27.03.2014 Views

Pattern Recognition 1: Introduction - KTH

Pattern Recognition 1: Introduction - KTH

Pattern Recognition 1: Introduction - KTH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Classification<br />

Summary<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong><br />

Arne Leijon<br />

<strong>KTH</strong> Sound and Image Processing<br />

Aug 27, 2012<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

A<strong>Pattern</strong>-ClassificationSystem<br />

Input<br />

signal<br />

Transducer<br />

Feature<br />

Extractor<br />

Classifier<br />

Output<br />

decision<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Source Categories<br />

Noise<br />

Signal Source<br />

Sub-source #1<br />

Sub-source #2<br />

Noise<br />

Noise<br />

Noise<br />

Transducer<br />

Sub-source # N s<br />

Noise<br />

S<br />

Random State<br />

Switch<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Optimal Classification Mechanism<br />

Classifier<br />

Feature Extraction<br />

#1<br />

Discriminant<br />

Function<br />

g 1 ( x)<br />

x<br />

Select<br />

index<br />

of<br />

largest<br />

#K<br />

Discriminant<br />

Function<br />

g N d<br />

( x)<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

First Classifier Example: Man or Woman?<br />

100<br />

90<br />

x 2<br />

= Weight / kg<br />

80<br />

70<br />

60<br />

50<br />

150 160 170 180 190 200<br />

x = Height / cm<br />

1<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Two Gaussian Feature Probability Density Functions<br />

Women<br />

Men<br />

x 10 −3<br />

5<br />

x 10 −3<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

100 0 1<br />

80<br />

x 2<br />

= Weight / kg<br />

60<br />

150<br />

160<br />

190<br />

180<br />

170<br />

x 1<br />

= Height / cm<br />

200<br />

100 0 1<br />

80<br />

x 2<br />

= Weight / kg<br />

60<br />

150<br />

160<br />

190<br />

180<br />

170<br />

x 1<br />

= Height / cm<br />

200<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Contours of Equal Probability Density<br />

Women<br />

100<br />

Men<br />

100<br />

90<br />

90<br />

x 2<br />

= Weight / kg<br />

80<br />

70<br />

x 2<br />

= Weight / kg<br />

80<br />

70<br />

60<br />

60<br />

50<br />

150 160 170 180 190 200<br />

x = Height / cm<br />

1<br />

50<br />

150 160 170 180 190 200<br />

x = Height / cm<br />

1<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Decision Boundary and Decision Regions<br />

100<br />

90<br />

x 2<br />

= Weight / kg<br />

80<br />

70<br />

60<br />

50<br />

150 160 170 180 190 200<br />

x 1<br />

= Height / cm<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Gaussian Probability Density (2-dim)<br />

5<br />

4<br />

3<br />

x 2<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

x 1<br />

✓ ◆ 3<br />

2<br />

0<br />

cov [X ]=<br />

0 1 2<br />

✓ ◆ 9 0<br />

=<br />

0 1<br />

=<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Gaussian Probability Density (2-dim)<br />

5<br />

4<br />

3<br />

x 2<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

x 1<br />

✓ ◆ 1<br />

2<br />

0<br />

cov [X ]=<br />

0 3 2<br />

✓ ◆ 1 0<br />

=<br />

0 9<br />

=<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Gaussian Probability Density (2-dim)<br />

5<br />

x 2<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

x 1<br />

✓ ◆ 3<br />

2<br />

0<br />

cov [X ]=P<br />

0 1 2 P T =<br />

✓ ◆ 5 4<br />

=<br />

4 5<br />

where<br />

P = p 1 ✓ ◆ 1 1<br />

2 1 1<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

Gaussian Probability Density (K-dim)<br />

f X (x) =<br />

1<br />

(2⇡) K/2p det C e 1 2 (x µ)T C 1 (x µ)<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

General Probability Density: Gaussian Mixture (1-dim)<br />

0.4<br />

0.35<br />

0.3<br />

Prob. Density<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−2 0 2 4 6<br />

x<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

General Probability Density: Gaussian Mixture (2-dim)<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Intro<br />

Example<br />

Probability Density<br />

General Probability Density: Gaussian Mixture (K-dim)<br />

f X (x) =<br />

MX<br />

m=1<br />

w m<br />

1<br />

(2⇡) K/2p det C m<br />

e 1 2 (x µ m )T C 1<br />

m (x µ m )<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>


Classification<br />

Summary<br />

Summary: Important Concepts<br />

Feature Vector: vector x containing all input data to the classifier<br />

Observation Space: set of all possible feature-vector values<br />

Decision Function: d(x) mapsfeaturevectorx into discrete<br />

decision output, coded as integer<br />

Decision Region: set of feature-vector values giving same decision:<br />

⌦ i = {x : d(x) =i}<br />

Discriminant Function: g i (x) mapsanyfeaturevectorx into real<br />

number, used for classification<br />

General Optimal Classifier: d(x) = argmax k g k (x)<br />

Two-category Classifier: can be implemented using a single<br />

Discriminant Function: d(x) = sgn g(x)<br />

Gaussian Mixture Model: can approximate any distribution<br />

Arne Leijon<br />

<strong>Pattern</strong> <strong>Recognition</strong> 1: <strong>Introduction</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!