14.03.2014 Views

Applications of Light-Front Dynamics in Hadron Physics 1. What is ...

Applications of Light-Front Dynamics in Hadron Physics 1. What is ...

Applications of Light-Front Dynamics in Hadron Physics 1. What is ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Applications</strong> <strong>of</strong> <strong>Light</strong>-<strong>Front</strong> <strong>Dynamics</strong> <strong>in</strong><br />

<strong>Hadron</strong> <strong>Physics</strong><br />

Chueng-Ryong Ji<br />

North Carol<strong>in</strong>a State University<br />

<strong>1.</strong> <strong>What</strong> <strong>is</strong> light-front dynamics (LFD)?<br />

2. Why <strong>is</strong> LFD useful <strong>in</strong> hadron physics?<br />

3. Any first pr<strong>in</strong>ciple QCD predictions?<br />

4. Any use <strong>of</strong> effective field theory?<br />

5. Any treacherous po<strong>in</strong>ts?<br />

6. Any relevance to JLab experiments?<br />

June 5-7, 2013<br />

Questions


Outl<strong>in</strong>e(tentative)<br />

• Tutorials <strong>of</strong> LFD (5 th , 9-10am)<br />

• Interpolat<strong>in</strong>g QFT (5 th , 1-2pm)<br />

• Perturbative QCD Predictions (6 th ,9-10am)<br />

• Chiral Effective Field Theory (6 th , 1-2pm)<br />

• Anomaly and Zero Modes(7 th, 10:15-11:15am)<br />

• Application to DVCS and GPDs (7 th ,1-2pm)


Interpolation between Instant and <strong>Front</strong> Forms<br />

K. Hornbostel, PRD45, 3781 (1992)<br />

C.Ji and C. Mitchell, PRD64,085013 (2001)<br />

C.Ji and A. Suzuki, PRD87,065015 (2013)


Interpolat<strong>in</strong>g <strong>Hadron</strong>ic Wavefunction<br />

x 0 ! x ˆ+ " x +<br />

Invariant under k<strong>in</strong>ematic transformations<br />

( P ! , J ! ) 0 ! ! " " / 4 (P + , P ! !<br />

, J 3 , E ! !<br />

, K 3 )


" = 0<br />

p 0<br />

= p 0<br />

0 < " < # /4<br />

pˆ +<br />

= p 0 cos" $ p 3 s<strong>in</strong>"<br />

= $ p0 s<strong>in</strong>" + p 3 cos"<br />

pˆ<br />

" = # /4<br />

p +<br />

= p $<br />

p $<br />

= p +<br />

#p 3<br />

= p 3 !<br />

!


Σ(a)+Σ(b)=1/(s-m 2 ) ; s=2 GeV, m=1GeV<br />

J-shape peak & valley :<br />

P z<br />

= "<br />

s(1" C)<br />

2C<br />

; C = cos(2#)


g µ" =<br />

$ 1 0 0 0 '<br />

&<br />

)<br />

&<br />

0 #1 0 0<br />

)<br />

& 0 0 #1 0 )<br />

&<br />

)<br />

% 0 0 0 #1(<br />

"<br />

$<br />

!<br />

! d 3 x T 0µ = P µ =<br />

$<br />

$<br />

$<br />

# $<br />

P 0<br />

P 1<br />

P 2<br />

P 3<br />

%<br />

'<br />

'<br />

'<br />

'<br />

&'<br />

#<br />

%<br />

!<br />

! d 3 x (T 0µ x ! "T 0µ x ! ) = J µ! %<br />

=<br />

%<br />

%<br />

$ %<br />

T µ" =<br />

# L<br />

#(# µ<br />

$ k<br />

) #" $ k<br />

% g µ" L<br />

!<br />

& ;<br />

k<br />

"<br />

$<br />

$<br />

P ˆµ = $<br />

$<br />

$<br />

#<br />

g ˆ µ " ˆ<br />

=<br />

0 K 1 K 2 K 3<br />

"K 1 0 J 3 "J 2<br />

"K 2 "J 3 0 J 1<br />

"K 3 J 2 "J 1 0<br />

" µ<br />

T µ# = 0<br />

% cos2# 0 0 s<strong>in</strong>2# (<br />

'<br />

*<br />

'<br />

0 $1 0 0<br />

*<br />

' 0 0 $1 0 *<br />

'<br />

*<br />

& s<strong>in</strong>2# 0 0 $cos2# )<br />

P ˆ+ = cos! P 0 + s<strong>in</strong>! P 3<br />

P ˆ1 = P 1<br />

P ˆ2 = P 2<br />

P ˆ! = s<strong>in</strong>! P 0 ! cos! P 3<br />

!<br />

&<br />

(<br />

(<br />

(<br />

(<br />

'(<br />

J ˆ µ " ˆ<br />

=<br />

%<br />

'<br />

' !<br />

' = ) dx ˆ! d 2 x( T<br />

'<br />

'<br />

&<br />

ˆ+ ˆµ<br />

$ 0 E ˆ 1 E ˆ 2 #K 3 '<br />

&<br />

# E ˆ 1 0 J 3 # F ˆ )<br />

&<br />

1<br />

# E ˆ 2 #J 3 0 # F ˆ<br />

)<br />

&<br />

2 )<br />

&<br />

% K 3 F ˆ 1 F ˆ<br />

)<br />

2 0 (<br />

E ˆ 1 = J 2 s<strong>in</strong>" + K 1 cos"<br />

E ˆ 2 = K 2 cos" # J 1 s<strong>in</strong>"<br />

F ˆ 1 = K 1 s<strong>in</strong>" # J 2 cos"<br />

F ˆ 2 = J 1 cos" + K 2 s<strong>in</strong>"


Interpolat<strong>in</strong>g Po<strong>in</strong>caré Algebra<br />

[P ˆµ , P ˆ! ] = 0 [P ˆµ , J ˆ" ˆ # ] = i(g ˆµ ˆ" P ˆ # ! g ˆµ ˆ # P ˆ" )<br />

[J ˆµ ˆ! , J ˆ" ˆ # ] = i(g ˆµ ˆ # J ˆ! ˆ" + g ˆ! ˆ" J ˆµ ˆ # ! g ˆµ ˆ" J ˆ! ˆ # ! g ˆ! ˆ # J ˆµ ˆ" )<br />

e.g.<br />

[P ˆ+ , J ˆ+ˆ! ] = i(g ˆ+ˆ+ P ˆ! ! g ˆ+ˆ! P ˆ+ )<br />

[P ˆ+ ,!K 3 ] = i(P ˆ! cos2! ! P ˆ+ s<strong>in</strong>2!)<br />

Return <strong>of</strong> Prodigal Son<br />

Exp "i# K 3<br />

!<br />

" #$ /4<br />

[K 3 , P + ] = !iP +<br />

( ) | x + > $ | x + ><br />

One more k<strong>in</strong>ematic generator appears only <strong>in</strong> the front form.<br />

Maximum number (7) <strong>of</strong> members <strong>in</strong> the stability group.


K<strong>in</strong>ematic Operators<br />

(Members <strong>of</strong> Stability Group)<br />

Exp ("i# $ ˆ i<br />

) | x<br />

+ ˆ<br />

> % | x<br />

+ ˆ<br />

><br />

[ ˆ! i , P ˆ+ ] = 0<br />

!<br />

!<br />

" = 0<br />

#J 2<br />

J 1<br />

!<br />

" ˆ i = F ˆ i cos2# $ E ˆ i s<strong>in</strong>2#<br />

" ˆ 1 = #J 2 cos$ # K 1 s<strong>in</strong>$<br />

ˆ " 2 = J 1 cos$ # K 2 s<strong>in</strong>$<br />

(J 3 , P 1 , P 2 , Pˆ!)<br />

!<br />

" = # /4<br />

$E 1 = $(J 2 + K 1 ) / 2<br />

E 2 = (J 1 $ K 2 ) / 2


!<br />

same<br />

!<br />

!<br />

p 0<br />

rema<strong>in</strong> at rest<br />

P 0 = M ; p 3 = 0<br />

particle at rest<br />

p 0 = M , p 1 = p 2 = p 3 = 0<br />

(pˆ +<br />

= M cos" , pˆ<br />

= M s<strong>in</strong>")<br />

#<br />

!<br />

Under<br />

ˆ " i transformation<br />

P 0 = M +<br />

can move<br />

!<br />

!<br />

p "<br />

2<br />

p 0 + p 3<br />

2M ; p3 = #<br />

!<br />

p "<br />

2<br />

2M<br />

same<br />

!<br />

(p 0 ) 2 " (p 3 ) 2 = (M +<br />

!<br />

p #<br />

2<br />

2M )2 " ("<br />

!<br />

p #<br />

2<br />

2M )2 = M 2 + ! p # 2 = 2p + p " > 0<br />

Rational Energy-Momentum D<strong>is</strong>persion Relation<br />

Vacuum gets simpler <strong>in</strong> LFD.


!<br />

Angular Momentum<br />

[J i ,J j ] = i" ijk<br />

J k ,[J i ,M] = 0<br />

{ }<br />

T = Exp "i(# ˆ<br />

1<br />

$<br />

1 + # ˆ<br />

2<br />

$ 2 )<br />

[" ˆ i ," ˆ j ] = i# " ˆ k , [" ˆ i , M] = 0<br />

ijk<br />

!<br />

T | n >=| p,n ><br />

ˆ " i | p,n >= TJ i | n ><br />

!<br />

" ˆ i = TJ i T +


" ˆ ( 3 = J 3 pˆ<br />

+ ˆ<br />

#<br />

z $ ( p ! !<br />

%<br />

&' ˆ +<br />

)<br />

%<br />

),<br />

*<br />

- / M s<strong>in</strong>.<br />

!<br />

" ˆ<br />

%<br />

= J ! (<br />

%<br />

+ p ! z<br />

%<br />

cos. J 3 + ˆ $ ( p ! !<br />

5 /<br />

%<br />

&' ˆ 2<br />

%<br />

)<br />

1<br />

0<br />

pˆ #<br />

+ M s<strong>in</strong>. 4 # (ˆ z & p ! /<br />

)<br />

%<br />

)s<strong>in</strong>. 1<br />

K 3 +<br />

* 5<br />

3<br />

0<br />

" #$ /4<br />

pˆ<br />

!<br />

!<br />

p %<br />

$ E ˆ 2 +<br />

%<br />

5<br />

,<br />

#<br />

+ M s<strong>in</strong>. 4<br />

3 - 5<br />

" 3 = J 3 + z ˆ # ( !<br />

! '<br />

" $<br />

= ( z ˆ % ( p ! & E $ !& p ! + F $<br />

+ p !<br />

$<br />

K 3 ) &<br />

)<br />

" 3 = W +<br />

E $<br />

% p !<br />

$<br />

) / p +<br />

!<br />

p $<br />

p +<br />

( p ) $<br />

p + J 3 + z ˆ # E !<br />

$<br />

% !<br />

*<br />

+<br />

, / M<br />

p + W ˆµ = 1 2 ! ˆµ ˆ" ˆ# ˆ$ p ˆ" J ˆ# ˆ$<br />

[" 3 , Stability Group Members] = 0


Interpolat<strong>in</strong>g Sp<strong>in</strong>ors<br />

ˆ! 3 û (1) (1)<br />

CR<br />

= (+1)û CR


Interpolat<strong>in</strong>g Sp<strong>in</strong>ors<br />

ˆ! 3 û (2) (2)<br />

CR<br />

= ("1)û CR


Interpolat<strong>in</strong>g Helicity Amplitude<br />

ˆM(! 1<br />

, ! 2<br />

, ! 3<br />

, ! 4<br />

) = ˆ"( ˆp 2<br />

, ! 2<br />

)# ˆµû( ˆp 1<br />

, ! 1<br />

)û( ˆp 3<br />

, ! 3<br />

)# ˆµ ˆ"( ˆp 4<br />

, ! 4<br />

)


Jacob-Wick Helicity vs. <strong>Light</strong>-<strong>Front</strong> Helicity<br />

Invariant under k<strong>in</strong>ematic transformations<br />

Related by a rotation


Canonical Quantization<br />

Simple 1+1 dim QFT:<br />

L = 1 2 ! µ! ! µ ! " 1 2 m2 ! 2<br />

L = C #<br />

$<br />

2 (! ˆ+!) 2 " (! ˆ"!) 2<br />

%<br />

& + S(! ˆ+!)(! ˆ"!)" 1 2 m2 ! 2<br />

C = cos(2!), S = s<strong>in</strong>(2!)<br />

! (x) = !L<br />

!(! 0<br />

") = !0 "<br />

! (x) = C! ˆ+" + S! ˆ""<br />

Conjugate field:<br />

Equal-time quantization:<br />

[! (x),"(y)] x 0 =y 0 = !i#(x 3 ! y 3 )<br />

[! (x),"(y)] x ˆ+ =y ˆ+ = !i#(x ˆ! ! y ˆ! )


T µ" =<br />

&<br />

k<br />

# L<br />

#(# µ<br />

$ k<br />

) #" $ k<br />

% g µ" L<br />

Pˆ+<br />

Energy<br />

= "<br />

ˆ!<br />

dx (! # ˆ+" ! L)<br />

= 1 2<br />

Periodic Boundary Condition:<br />

!(x ˆ+ = 0, x ˆ! ) =<br />

$<br />

%<br />

P 0 = # dx 3 (! ! 0<br />

" L)<br />

&<br />

'<br />

!(x ˆ+ , x ˆ! ! !) = !(x ˆ+ , x ˆ! + !)<br />

" dx ˆ! C{(# ˆ+") 2 + (# ˆ!") 2 }+ m 2 " 2<br />

.<br />

/<br />

n=!.<br />

!<br />

! n<br />

= n 2 + C m! $<br />

# &<br />

" " %<br />

Pˆ+ = !<br />

#<br />

! " !<br />

2<br />

1<br />

(<br />

a n<br />

e !i "<br />

$<br />

n" # !<br />

*<br />

4"# n )*<br />

%<br />

'x ˆ!<br />

&<br />

$ !" & n<br />

' S n $<br />

(#<br />

& a + n<br />

a n<br />

% " C %<br />

n<br />

"<br />

$<br />

+ a + n<br />

e i n" # !<br />

[a m<br />

, a n + ] = ! mn<br />

%<br />

'x ˆ!<br />

&<br />

+<br />

-<br />

,-


Symmetry Break<strong>in</strong>g<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

2 1 1 2<br />

! !"<br />

= ! +"<br />

2 1 1<br />

L ! L " = L # m 2 ! " # 1 2 m2 ! 2<br />

( ) 1/2 !<br />

Pˆ+ ! Pˆ+ " = Pˆ+ + m3 !<br />

(a<br />

C 1/4 0<br />

+ a + 0<br />

)


Nontrivial Vacuum State<br />

| 0 > ! | " ><br />

! !"<br />

= ! +"<br />

$ +! '<br />

| ! > = exp&<br />

i # dx ˆ" ! " (x ˆ" )) | 0 ><br />

%<br />

(<br />

Translation <strong>in</strong> scalar field:<br />

! (x ˆ+ = 0, x ˆ! ) = !i<br />

"!<br />

.<br />

/<br />

n=!.<br />

" ! %<br />

$ '<br />

# ! &<br />

"<br />

(<br />

n<br />

4! a ne !i "<br />

$<br />

n! # !<br />

*<br />

)*<br />

%<br />

'x ˆ!<br />

&<br />

"<br />

$<br />

! a + n<br />

e i n! # !<br />

%<br />

'x ˆ!<br />

&<br />

+<br />

-<br />

,-<br />

#<br />

| ! >= exp "(C 1/2 m!) ! 2 &<br />

%<br />

(exp#"(C 1/2 m!) 1/2 +<br />

$ !a 0<br />

&<br />

'<br />

$ 2 '<br />

| 0 ><br />

Condensation <strong>of</strong> Zero-Modes


Vacuum Energy<br />

Pˆ+ | ! >= E !<br />

| ! ><br />

a e !a+ | 0 >= ! e !a+ | 0 ><br />

Pˆ+<br />

#<br />

m!<br />

| ! >"<br />

C a ( +<br />

1/2 0a 0<br />

+ m3 !) 1/2 !<br />

&<br />

%<br />

(a<br />

C 1/4 0<br />

+ a + 0<br />

)(<br />

%<br />

( exp # )(C1/2 m!) 1/2 +<br />

$ !a 0<br />

&<br />

' | 0 ><br />

$<br />

'<br />

= ()m 2 ! 2 !) exp #)(C 1/2 m!) 1/2 +<br />

$ !a 0<br />

&<br />

' | 0 ><br />

+!<br />

#<br />

"!<br />

E !<br />

= "m 2 ! 2 ! = (" 1 2 m2 ! 2 )dx ˆ"<br />

Independent <strong>of</strong> <strong>in</strong>terpolation angle!


Recovery <strong>of</strong> Trivial Vacuum <strong>in</strong> LFD<br />

#<br />

| ! >= exp "(C 1/2 m!) ! 2<br />

%<br />

$ 2<br />

&<br />

(exp#"(C 1/2 m!) 1/2 +<br />

$ !a 0<br />

'<br />

&<br />

' | 0 ><br />

| ! >"| 0 > as C " 0<br />

However,<br />

E !<br />

and<br />

< ! |!(x) | ! >= ""<br />

are still <strong>in</strong>dependent <strong>of</strong> <strong>in</strong>terpolation angle!


<strong>What</strong> <strong>is</strong> go<strong>in</strong>g on?<br />

< ! |!(x) | ! ><br />

'<br />

+<br />

=< 0 | exp #<br />

$ (C 1/2 m!) 1/2 "(a + 0<br />

" a 0<br />

)%<br />

a 0<br />

+ a 0<br />

&)<br />

( 2(C 1/2 m!) 1/2<br />

= ""<br />

*<br />

,exp#<br />

$ "(C 1/2 m!) 1/2 "(a + 0<br />

" a 0<br />

)%<br />

&<br />

+<br />

| 0 ><br />

Complication <strong>is</strong> transferred from vacuum to operator.


Summary<br />

• LFD <strong>is</strong> not just formal but consequential<br />

<strong>in</strong> the analys<strong>is</strong> <strong>of</strong> physical observables.<br />

• Longitud<strong>in</strong>al boost jo<strong>in</strong>s stability group <strong>in</strong><br />

LFD.<br />

• LF helicity amplitudes are <strong>in</strong>dependent <strong>of</strong><br />

all references frames that are related by<br />

front-form boosts.<br />

• Energy-momentum d<strong>is</strong>persion relation<br />

becomes rational and vacuum gets<br />

simpler <strong>in</strong> LFD.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!