18.03.2014 Views

On Some Applications of New Integral Transform “ELzaki Transform”

On Some Applications of New Integral Transform “ELzaki Transform”

On Some Applications of New Integral Transform “ELzaki Transform”

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

18 Tarig. M. Elzaki et al<br />

Pro<strong>of</strong><br />

−at<br />

We have, by definition ⎡ ( )<br />

∞<br />

0<br />

( 1+<br />

)<br />

au t<br />

u<br />

( )<br />

Ε ⎣e f t ⎤<br />

⎦ = u∫ e f t dt . Let<br />

−<br />

u<br />

w = or<br />

1 + au<br />

w<br />

u = , we have:<br />

1 − aw<br />

∞ a<br />

∞ t<br />

−<br />

w −<br />

1 1<br />

u<br />

w<br />

⎡ u ⎤<br />

u∫e f () t dt = e f () t dt = T ( w)<br />

= T and<br />

1−aw ∫<br />

1− aw au ⎢1<br />

0 0<br />

1<br />

au ⎥<br />

− ⎣ + ⎦<br />

1+<br />

au<br />

−at<br />

u<br />

Ε ⎡<br />

⎣e f () t ⎤<br />

⎦ = ( 1+<br />

au)<br />

T<br />

1+<br />

au<br />

Theorem (5)<br />

−<br />

u<br />

If Ε ⎡⎣f ( t) ⎤⎦ = T ( u),<br />

then: Ε⎡⎣f ( t −a) H ( t − a) ⎤⎦<br />

= e T ( u)<br />

Where H ( t − a)<br />

is Heaviside unit step function.<br />

Pro<strong>of</strong><br />

It follows from the definition that:<br />

∞<br />

a<br />

−<br />

−<br />

u<br />

u<br />

( ) ( ) ⎤ ( ) ( ) ( )<br />

Ε⎡f t−a H t− a = u e f t−a H t− a dt = u e f t−a dt<br />

⎣ ⎦ ∫ ∫<br />

Let t a τ ,<br />

0 0<br />

a ∞ t a<br />

− − −<br />

u<br />

u<br />

τ<br />

− = then we have: e u e f ( τ) dτ<br />

= e T( u)<br />

∫<br />

0<br />

2<br />

In particular if f ( t ) = 1, then: H ( t a) u e − u<br />

Ε⎡⎣ − ⎤⎦<br />

=<br />

Also we can prove by mathematical induction that:<br />

n−1<br />

⎡<br />

a<br />

( t−<br />

a)<br />

⎤<br />

−<br />

n+<br />

1 u<br />

Ε⎢<br />

H ( t− a)<br />

⎥ = u e<br />

⎢ Γ( n<br />

⎣<br />

) ⎥⎦<br />

Example (1) (Linear dynamical systems and signals)<br />

In physical and engineering sciences, a large number <strong>of</strong> linear dynamical systems<br />

with a time dependent input signal f ( t ) that generates an output signal x ( t ) can be<br />

described by the ordinary differential equation with constant coefficients.<br />

n n−<br />

( 1 m m−<br />

D + a ) ( ) ( 1<br />

n−1D + ... + a0 x t = D + bm−<br />

1D + .... + b0) f ( t)<br />

(1)<br />

d<br />

Where D = , a0, a1,... an−<br />

1<br />

, b0, b1,...<br />

bm−<br />

1<br />

are constants<br />

dx<br />

We apply ELzaki transform to find the output x ( t ) so that (1) becomes.<br />

P ( u) x ( u) R ( u) q ( u) f ( u) s ( u)<br />

− = − (2)<br />

n n−1 m m−1<br />

a<br />

a<br />

∞<br />

t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!