ w ∇p + q w<br />

µ w<br />

Applying spatial discretization, the system may be written in the<br />

following ODE<br />

where<br />

ẋ(t) = A(x(t))x(t) + B(x(t))u(t)<br />

x(0) = ¯x 0<br />

u(t) = [q 1 (t) q 2 (t) · · · q Nw (t)] ⊺ ∈ R Nw<br />

10 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Reservoir and well model<br />

State space representation<br />

The standard black oil <strong>for</strong>mulation <strong>for</strong> oil-water system may be written in<br />

the following PDE<br />

(<br />

∂<br />

∂t (φρ o[1 − s]) = ∇ · k k )<br />

ro<br />

ρ o ∇p + q o<br />

µ o<br />

(<br />

∂<br />

∂t (φρ ws) = ∇ · k k )<br />

rw<br />

ρ w ∇p + q w<br />

µ w<br />

Applying spatial discretization, the system may be written in the<br />

following ODE<br />

where<br />

ẋ(t) = A(x(t))x(t) + B(x(t))u(t)<br />

x(0) = ¯x 0<br />

u(t) = [q 1 (t) q 2 (t) · · · q Nw (t)] ⊺ ∈ R Nw<br />

10 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Well model<br />

Reservoir and well model<br />

The <strong>control</strong>s are given by the Peaceman model<br />

q j (t) = α j (t)w j (s j )(p j R − pj bh (t)), j ∈ {N inj, N prod }<br />

where α j (t) ∈ {[0, 1]} denotes the settings of the on-off valves of well j.<br />

Linear relationship between q j and α j .<br />

The term q j (t) in u may be replaced by α j (t) and the<br />

corresponding entries in B are modified to include the term<br />

w j (s j )(p j R − pj bh (t)).<br />

11 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Well model<br />

Reservoir and well model<br />

The <strong>control</strong>s are given by the Peaceman model<br />

q j (t) = α j (t)w j (s j )(p j R − pj bh (t)), j ∈ {N inj, N prod }<br />

where α j (t) ∈ {[0, 1]} denotes the settings of the on-off valves of well j.<br />

Linear relationship between q j and α j .<br />

The term q j (t) in u may be replaced by α j (t) and the<br />

corresponding entries in B are modified to include the term<br />

w j (s j )(p j R − pj bh (t)).<br />

11 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Well model<br />

Reservoir and well model<br />

The <strong>control</strong>s are given by the Peaceman model<br />

q j (t) = α j (t)w j (s j )(p j R − pj bh (t)), j ∈ {N inj, N prod }<br />

where α j (t) ∈ {[0, 1]} denotes the settings of the on-off valves of well j.<br />

Linear relationship between q j and α j .<br />

The term q j (t) in u may be replaced by α j (t) and the<br />

corresponding entries in B are modified to include the term<br />

w j (s j )(p j R − pj bh (t)).<br />

11 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Control parameterization<br />

The idea is to parameterize the valve settings into a piecewise constant<br />

function over the interval [0, T ] with switches at t j 1 , · · · , tj M j<br />

as follows<br />

M j<br />

∑<br />

α j (t) = γ j k χ [t j )(t), χ I(t) =<br />

k ,tj k+1<br />

k=0<br />

{<br />

1, t ∈ I<br />

0, otherwise<br />

The switching <strong>time</strong>s t j k , k = 1, · · · , M j may be distinguished such that<br />

0 = t j 0 < tj 1 < · · · < tj M j<br />

< t j M j+1<br />

= T<br />

Let’s define the switching vectors as<br />

v = [(t 1 1, · · · , t 1 M 1<br />

) ⊺ , · · · , (t Nw<br />

1 , · · · , t Nw<br />

} {{ } } {{ }<br />

v 1<br />

v Nw<br />

M Nw<br />

) ⊺ ] ⊺<br />

12 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Gradient of the switching <strong>time</strong>s<br />

Theorem<br />

For each j = 1, · · · , N w, the gradient of the functional J with respect to v j is given<br />

by<br />

⎡<br />

H(x(t − 1 |v), u(t− 1 |v), λ(t− 1 |v))<br />

⎤<br />

−H(x(t + 1<br />

∂J(v)<br />

|v), u(t+ 1 |v), λ(t+ 1 |v))<br />

∂v j =<br />

.<br />

⎢<br />

⎣ H(x(t − M |v), u(t − j M |v), λ(t − j M |v)) ⎥<br />

j ⎦<br />

−H(x(t + M |v), u(t + j M |v), λ(t + j M |v))<br />

j<br />

where<br />

H(x(t), u(t), λ(t)) = L(x(t), u(t)) + λ ⊺ (A(x(t))x(t) + B(x(t))u(t))<br />

H(t + |v) = lim<br />

τ→t + H(τ|v)<br />

H(t − |v) = lim<br />

τ→t − H(τ|v)<br />

Computes the gradient w.r.t. switching <strong>time</strong>s efficiently.<br />

13 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

✛<br />

∂J<br />

∂t s<br />

< 0<br />

0<br />

t 0 t s t f<br />

✲<br />

t<br />

14 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

✛<br />

∂J<br />

∂t s<br />

< 0<br />

0<br />

t 0 t s t f<br />

✲<br />

t<br />

14 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

✛<br />

∂J<br />

∂t s<br />

< 0<br />

0<br />

t 0 t s t f<br />

✲<br />

t<br />

14 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

✛<br />

∂J<br />

∂t s<br />

< 0<br />

0<br />

t 0 t s t f<br />

✲<br />

t<br />

14 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

t 0 t s t f<br />

✲<br />

t<br />

15 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

t 0 t s t f<br />

✲<br />

t<br />

16 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

∂J<br />

∂t s<br />

> 0 ✲<br />

t 0 t s t f<br />

✲<br />

t<br />

17 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

∂J<br />

∂t s<br />

> 0 ✲<br />

t 0 t s t f<br />

✲<br />

t<br />

17 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

∂J<br />

∂t s<br />

> 0 ✲<br />

t 0 t s t f<br />

✲<br />

t<br />

17 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

t 0<br />

t s<br />

t f<br />

✲<br />

t<br />

18 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

t 0<br />

t s<br />

t f<br />

✲<br />

t<br />

19 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

✛<br />

∂J<br />

∂t s<br />

< 0<br />

0<br />

t 0<br />

t s<br />

t f<br />

✲<br />

t<br />

20 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

✛<br />

∂J<br />

∂t s<br />

< 0<br />

0<br />

t 0<br />

t s<br />

t f<br />

✲<br />

t<br />

20 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

✛<br />

∂J<br />

∂t s<br />

< 0<br />

0<br />

t 0<br />

t s<br />

t f<br />

✲<br />

t<br />

20 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

t 0<br />

t s<br />

t f<br />

✲<br />

t<br />

21 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Gradient Computation<br />

Applying heuristic search method - the halving<br />

interval method<br />

q<br />

✻<br />

1<br />

0<br />

t 0<br />

t s<br />

t f<br />

✲<br />

t<br />

22 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Simulation<br />

Numerical example - Objective function<br />

Suppose the aim is to<br />

max<br />

v<br />

J NP V =<br />

⎛<br />

⎞<br />

∫ T<br />

⎝<br />

∑<br />

r o(t)qo j (t) −<br />

∑<br />

rw p qj w (t) +<br />

∑<br />

rw i qj w (t) ⎠<br />

0<br />

j∈N prod j∈N prod j∈N inj<br />

1<br />

× ( ) ct dt<br />

1 + I<br />

100<br />

subject to the dynamical systems and <strong>control</strong> constraint.<br />

23 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Reservoir Model<br />

Simulation<br />

Figure: Grid and wells positions. Figure: Permeability distribution.<br />

ref: K.-A. Lie, et.al., Open source MATLAB implementation of consistent<br />

discretisations on complex grids, Comput. Geosci., Vol. 16, No. 2, pp. 297-322, 2012.<br />

24 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Reservoir Data<br />

Simulation<br />

Parameters Value Unit<br />

qw, j j ∈ N inj 500 m 3 /day<br />

rw i −63 USD/m 3<br />

ro p 630 USD/m 3<br />

rw p 63 USD/m 3<br />

I 10 %<br />

µ o 5 × 10 −3 Pa · s<br />

µ w 1 × 10 −3 Pa · s<br />

ρ o 859 kg/m 3<br />

ρ w 1014 kg/m 3<br />

Table: Simulation parameters.<br />

25 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Simulation<br />

Optimization settings<br />

The injection rates are set constant <strong>for</strong> both injection<br />

wells at 500 m 3 /day.<br />

The <strong>control</strong> variables are the switching <strong>time</strong>s in both<br />

horizontal production wells, namely t 1 1, t 1 2, t 2 1, and t 2 2.<br />

The <strong>optimization</strong> is run <strong>for</strong> 512 days. The method is<br />

compared with Reactive <strong>control</strong> strategy with water cut<br />

treshold is 0.82.<br />

26 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Simulation<br />

<strong>Optimal</strong> well settings<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

27 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Objective function<br />

Simulation<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

28 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Conclusions<br />

Conclusions<br />

A novel optimal switching <strong>time</strong>s method <strong>for</strong> an oil<br />

<strong>reservoir</strong>, given the optimal settings of the wells to be<br />

bang-bang <strong>control</strong>s, has been presented.<br />

The bang-bang <strong>control</strong> has a major practical advantage<br />

since it can be implemented with simple on-off valves.<br />

The optimal <strong>control</strong> settings are obtained based on<br />

gradient calculation using the adjoint method combined<br />

with the halving interval method.<br />

The gradient calculation is supported by a <strong>for</strong>mal proof.<br />

An example of a realistic <strong>reservoir</strong> show that the proposed<br />

method can be used to increase oil revenue significantly.<br />

Submitted to European Control Conference 2013.<br />

29 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


Conclusions<br />

Conclusions<br />

A novel optimal switching <strong>time</strong>s method <strong>for</strong> an oil<br />

<strong>reservoir</strong>, given the optimal settings of the wells to be<br />

bang-bang <strong>control</strong>s, has been presented.<br />

The bang-bang <strong>control</strong> has a major practical advantage<br />

since it can be implemented with simple on-off valves.<br />

The optimal <strong>control</strong> settings are obtained based on<br />

gradient calculation using the adjoint method combined<br />

with the halving interval method.<br />

The gradient calculation is supported by a <strong>for</strong>mal proof.<br />

An example of a realistic <strong>reservoir</strong> show that the proposed<br />

method can be used to increase oil revenue significantly.<br />

Submitted to European Control Conference 2013.<br />

29 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>


END<br />

Thanks you.<br />

Questions?<br />

30 Smart Field Annual Meeting 2012, Stan<strong>for</strong>d University <strong>Optimal</strong> <strong>time</strong> <strong>control</strong> <strong>for</strong> <strong>reservoir</strong> <strong>optimization</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!