18.03.2014 Views

On Some Applications of New Integral Transform “ELzaki Transform”

On Some Applications of New Integral Transform “ELzaki Transform”

On Some Applications of New Integral Transform “ELzaki Transform”

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Global Journal <strong>of</strong> Mathematical Sciences: Theory and Practical.<br />

ISSN 0974-3200 Volume 4, Number 1 (2012), pp. 15-23<br />

© International Research Publication House<br />

http://www.irphouse.com<br />

<strong>On</strong> <strong>Some</strong> <strong>Applications</strong> <strong>of</strong> <strong>New</strong> <strong>Integral</strong> <strong>Transform</strong><br />

“ELzaki <strong>Transform</strong>”<br />

1 Tarig M. Elzaki, 2 Salih M. Elzaki and 3 Elsayed A. Elnour<br />

1 Math. Dept., Faculty <strong>of</strong> Sciences and Arts, Alkamil,<br />

King Abdulaziz University, Jeddah, Saudi Arabia<br />

1 Math. Dept., Sudan University <strong>of</strong> Science and Technology, Sudan<br />

2 Math. Dept., Sudan University <strong>of</strong> Science and Technology, Sudan<br />

3 Math. Dept., Faculty <strong>of</strong> Sciences and Arts, Khulais,<br />

King Abdulaziz University, Jeddah, Saudi Arabia<br />

3 Math. Dept., Alzaeim Alazhari University, Sudan<br />

E-mail: 1 tarig.alzaki@gmail.com, 2 salih.alzaki@gmail.com,<br />

3 sayedbayen@yahoo.com<br />

Abstract<br />

In this study a new integral transform, namely ELzaki transform was applied<br />

to solve linear ordinary differential equations with constant coefficients. In<br />

particular we apply this new transform technique to solve linear dynamic<br />

systems and signals-delay differential equations and the renewal equation in<br />

statistics.<br />

Keywords: Elzaki <strong>Transform</strong>- Differential Equations--<strong>Applications</strong>.<br />

Introduction<br />

Many problems <strong>of</strong> physical interest are described by differential and integral<br />

equations with appropriate initial or boundary conditions. These problems are usually<br />

formulated as initial value problem, boundary value problems, or initial – boundary<br />

value problem that seem to be mathematically more vigorous and physically realistic<br />

in applied and engineering sciences. ELzaki transform method is very effective for<br />

solution <strong>of</strong> differential and integral equations.<br />

The technique that we used is ELzaki transform method which is based on Fourier<br />

transform, it introduced by Tarig Elzaki (2010) see [1, 2, 3, 4, 5, 6].<br />

In this study, ELzaki transform is applied to solve linear dynamic systems and<br />

signals-delay differential equations and the renewal equation in statistics, which the<br />

solution <strong>of</strong> these equations have a major role in the fields <strong>of</strong> science and engineering.


16 Tarig. M. Elzaki et al<br />

When a physical system is modeled under the differential sense, if finally gives a<br />

differential equation.<br />

Recently .Tarig ELzaki introduced a new transform and named as ELzaki<br />

transform [1] which is defined by:<br />

∞<br />

−<br />

u<br />

(), ⎤ ( ) () , ( , )<br />

Ε ⎡⎣f t u⎦ = T u = u∫<br />

e f t dt u∈<br />

k k<br />

0<br />

t<br />

1 2<br />

Or for a function f ( t ) which is <strong>of</strong> exponential order,<br />

f<br />

( t)<br />

⎧<br />

⎪Me<br />

− t k<br />

< ⎨<br />

t<br />

⎪<br />

k 2<br />

Me t ≥<br />

⎩<br />

1<br />

, t ≤ 0<br />

, 0<br />

∞<br />

() ( ) 2 −t<br />

, ⎤<br />

( ) , ( , )<br />

Ε ⎡⎣f t u⎦ = T u = u ∫ e f ut dt u∈<br />

k k<br />

Theorem (1)<br />

Let T( u)<br />

is the ELzaki transform <strong>of</strong> ⎡ ( )<br />

Pro<strong>of</strong><br />

0<br />

1 2<br />

( ) = ( ) ⎤.<br />

⎣<br />

E f t T u<br />

⎦ then:<br />

T( u)<br />

T( u)<br />

i Ε ⎡⎣f′ t ⎤⎦ = −u f ( 0) ( ii) Ε ⎡f ( t)<br />

f 0 uf 0<br />

2<br />

u<br />

⎣<br />

′′ ⎤⎦<br />

= − − ′<br />

u<br />

n−1<br />

( n<br />

( ) ) T( u) 2− n+<br />

k ( k<br />

iii Ε ⎡f () t ⎤<br />

u f )<br />

⎣ ⎦<br />

= −<br />

( 0<br />

n ∑<br />

)<br />

u<br />

() ()<br />

() Ε ⎡ ′() ⎤ = ′()<br />

∞<br />

0<br />

−t<br />

u<br />

k=<br />

0<br />

i ⎣f t ⎦ u∫ f t e dt Integrating by parts to find that:<br />

( )<br />

T u<br />

Ε ⎡f () t ⎤<br />

⎣<br />

′<br />

⎦<br />

= − u f<br />

u<br />

( 0)<br />

1<br />

⎣ ⎦<br />

u<br />

⎣ ⎦<br />

( ii ) Let g ( t) = f ′( t) , then: Ε ⎡g′<br />

() t ⎤= Ε⎡g() t ⎤ −ug( 0)<br />

We find that, by using( i ):<br />

T( u)<br />

Ε ⎡⎣f′′ () t ⎤⎦<br />

= − f 0 −uf′<br />

0<br />

2<br />

u<br />

( ) ( )<br />

( iii ) Can be pro<strong>of</strong> by mathematical induction<br />

( ) ( )


<strong>On</strong> <strong>Some</strong> <strong>Applications</strong> <strong>of</strong> <strong>New</strong> <strong>Integral</strong> <strong>Transform</strong> “ELzaki <strong>Transform</strong>” 17<br />

Theorem (2)<br />

{ }<br />

t / k<br />

j<br />

i<br />

Let f () t ∈ A= f () t ∃ M, k1, k2<br />

> 0, such that f () t < Me , if t∈( − 1) × [ 0, ∞ )<br />

With Laplace transform F ( s ), Then ELzaki transform T( u)<br />

<strong>of</strong> f ( )<br />

⎛1<br />

⎞<br />

T( u)<br />

= uF⎜ ⎟<br />

⎝ u ⎠<br />

Pro<strong>of</strong><br />

Let: f () t<br />

∞<br />

( ) =<br />

2 −t<br />

∫ ( )<br />

0<br />

∈ A, then for − k1< u<<br />

k2<br />

Tu u e futdt<br />

∞<br />

t is given by<br />

w<br />

w<br />

−<br />

2 dw − 1<br />

u<br />

u<br />

⎛ ⎞<br />

Let w= ut then we have: T( u) = u ∫e f ( w) = u e f ( w)<br />

dw uF .<br />

u<br />

∫<br />

= ⎜ ⎟<br />

u<br />

0 0<br />

⎝ ⎠<br />

Also we have that T () 1 = F ( 1)<br />

so that both the ELzaki and Laplace transforms<br />

must coincide at u= s=<br />

1<br />

Theorem (3)<br />

Let () ( )<br />

F s and Gs ()<br />

and ELzaki transforms M ( u ) and Nu. ( ) Then ELzaki transform <strong>of</strong> the convolution<br />

f t and g t be defined in A having Laplace transforms ( )<br />

<strong>of</strong> f and g<br />

Pro<strong>of</strong><br />

∞<br />

( f * g) ( t)<br />

= ∫ f ( t) g( t−τ<br />

) dτ<br />

Is given by: E ⎡⎣( f * g) ( t)<br />

⎤ ⎦ = M ( u) N( u)<br />

0<br />

The Laplace transform <strong>of</strong> ( f * g ) is given by: L ⎡⎣( f * g) ⎤ ⎦ = F( s) G( s)<br />

By the duality relation (Theorem (2)), we have: ( ) = ( )<br />

E ⎡⎣ f * g ( t) ⎤⎦ uL⎡⎣ f * g ( t)<br />

⎤⎦ ,<br />

and since<br />

⎛1⎞ ⎛1⎞ ⎡ ⎛1⎞ ⎛1⎞⎤<br />

M( v) = uF⎜ ⎟ , N( u) = uG⎜ ⎟ Then E⎡( f * g)<br />

( t) ⎤ = u F . G<br />

u u<br />

⎣ ⎦ ⎢ ⎜ ⎟ ⎜ ⎟<br />

u u<br />

⎥<br />

⎝ ⎠ ⎝ ⎠ ⎣ ⎝ ⎠ ⎝ ⎠⎦<br />

⎡M ( u) N( u)<br />

⎤ 1<br />

u⎢<br />

. ⎥ = M ( u) N( u)<br />

⎣ u u ⎦ u<br />

Theorem (4)<br />

u<br />

Ε<br />

⎣<br />

e − f t<br />

⎦<br />

= + au T<br />

⎛ ⎜ ⎞<br />

⎟<br />

⎝1+<br />

au ⎠<br />

at<br />

If Ε ⎡⎣f ( t) ⎤⎦ = T ( u),<br />

then: ⎡ ( ) ⎤ ( 1 )<br />

Where a is a real constant.<br />

∞<br />

1<br />

u


18 Tarig. M. Elzaki et al<br />

Pro<strong>of</strong><br />

−at<br />

We have, by definition ⎡ ( )<br />

∞<br />

0<br />

( 1+<br />

)<br />

au t<br />

u<br />

( )<br />

Ε ⎣e f t ⎤<br />

⎦ = u∫ e f t dt . Let<br />

−<br />

u<br />

w = or<br />

1 + au<br />

w<br />

u = , we have:<br />

1 − aw<br />

∞ a<br />

∞ t<br />

−<br />

w −<br />

1 1<br />

u<br />

w<br />

⎡ u ⎤<br />

u∫e f () t dt = e f () t dt = T ( w)<br />

= T and<br />

1−aw ∫<br />

1− aw au ⎢1<br />

0 0<br />

1<br />

au ⎥<br />

− ⎣ + ⎦<br />

1+<br />

au<br />

−at<br />

u<br />

Ε ⎡<br />

⎣e f () t ⎤<br />

⎦ = ( 1+<br />

au)<br />

T<br />

1+<br />

au<br />

Theorem (5)<br />

−<br />

u<br />

If Ε ⎡⎣f ( t) ⎤⎦ = T ( u),<br />

then: Ε⎡⎣f ( t −a) H ( t − a) ⎤⎦<br />

= e T ( u)<br />

Where H ( t − a)<br />

is Heaviside unit step function.<br />

Pro<strong>of</strong><br />

It follows from the definition that:<br />

∞<br />

a<br />

−<br />

−<br />

u<br />

u<br />

( ) ( ) ⎤ ( ) ( ) ( )<br />

Ε⎡f t−a H t− a = u e f t−a H t− a dt = u e f t−a dt<br />

⎣ ⎦ ∫ ∫<br />

Let t a τ ,<br />

0 0<br />

a ∞ t a<br />

− − −<br />

u<br />

u<br />

τ<br />

− = then we have: e u e f ( τ) dτ<br />

= e T( u)<br />

∫<br />

0<br />

2<br />

In particular if f ( t ) = 1, then: H ( t a) u e − u<br />

Ε⎡⎣ − ⎤⎦<br />

=<br />

Also we can prove by mathematical induction that:<br />

n−1<br />

⎡<br />

a<br />

( t−<br />

a)<br />

⎤<br />

−<br />

n+<br />

1 u<br />

Ε⎢<br />

H ( t− a)<br />

⎥ = u e<br />

⎢ Γ( n<br />

⎣<br />

) ⎥⎦<br />

Example (1) (Linear dynamical systems and signals)<br />

In physical and engineering sciences, a large number <strong>of</strong> linear dynamical systems<br />

with a time dependent input signal f ( t ) that generates an output signal x ( t ) can be<br />

described by the ordinary differential equation with constant coefficients.<br />

n n−<br />

( 1 m m−<br />

D + a ) ( ) ( 1<br />

n−1D + ... + a0 x t = D + bm−<br />

1D + .... + b0) f ( t)<br />

(1)<br />

d<br />

Where D = , a0, a1,... an−<br />

1<br />

, b0, b1,...<br />

bm−<br />

1<br />

are constants<br />

dx<br />

We apply ELzaki transform to find the output x ( t ) so that (1) becomes.<br />

P ( u) x ( u) R ( u) q ( u) f ( u) s ( u)<br />

− = − (2)<br />

n n−1 m m−1<br />

a<br />

a<br />

∞<br />

t


<strong>On</strong> <strong>Some</strong> <strong>Applications</strong> <strong>of</strong> <strong>New</strong> <strong>Integral</strong> <strong>Transform</strong> “ELzaki <strong>Transform</strong>” 19<br />

Where,<br />

1 an−<br />

1 b<br />

Pn( u) = + + ... + a , q ( u)<br />

= + + ... + b<br />

u u u u<br />

1 m−1<br />

n n−1 0 m<br />

m m−1<br />

0<br />

n−1 n−2<br />

∑<br />

2− n+ k ( k<br />

( ) ) 3− n+<br />

k ( k<br />

= ( 0) + )<br />

( 0 ) + ... + ( 0)<br />

R u u x a u x ux<br />

n−1 n−1<br />

k= 0 k=<br />

0<br />

m−1 m−2<br />

∑<br />

2− m+ k ( k<br />

( ) ) 3− m+<br />

k ( k<br />

= ( 0) + )<br />

( 0 ) + ... + ( 0)<br />

S u u f b u f uf<br />

∑<br />

∑<br />

m−1 m−1<br />

k= 0 k=<br />

0<br />

It is convenient to express (2) in the form<br />

x u = h u f u + g u<br />

(3)<br />

( ) ( ) ( ) ( )<br />

Where<br />

( )<br />

( ) = qm<br />

u<br />

p ( u)<br />

And g ( u )<br />

h u<br />

n<br />

( ) −<br />

m−<br />

( )<br />

P ( u)<br />

R u S u<br />

n−1 1<br />

= (4)<br />

n<br />

And h ( u ) is usually called the transfer function. The inverse ELzaki transform<br />

combined with the convolution theorem leads to the formal solution,<br />

t<br />

( ) = ( − τ) ( τ) τ + ( )<br />

x t ∫ f t h d g t<br />

(5)<br />

0<br />

With zero initial data, g ( u ) = 0. the transfer function takes the simple form.<br />

x ( u )<br />

h ( u)<br />

= f ( u )<br />

or x ( u ) h ( u ) f ( u )<br />

t<br />

If f ( t) = δ ( t)<br />

and h( t) e<br />

( )<br />

x t<br />

3<br />

−1<br />

⎡ u ⎤<br />

t<br />

=Ε ⎢ = e −1<br />

1+<br />

u<br />

⎥<br />

⎣ ⎦<br />

= (6)<br />

= then, the output function is<br />

h( t ) is known as the impulse response.<br />

Example (2) (Delay Differential Equations)<br />

In many problems the derivatives <strong>of</strong> the unknown function x ( t ) are related to its<br />

value at different times t −τ.<br />

this leads us to consider differential equations <strong>of</strong> the<br />

form:<br />

dx<br />

+ ax ( t − τ ) = f ( t )<br />

(7)<br />

dt<br />

Where a is a constant and f ( t ) is a given function. Equations <strong>of</strong> this type are<br />

called delay differential equations. In general , initial value problems for these<br />

equations involve the specification <strong>of</strong> x ( t ) in the interval t 0<br />

−τ<br />

≤t≤ t 0<br />

and this


20 Tarig. M. Elzaki et al<br />

information combined with the equation it self, is sufficient to determine x ( t ) for<br />

t > t . We show how equation (7) can be solved by ELzaki transform when 0<br />

t<br />

0<br />

= 0<br />

and x ( t) = x<br />

0<br />

for t ≤ 0. In view <strong>of</strong> the initial condition , we can write.<br />

x ( t − τ ) = x ( t −τ) H ( t − τ)<br />

So equation (7) is equivalent to,<br />

dx<br />

+ ax ( t −τ) H ( t − τ) = f ( t )<br />

(8)<br />

dt<br />

Applying ELzaki transform to (8) gives,<br />

( )<br />

x u<br />

u<br />

τ<br />

−<br />

u<br />

( 0) ( ) ( )<br />

− ux + ae x u = f u<br />

Or ( )<br />

And<br />

2<br />

( ) + u x( 0)<br />

τ<br />

uf u<br />

2<br />

⎡<br />

− ⎤<br />

u<br />

x u = = u f ( u) u x( 0)<br />

1 aue<br />

τ<br />

−<br />

⎣<br />

⎡ + ⎤<br />

⎦⎢<br />

+ ⎥<br />

u<br />

1+<br />

aue<br />

⎣ ⎦<br />

2<br />

n<br />

( ) = ⎡ ( ) + ( 0) ⎤ ( −1) ( )<br />

∞<br />

n = 0<br />

n<br />

x u<br />

⎣<br />

uf u u x<br />

⎦∑ au e<br />

(9)<br />

nτ<br />

−<br />

u<br />

The inverse ELzaki transform gives the formal solution:<br />

−1 2<br />

n<br />

() =Ε ⎡ ( ) + ( 0) ⎤ ( −1) ( )<br />

∞<br />

x t<br />

⎣<br />

u f u u x<br />

⎦∑ au e<br />

(10)<br />

n=<br />

0<br />

In order to write an explicit solution, we choose x<br />

0<br />

= 0 and f ( t)<br />

= t and hence<br />

(10) be comes.<br />

nτ<br />

n+<br />

2<br />

∞<br />

1 4<br />

n n −<br />

∞<br />

−<br />

⎡ ⎤ n n ( t−<br />

nτ<br />

)<br />

u<br />

xt () =Ε ⎢u∑( − 1)( au) e ⎥= ∑ ( −1 ) a Ht ( − nτ<br />

)<br />

⎣ n= 0 ⎦ n=<br />

0 ( n + 2! )<br />

, t><br />

0<br />

Example (3) (Renewal Equation in statistics)<br />

The random function x ( t ) <strong>of</strong> time t represents the number <strong>of</strong> times some event has<br />

occurred between time 0 and time t , and usually referred to as a counting Process. A<br />

random variable X<br />

n<br />

that recodes the time it assumes for X to get the value n from<br />

the n − 1 is referred to as an inter-arrival time .If the random variables X<br />

1, X<br />

2....<br />

are<br />

independent and identically distributed, then the counting process X ( t ) is called a<br />

renewal process. We denote their common Probability distribution function by F ( t )<br />

and the density function by f ( t ) so that F ( t) f ( t).<br />

n<br />

nτ<br />

−<br />

u<br />

−1<br />

′ = Then renewal function is<br />

defined by the expected number <strong>of</strong> time the event being counted occurs by time t and<br />

is denoted by r( t ) so that .


<strong>On</strong> <strong>Some</strong> <strong>Applications</strong> <strong>of</strong> <strong>New</strong> <strong>Integral</strong> <strong>Transform</strong> “ELzaki <strong>Transform</strong>” 21<br />

∞<br />

() ()<br />

0<br />

{ 1 } ( )<br />

rt () =Ε ⎡⎣X t⎤⎦ = ∫ Ε ⎡⎣xt ⎤⎦:<br />

X = x f x dx<br />

(11)<br />

{ 1 }<br />

Where Ε X ( t)<br />

: X = x is the conditional expected value <strong>of</strong> X ( )<br />

condition that X<br />

1<br />

= x and has the value.<br />

{ X ( t)<br />

: X<br />

1<br />

x} ⎡1<br />

r( t x ) ⎤H ( t x )<br />

t under the<br />

Ε = = ⎣ + − ⎦ −<br />

(12)<br />

Thus<br />

t<br />

( ) = ⎡1<br />

+ ( − ) ⎤ ( )<br />

∫<br />

r t ⎣ r t x ⎦f x dx<br />

Or<br />

0<br />

t<br />

( ) = ( ) + ( − ) ( )<br />

r t F t ∫ r t x f x dx<br />

(13)<br />

0<br />

This is called the renewal equation in mathematical statistics .We solve the<br />

equation by taking ELzaki transform with respect to t , and ELzaki transformed<br />

equation is,<br />

1<br />

uF ( u )<br />

r ( u) = F( u) + r ( u) f ( u)<br />

Or r ( u)<br />

=<br />

u<br />

u − f u<br />

The inverse transform gives the formal solution rt () <strong>of</strong> renewal function.<br />

3<br />

t<br />

t<br />

−1<br />

⎡ u ⎤ 1<br />

(i) If F ( t) = e and f ( t) = e , then: r( t)<br />

=Ε ⎢ =<br />

2 sin h 2 t<br />

1 2u<br />

⎥<br />

⎣ − ⎦ 2<br />

(ii) If F ( t)<br />

= t and ( ) 1,<br />

f t = then: ( )<br />

( )<br />

2<br />

−1⎡ u 2⎤<br />

t<br />

r t = E ⎢ − u = e −1<br />

1−u<br />

⎥<br />

⎣ ⎦<br />

Conclusion<br />

In this study, we introduced new integral transform called ELzaki transform to solve<br />

linear dynamical systems and signals – delay differential equations and the renewal<br />

equation in statistics. It has been shown that ELzaki transform is a very efficient tool<br />

for solving these equations


22 Tarig. M. Elzaki et al<br />

References<br />

[1] Tarig M. Elzaki, The <strong>New</strong> <strong>Integral</strong> <strong>Transform</strong> “Elzaki <strong>Transform</strong>” Global<br />

Journal <strong>of</strong> Pure and Applied Mathematics, ISSN 0973-1768,Number 1(2011),<br />

pp. 57-64.<br />

[2] Tarig M. Elzaki & Salih M. Elzaki, Application <strong>of</strong> <strong>New</strong> <strong>Transform</strong> “Elzaki<br />

<strong>Transform</strong>” to Partial Differential Equations, Global Journal <strong>of</strong> Pure and<br />

Applied Mathematics, ISSN 0973-1768,Number 1(2011), pp. 65-70.<br />

[3] Tarig M. Elzaki & Salih M. Elzaki, <strong>On</strong> the Connections Between Laplace and<br />

Elzaki transforms, Advances in Theoretical and Applied Mathematics, ISSN<br />

0973-4554 Volume 6, Number 1(2011),pp. 1-11.<br />

[4] Tarig M. Elzaki & Salih M. Elzaki, <strong>On</strong> the Elzaki <strong>Transform</strong> and Ordinary<br />

Differential Equation With Variable Coefficients, Advances in Theoretical and<br />

Applied Mathematics. ISSN 0973-4554 Volume 6, Number 1(2011), pp. 13-18.<br />

[5] Tarig M. Elzaki, Adem Kilicman, Hassan Eltayeb. <strong>On</strong> Existence and<br />

Uniqueness <strong>of</strong> Generalized Solutions for a Mixed-Type Differential Equation,<br />

Journal <strong>of</strong> Mathematics Research, Vol. 2, No. 4 (2010) pp. 88-92.<br />

[6] Tarig M. Elzaki, Existence and Uniqueness <strong>of</strong> Solutions for Composite Type<br />

Equation, Journal <strong>of</strong> Science and Technology, (2009). pp. 214-219.<br />

[7] Lokenath Debnath and D. Bhatta. <strong>Integral</strong> transform and their Application<br />

second Edition, Chapman & Hall /CRC (2006).<br />

[8] A.Kilicman and H.E.Gadain. An application <strong>of</strong> double Laplace transform and<br />

Sumudu transform, Lobachevskii J. Math.30 (3) (2009), pp.214-223.<br />

[9] J. Zhang, A Sumudu based algorithm m for solving differential equations,<br />

Comp. Sci. J. Moldova 15(3) (2007), pp – 303-313.<br />

[10] Hassan Eltayeb and Adem kilicman, A Note on the Sumudu <strong>Transform</strong>s and<br />

differential Equations, Applied Mathematical Sciences, VOL, 4,2010,<br />

no.22,1089-1098<br />

[11] Kilicman A. & H. ELtayeb. A note on <strong>Integral</strong> <strong>Transform</strong> and Partial<br />

Differential Equation, Applied Mathematical Sciences, 4(3) (2010), PP.109-<br />

118.<br />

[12] Hassan ELtayeh and Adem kilicman, on <strong>Some</strong> <strong>Applications</strong> <strong>of</strong> a new <strong>Integral</strong><br />

<strong>Transform</strong>, Int. Journal <strong>of</strong> Math. Analysis, Vol, 4, 2010, no.3, 123-132.


<strong>On</strong> <strong>Some</strong> <strong>Applications</strong> <strong>of</strong> <strong>New</strong> <strong>Integral</strong> <strong>Transform</strong> “ELzaki <strong>Transform</strong>” 23<br />

Appendix<br />

ELzaki <strong>Transform</strong> <strong>of</strong> some Functions<br />

f ( t )<br />

Ε ⎡f ( t) ⎤ = T ( u)<br />

2<br />

1<br />

t<br />

3<br />

⎣<br />

u<br />

u<br />

n<br />

nu !<br />

+<br />

n<br />

2<br />

t<br />

t<br />

a−1<br />

( a)<br />

Γ , a><br />

0<br />

a 1<br />

u +<br />

at<br />

2<br />

e<br />

u<br />

1−au<br />

3<br />

u<br />

2<br />

( 1−au<br />

)<br />

n−1<br />

at<br />

n + 1<br />

t e<br />

u<br />

, n = 1,2,....<br />

n<br />

( n − 1! )<br />

( 1−au<br />

)<br />

sinat<br />

3<br />

au<br />

2 2<br />

1+ au<br />

cosat 2<br />

u<br />

2 2<br />

1+ au<br />

sinhat<br />

3<br />

au<br />

2 2<br />

1−a u<br />

cos hat 2<br />

au<br />

2 2<br />

1−a u<br />

3<br />

sinbt<br />

bu<br />

1− au + b u<br />

at<br />

te<br />

at<br />

e<br />

( )<br />

at<br />

e cos bt ( 1−<br />

)<br />

( 1− au ) +<br />

⎦<br />

2 2 2<br />

2<br />

au u<br />

b u<br />

t sinat 4<br />

2au<br />

2 2<br />

1+ au<br />

J<br />

0 ( at )<br />

2<br />

u<br />

2<br />

1+ au<br />

H t a<br />

a<br />

( )<br />

( t a)<br />

δ −<br />

− 2<br />

ue − u<br />

a<br />

ue − u<br />

2 2 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!