14.03.2014 Views

Applications of Light-Front Dynamics in Hadron Physics 1. What is ...

Applications of Light-Front Dynamics in Hadron Physics 1. What is ...

Applications of Light-Front Dynamics in Hadron Physics 1. What is ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Applications</strong> <strong>of</strong> <strong>Light</strong>-<strong>Front</strong> <strong>Dynamics</strong> <strong>in</strong><br />

<strong>Hadron</strong> <strong>Physics</strong><br />

Chueng-Ryong Ji<br />

North Carol<strong>in</strong>a State University<br />

<strong>1.</strong> <strong>What</strong> <strong>is</strong> light-front dynamics (LFD)?<br />

2. Why <strong>is</strong> LFD useful <strong>in</strong> hadron physics?<br />

3. Any first pr<strong>in</strong>ciple QCD predictions?<br />

4. Any use <strong>of</strong> effective field theory?<br />

5. Any treacherous po<strong>in</strong>ts?<br />

6. Any relevance to JLab experiments?<br />

June 5-7, 2013<br />

Questions


Outl<strong>in</strong>e(tentative)<br />

• Tutorials <strong>of</strong> LFD (5 th , 9-10am)<br />

• Interpolat<strong>in</strong>g QFT (5 th , 1-2pm)<br />

• Perturbative QCD Predictions (6 th ,9-10am)<br />

• Chiral Effective Field Theory (6 th , 1-2pm)<br />

• Anomaly and Zero Modes(7 th, 10:15-11:15am)<br />

• Application to DVCS and GPDs (7 th ,1-2pm)


Interpolation between Instant and <strong>Front</strong> Forms<br />

K. Hornbostel, PRD45, 3781 (1992)<br />

C.Ji and C. Mitchell, PRD64,085013 (2001)<br />

C.Ji and A. Suzuki, PRD87,065015 (2013)


Interpolat<strong>in</strong>g <strong>Hadron</strong>ic Wavefunction<br />

x 0 ! x ˆ+ " x +<br />

Invariant under k<strong>in</strong>ematic transformations<br />

( P ! , J ! ) 0 ! ! " " / 4 (P + , P ! !<br />

, J 3 , E ! !<br />

, K 3 )


" = 0<br />

p 0<br />

= p 0<br />

0 < " < # /4<br />

pˆ +<br />

= p 0 cos" $ p 3 s<strong>in</strong>"<br />

= $ p0 s<strong>in</strong>" + p 3 cos"<br />

pˆ<br />

" = # /4<br />

p +<br />

= p $<br />

p $<br />

= p +<br />

#p 3<br />

= p 3 !<br />

!


Σ(a)+Σ(b)=1/(s-m 2 ) ; s=2 GeV, m=1GeV<br />

J-shape peak & valley :<br />

P z<br />

= "<br />

s(1" C)<br />

2C<br />

; C = cos(2#)


g µ" =<br />

$ 1 0 0 0 '<br />

&<br />

)<br />

&<br />

0 #1 0 0<br />

)<br />

& 0 0 #1 0 )<br />

&<br />

)<br />

% 0 0 0 #1(<br />

"<br />

$<br />

!<br />

! d 3 x T 0µ = P µ =<br />

$<br />

$<br />

$<br />

# $<br />

P 0<br />

P 1<br />

P 2<br />

P 3<br />

%<br />

'<br />

'<br />

'<br />

'<br />

&'<br />

#<br />

%<br />

!<br />

! d 3 x (T 0µ x ! "T 0µ x ! ) = J µ! %<br />

=<br />

%<br />

%<br />

$ %<br />

T µ" =<br />

# L<br />

#(# µ<br />

$ k<br />

) #" $ k<br />

% g µ" L<br />

!<br />

& ;<br />

k<br />

"<br />

$<br />

$<br />

P ˆµ = $<br />

$<br />

$<br />

#<br />

g ˆ µ " ˆ<br />

=<br />

0 K 1 K 2 K 3<br />

"K 1 0 J 3 "J 2<br />

"K 2 "J 3 0 J 1<br />

"K 3 J 2 "J 1 0<br />

" µ<br />

T µ# = 0<br />

% cos2# 0 0 s<strong>in</strong>2# (<br />

'<br />

*<br />

'<br />

0 $1 0 0<br />

*<br />

' 0 0 $1 0 *<br />

'<br />

*<br />

& s<strong>in</strong>2# 0 0 $cos2# )<br />

P ˆ+ = cos! P 0 + s<strong>in</strong>! P 3<br />

P ˆ1 = P 1<br />

P ˆ2 = P 2<br />

P ˆ! = s<strong>in</strong>! P 0 ! cos! P 3<br />

!<br />

&<br />

(<br />

(<br />

(<br />

(<br />

'(<br />

J ˆ µ " ˆ<br />

=<br />

%<br />

'<br />

' !<br />

' = ) dx ˆ! d 2 x( T<br />

'<br />

'<br />

&<br />

ˆ+ ˆµ<br />

$ 0 E ˆ 1 E ˆ 2 #K 3 '<br />

&<br />

# E ˆ 1 0 J 3 # F ˆ )<br />

&<br />

1<br />

# E ˆ 2 #J 3 0 # F ˆ<br />

)<br />

&<br />

2 )<br />

&<br />

% K 3 F ˆ 1 F ˆ<br />

)<br />

2 0 (<br />

E ˆ 1 = J 2 s<strong>in</strong>" + K 1 cos"<br />

E ˆ 2 = K 2 cos" # J 1 s<strong>in</strong>"<br />

F ˆ 1 = K 1 s<strong>in</strong>" # J 2 cos"<br />

F ˆ 2 = J 1 cos" + K 2 s<strong>in</strong>"


Interpolat<strong>in</strong>g Po<strong>in</strong>caré Algebra<br />

[P ˆµ , P ˆ! ] = 0 [P ˆµ , J ˆ" ˆ # ] = i(g ˆµ ˆ" P ˆ # ! g ˆµ ˆ # P ˆ" )<br />

[J ˆµ ˆ! , J ˆ" ˆ # ] = i(g ˆµ ˆ # J ˆ! ˆ" + g ˆ! ˆ" J ˆµ ˆ # ! g ˆµ ˆ" J ˆ! ˆ # ! g ˆ! ˆ # J ˆµ ˆ" )<br />

e.g.<br />

[P ˆ+ , J ˆ+ˆ! ] = i(g ˆ+ˆ+ P ˆ! ! g ˆ+ˆ! P ˆ+ )<br />

[P ˆ+ ,!K 3 ] = i(P ˆ! cos2! ! P ˆ+ s<strong>in</strong>2!)<br />

Return <strong>of</strong> Prodigal Son<br />

Exp "i# K 3<br />

!<br />

" #$ /4<br />

[K 3 , P + ] = !iP +<br />

( ) | x + > $ | x + ><br />

One more k<strong>in</strong>ematic generator appears only <strong>in</strong> the front form.<br />

Maximum number (7) <strong>of</strong> members <strong>in</strong> the stability group.


K<strong>in</strong>ematic Operators<br />

(Members <strong>of</strong> Stability Group)<br />

Exp ("i# $ ˆ i<br />

) | x<br />

+ ˆ<br />

> % | x<br />

+ ˆ<br />

><br />

[ ˆ! i , P ˆ+ ] = 0<br />

!<br />

!<br />

" = 0<br />

#J 2<br />

J 1<br />

!<br />

" ˆ i = F ˆ i cos2# $ E ˆ i s<strong>in</strong>2#<br />

" ˆ 1 = #J 2 cos$ # K 1 s<strong>in</strong>$<br />

ˆ " 2 = J 1 cos$ # K 2 s<strong>in</strong>$<br />

(J 3 , P 1 , P 2 , Pˆ!)<br />

!<br />

" = # /4<br />

$E 1 = $(J 2 + K 1 ) / 2<br />

E 2 = (J 1 $ K 2 ) / 2


!<br />

same<br />

!<br />

!<br />

p 0<br />

rema<strong>in</strong> at rest<br />

P 0 = M ; p 3 = 0<br />

particle at rest<br />

p 0 = M , p 1 = p 2 = p 3 = 0<br />

(pˆ +<br />

= M cos" , pˆ<br />

= M s<strong>in</strong>")<br />

#<br />

!<br />

Under<br />

ˆ " i transformation<br />

P 0 = M +<br />

can move<br />

!<br />

!<br />

p "<br />

2<br />

p 0 + p 3<br />

2M ; p3 = #<br />

!<br />

p "<br />

2<br />

2M<br />

same<br />

!<br />

(p 0 ) 2 " (p 3 ) 2 = (M +<br />

!<br />

p #<br />

2<br />

2M )2 " ("<br />

!<br />

p #<br />

2<br />

2M )2 = M 2 + ! p # 2 = 2p + p " > 0<br />

Rational Energy-Momentum D<strong>is</strong>persion Relation<br />

Vacuum gets simpler <strong>in</strong> LFD.


!<br />

Angular Momentum<br />

[J i ,J j ] = i" ijk<br />

J k ,[J i ,M] = 0<br />

{ }<br />

T = Exp "i(# ˆ<br />

1<br />

$<br />

1 + # ˆ<br />

2<br />

$ 2 )<br />

[" ˆ i ," ˆ j ] = i# " ˆ k , [" ˆ i , M] = 0<br />

ijk<br />

!<br />

T | n >=| p,n ><br />

ˆ " i | p,n >= TJ i | n ><br />

!<br />

" ˆ i = TJ i T +


" ˆ ( 3 = J 3 pˆ<br />

+ ˆ<br />

#<br />

z $ ( p ! !<br />

%<br />

&' ˆ +<br />

)<br />

%<br />

),<br />

*<br />

- / M s<strong>in</strong>.<br />

!<br />

" ˆ<br />

%<br />

= J ! (<br />

%<br />

+ p ! z<br />

%<br />

cos. J 3 + ˆ $ ( p ! !<br />

5 /<br />

%<br />

&' ˆ 2<br />

%<br />

)<br />

1<br />

0<br />

pˆ #<br />

+ M s<strong>in</strong>. 4 # (ˆ z & p ! /<br />

)<br />

%<br />

)s<strong>in</strong>. 1<br />

K 3 +<br />

* 5<br />

3<br />

0<br />

" #$ /4<br />

pˆ<br />

!<br />

!<br />

p %<br />

$ E ˆ 2 +<br />

%<br />

5<br />

,<br />

#<br />

+ M s<strong>in</strong>. 4<br />

3 - 5<br />

" 3 = J 3 + z ˆ # ( !<br />

! '<br />

" $<br />

= ( z ˆ % ( p ! & E $ !& p ! + F $<br />

+ p !<br />

$<br />

K 3 ) &<br />

)<br />

" 3 = W +<br />

E $<br />

% p !<br />

$<br />

) / p +<br />

!<br />

p $<br />

p +<br />

( p ) $<br />

p + J 3 + z ˆ # E !<br />

$<br />

% !<br />

*<br />

+<br />

, / M<br />

p + W ˆµ = 1 2 ! ˆµ ˆ" ˆ# ˆ$ p ˆ" J ˆ# ˆ$<br />

[" 3 , Stability Group Members] = 0


Interpolat<strong>in</strong>g Sp<strong>in</strong>ors<br />

ˆ! 3 û (1) (1)<br />

CR<br />

= (+1)û CR


Interpolat<strong>in</strong>g Sp<strong>in</strong>ors<br />

ˆ! 3 û (2) (2)<br />

CR<br />

= ("1)û CR


Interpolat<strong>in</strong>g Helicity Amplitude<br />

ˆM(! 1<br />

, ! 2<br />

, ! 3<br />

, ! 4<br />

) = ˆ"( ˆp 2<br />

, ! 2<br />

)# ˆµû( ˆp 1<br />

, ! 1<br />

)û( ˆp 3<br />

, ! 3<br />

)# ˆµ ˆ"( ˆp 4<br />

, ! 4<br />

)


Jacob-Wick Helicity vs. <strong>Light</strong>-<strong>Front</strong> Helicity<br />

Invariant under k<strong>in</strong>ematic transformations<br />

Related by a rotation


Canonical Quantization<br />

Simple 1+1 dim QFT:<br />

L = 1 2 ! µ! ! µ ! " 1 2 m2 ! 2<br />

L = C #<br />

$<br />

2 (! ˆ+!) 2 " (! ˆ"!) 2<br />

%<br />

& + S(! ˆ+!)(! ˆ"!)" 1 2 m2 ! 2<br />

C = cos(2!), S = s<strong>in</strong>(2!)<br />

! (x) = !L<br />

!(! 0<br />

") = !0 "<br />

! (x) = C! ˆ+" + S! ˆ""<br />

Conjugate field:<br />

Equal-time quantization:<br />

[! (x),"(y)] x 0 =y 0 = !i#(x 3 ! y 3 )<br />

[! (x),"(y)] x ˆ+ =y ˆ+ = !i#(x ˆ! ! y ˆ! )


T µ" =<br />

&<br />

k<br />

# L<br />

#(# µ<br />

$ k<br />

) #" $ k<br />

% g µ" L<br />

Pˆ+<br />

Energy<br />

= "<br />

ˆ!<br />

dx (! # ˆ+" ! L)<br />

= 1 2<br />

Periodic Boundary Condition:<br />

!(x ˆ+ = 0, x ˆ! ) =<br />

$<br />

%<br />

P 0 = # dx 3 (! ! 0<br />

" L)<br />

&<br />

'<br />

!(x ˆ+ , x ˆ! ! !) = !(x ˆ+ , x ˆ! + !)<br />

" dx ˆ! C{(# ˆ+") 2 + (# ˆ!") 2 }+ m 2 " 2<br />

.<br />

/<br />

n=!.<br />

!<br />

! n<br />

= n 2 + C m! $<br />

# &<br />

" " %<br />

Pˆ+ = !<br />

#<br />

! " !<br />

2<br />

1<br />

(<br />

a n<br />

e !i "<br />

$<br />

n" # !<br />

*<br />

4"# n )*<br />

%<br />

'x ˆ!<br />

&<br />

$ !" & n<br />

' S n $<br />

(#<br />

& a + n<br />

a n<br />

% " C %<br />

n<br />

"<br />

$<br />

+ a + n<br />

e i n" # !<br />

[a m<br />

, a n + ] = ! mn<br />

%<br />

'x ˆ!<br />

&<br />

+<br />

-<br />

,-


Symmetry Break<strong>in</strong>g<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

2 1 1 2<br />

! !"<br />

= ! +"<br />

2 1 1<br />

L ! L " = L # m 2 ! " # 1 2 m2 ! 2<br />

( ) 1/2 !<br />

Pˆ+ ! Pˆ+ " = Pˆ+ + m3 !<br />

(a<br />

C 1/4 0<br />

+ a + 0<br />

)


Nontrivial Vacuum State<br />

| 0 > ! | " ><br />

! !"<br />

= ! +"<br />

$ +! '<br />

| ! > = exp&<br />

i # dx ˆ" ! " (x ˆ" )) | 0 ><br />

%<br />

(<br />

Translation <strong>in</strong> scalar field:<br />

! (x ˆ+ = 0, x ˆ! ) = !i<br />

"!<br />

.<br />

/<br />

n=!.<br />

" ! %<br />

$ '<br />

# ! &<br />

"<br />

(<br />

n<br />

4! a ne !i "<br />

$<br />

n! # !<br />

*<br />

)*<br />

%<br />

'x ˆ!<br />

&<br />

"<br />

$<br />

! a + n<br />

e i n! # !<br />

%<br />

'x ˆ!<br />

&<br />

+<br />

-<br />

,-<br />

#<br />

| ! >= exp "(C 1/2 m!) ! 2 &<br />

%<br />

(exp#"(C 1/2 m!) 1/2 +<br />

$ !a 0<br />

&<br />

'<br />

$ 2 '<br />

| 0 ><br />

Condensation <strong>of</strong> Zero-Modes


Vacuum Energy<br />

Pˆ+ | ! >= E !<br />

| ! ><br />

a e !a+ | 0 >= ! e !a+ | 0 ><br />

Pˆ+<br />

#<br />

m!<br />

| ! >"<br />

C a ( +<br />

1/2 0a 0<br />

+ m3 !) 1/2 !<br />

&<br />

%<br />

(a<br />

C 1/4 0<br />

+ a + 0<br />

)(<br />

%<br />

( exp # )(C1/2 m!) 1/2 +<br />

$ !a 0<br />

&<br />

' | 0 ><br />

$<br />

'<br />

= ()m 2 ! 2 !) exp #)(C 1/2 m!) 1/2 +<br />

$ !a 0<br />

&<br />

' | 0 ><br />

+!<br />

#<br />

"!<br />

E !<br />

= "m 2 ! 2 ! = (" 1 2 m2 ! 2 )dx ˆ"<br />

Independent <strong>of</strong> <strong>in</strong>terpolation angle!


Recovery <strong>of</strong> Trivial Vacuum <strong>in</strong> LFD<br />

#<br />

| ! >= exp "(C 1/2 m!) ! 2<br />

%<br />

$ 2<br />

&<br />

(exp#"(C 1/2 m!) 1/2 +<br />

$ !a 0<br />

'<br />

&<br />

' | 0 ><br />

| ! >"| 0 > as C " 0<br />

However,<br />

E !<br />

and<br />

< ! |!(x) | ! >= ""<br />

are still <strong>in</strong>dependent <strong>of</strong> <strong>in</strong>terpolation angle!


<strong>What</strong> <strong>is</strong> go<strong>in</strong>g on?<br />

< ! |!(x) | ! ><br />

'<br />

+<br />

=< 0 | exp #<br />

$ (C 1/2 m!) 1/2 "(a + 0<br />

" a 0<br />

)%<br />

a 0<br />

+ a 0<br />

&)<br />

( 2(C 1/2 m!) 1/2<br />

= ""<br />

*<br />

,exp#<br />

$ "(C 1/2 m!) 1/2 "(a + 0<br />

" a 0<br />

)%<br />

&<br />

+<br />

| 0 ><br />

Complication <strong>is</strong> transferred from vacuum to operator.


Summary<br />

• LFD <strong>is</strong> not just formal but consequential<br />

<strong>in</strong> the analys<strong>is</strong> <strong>of</strong> physical observables.<br />

• Longitud<strong>in</strong>al boost jo<strong>in</strong>s stability group <strong>in</strong><br />

LFD.<br />

• LF helicity amplitudes are <strong>in</strong>dependent <strong>of</strong><br />

all references frames that are related by<br />

front-form boosts.<br />

• Energy-momentum d<strong>is</strong>persion relation<br />

becomes rational and vacuum gets<br />

simpler <strong>in</strong> LFD.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!