29.03.2014 Views

+ - E

+ - E

+ - E

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Determination of E 0 rev & <br />

e.g., +Ag/AgCl/HCl/H 2<br />

/Pt- cell-configuration<br />

+ -<br />

left electrode: AgCl + e - Ag + Cl -<br />

<br />

E<br />

rev(Ag/<br />

AgCl)<br />

<br />

E<br />

0<br />

rev(Ag/ AgCl)<br />

<br />

RT<br />

F<br />

ln<br />

a<br />

Cl<br />

<br />

Ag<br />

AgCl<br />

Cl - H +<br />

Pt<br />

right electrode: H + + e - 0.5 H 2<br />

0 RT<br />

E<br />

E<br />

ln<br />

a<br />

rev(H2<br />

/ H ) rev(H2<br />

/ H )<br />

F<br />

H<br />

<br />

aqueous HCl<br />

H 2<br />

overall cell voltage:<br />

<br />

E<br />

rev(cell)<br />

E<br />

0<br />

rev(Ag/ AgCl)<br />

E<br />

0<br />

rev(H<br />

2<br />

/ H<br />

<br />

)<br />

<br />

E<br />

0<br />

rev(Ag/ AgCl)<br />

E<br />

0<br />

rev(H<br />

2<br />

0V<br />

/ H<br />

<br />

)<br />

<br />

RT<br />

F<br />

ln a<br />

Cl<br />

<br />

<br />

RT<br />

F<br />

ln<br />

a<br />

H<br />

<br />

with:<br />

a<br />

<br />

a a<br />

( HCl)<br />

H<br />

Cl<br />

<br />

<br />

E<br />

rev(cell)<br />

E<br />

0<br />

rev(Ag/ AgCl)<br />

<br />

2RT<br />

F<br />

ln a<br />

(HCl)<br />

<br />

E<br />

0<br />

rev(Ag/ AgCl)<br />

<br />

2RT<br />

F<br />

ln c<br />

HCl<br />

<br />

2RT<br />

F<br />

ln<br />

<br />

(HCl)<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 50


Determination of E 0 rev & <br />

e.g., +Ag/AgCl/HCl/H 2<br />

/Pt- cell-configuration<br />

+ -<br />

a) E 0 rev(Ag/AgCl) :<br />

Ag<br />

AgCl<br />

Cl - H +<br />

Pt<br />

E<br />

2RT<br />

ln c<br />

F<br />

E<br />

2RT<br />

ln<br />

<br />

F<br />

0<br />

<br />

rev(cell)<br />

HCl rev(Ag/ AgCl)<br />

(HCl)<br />

aqueous HCl<br />

H 2<br />

considering that:<br />

(see pg. 48)<br />

ln<br />

<br />

I c<br />

( HCl)<br />

HCl<br />

determination of E 0 rev(Ag/Ag/Cl)<br />

b) (HCl)<br />

:<br />

ln<br />

F<br />

<br />

2RT<br />

0<br />

E<br />

rev(Ag/ AgCl)<br />

Erev(cell)<br />

<br />

ln<br />

HCl<br />

( HCl)<br />

c<br />

<br />

from: C.H. Hamann & W. Vielstich; Electrochemie; Wiley-VCH (2005)<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 51


Diffusion Potentials<br />

+ -<br />

E<br />

rev(left)<br />

<br />

E<br />

0<br />

rev(left)<br />

0.5 H 2<br />

H + + e - right<br />

<br />

RT<br />

F<br />

ln<br />

<br />

a<br />

H<br />

<br />

left<br />

e - H +<br />

0.5 H 2<br />

H + + e -<br />

metal<br />

HCl (0.1M)<br />

HCl (0.01M)<br />

H +<br />

metal<br />

E<br />

rev(right)<br />

<br />

E<br />

0<br />

rev(right)<br />

<br />

RT<br />

F<br />

ln<br />

a<br />

H<br />

<br />

H 2 H 2<br />

<br />

E<br />

cell<br />

<br />

E<br />

rev(left)<br />

E<br />

rev(right)<br />

<br />

E<br />

0<br />

rev(left)<br />

E<br />

0<br />

rev(right)<br />

<br />

RT<br />

F<br />

<br />

ln<br />

<br />

<br />

<br />

<br />

a<br />

a<br />

H<br />

H<br />

<br />

<br />

<br />

<br />

left<br />

right<br />

<br />

<br />

<br />

<br />

RT<br />

F<br />

<br />

ln<br />

<br />

<br />

<br />

<br />

a<br />

a<br />

H<br />

H<br />

<br />

<br />

<br />

<br />

left<br />

right<br />

<br />

0<br />

<br />

<br />

left: H + + e - 0.5 H 2<br />

cathodic reaction<br />

decrease of c HCl <br />

Cl - move to the right<br />

Cl - flux t Cl-<br />

H + flux t H+<br />

+ -<br />

right: 0.5 H 2<br />

H + + e -<br />

anodic reaction<br />

increase of c HCl <br />

H + move to the left<br />

<br />

E<br />

cell<br />

E<br />

rev(left)<br />

E<br />

rev(right)<br />

E<br />

Nernst<br />

E junction<br />

RT a<br />

<br />

H<br />

E<br />

junction<br />

ln<br />

F a<br />

<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 52<br />

<br />

H<br />

left<br />

right<br />

<br />

<br />

<br />

<br />

<br />

<br />

left<br />

<br />

right


Diffusion Potentials<br />

derivation of E junction<br />

lengthy, but in the simplest case for a 1:1 electrolyte:<br />

E<br />

junction<br />

<br />

<br />

<br />

t<br />

t <br />

left<br />

right<br />

<br />

<br />

ln<br />

<br />

a<br />

<br />

<br />

left<br />

a<br />

right <br />

if t +<br />

t -<br />

E junction<br />

0V (e.g.: KCl: t + = 0.49; KNO 3 : t + = 0.51)<br />

more precise evaluation: Henderson equation (s. chapter 3.2.4 in Hamann & Vielstich)<br />

<br />

<br />

RT<br />

F<br />

use of a salt-bridge with concentrated KCl or KNO 3<br />

minimizes E junction<br />

from: C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry; Wiley-VCH (2007)<br />

from: A.J. Bard & L.R. Faulkner;<br />

Electrochemical Methods; Wiley (1980)<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 53


electrochemical cells, thermodynamics, reference electrodes<br />

ionic conduction in electrolytes / activity coefficients<br />

electrochemical kinetics<br />

mass transport / diffusion effects<br />

cyclic voltammetry / rotating disk electrodes / -electrodes<br />

AC impedance<br />

thermoelectrica and solid electrolytes<br />

spectroscopic methods<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 54


Electrocatalysis<br />

heterogeneously catalyzed electrochemical reactions are a complex sequence of possibly<br />

many steps: adsorption of reactants, desorption of products, solvation, etc.<br />

in this sequence of processes, the rate-determining steps (rds) may be different on<br />

different electrocatalyts<br />

o<br />

O + ne - R<br />

R ; E rev(O/R)<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 55


Overpotentials<br />

overpotentials: deviation from E rev<br />

as current is passed through the electrode<br />

activation overpotential, act<br />

, is the overpotential in absence<br />

Cl H 2<br />

2H + + 2e -<br />

2<br />

+ 2e - 2Cl -<br />

of ohmic losses and conc. gradients<br />

metal<br />

metal<br />

E cell<br />

aqueous HCl<br />

Cl 2 H 2<br />

Cl -<br />

<br />

act<br />

where:<br />

E E<br />

electrode<br />

rev<br />

act<br />

0 for anodic process<br />

act<br />

0 for cathodic process<br />

from: C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry; Wiley-VCH (2007)<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 56


Driving Force for Electron Transfer<br />

consider activated transition state: A + B (AB) <br />

<br />

r<br />

f<br />

<br />

k<br />

0<br />

f<br />

c<br />

A<br />

c<br />

B<br />

<br />

exp<br />

<br />

<br />

G<br />

f<br />

RT<br />

<br />

<br />

<br />

cathodic (reduction) reaction:<br />

ox + ne - (Me) red<br />

anodic (oxidation) direction:<br />

red ox + ne - (Me)<br />

potential getting more negative <br />

= 2<br />

– 1<br />


Electrokinetics<br />

the Butler-Volmer equation is generally used to describe the overpotential, temperature,<br />

and reactant concentration dependence of the current of an electrode reaction *) :<br />

based on Hamann & Vielstich,<br />

Electrochemie, Wiley (2005):<br />

with:<br />

o<br />

O + ne - R<br />

R ; E rev(O/R)<br />

nF<br />

<br />

<br />

RT<br />

i i0(T,c<br />

,c )<br />

rf e e<br />

O R<br />

<br />

<br />

(1<br />

) nF<br />

<br />

RT<br />

i anodic (>0) i cathodic (


Variants of the Butler-Volmer Equation<br />

often the Butler-Volmer equation is written as log 10 & with anodic/cathodic transfer coeff.:<br />

i<br />

i<br />

0( T , c<br />

O<br />

, c<br />

R<br />

)<br />

rf<br />

<br />

<br />

<br />

<br />

a<br />

F<br />

c<br />

F<br />

<br />

<br />

<br />

2.303<br />

RT<br />

2.303<br />

RT<br />

10 10 i0(<br />

T , c<br />

<br />

O , cR<br />

)<br />

<br />

rf<br />

<br />

<br />

<br />

<br />

10<br />

<br />

b<br />

a<br />

<br />

10<br />

<br />

b<br />

c<br />

<br />

<br />

<br />

<br />

where:<br />

b<br />

a,c<br />

<br />

2.303<br />

RT<br />

F<br />

a,<br />

c<br />

is referred to as the anodic/cathodic Tafel slope, representing the<br />

overpotential increase required for a 10x increase in current<br />

at 25°C, b commonly ranges from 120 mV/decade ( a,c =0.5)<br />

to 30 mV/decade ( a,c = 2)<br />

nF<br />

(1<br />

) nF<br />

<br />

special case:<br />

RT<br />

RT<br />

i i<br />

<br />

0(T,c<br />

,c )<br />

rf<br />

e e<br />

O R<br />

<br />

<br />

<br />

<br />

here, is also referred to as transfer coefficient, even though its meaning is<br />

different from the definitions in [2] and [3] (actually, in [1], the symmetry factor is<br />

meant! ...detailed explanation of differences: E. Gileadi, Electrode Kinetics...VCH)<br />

care must be taken to not mix up these two different definitions<br />

the more general definition with a,c as transfer coefficients will be used here<br />

[1] A.J. Bard & L.R. Faulkner, Electrochemical Methods, John Wiley & Sons (1980); [2] J. O’M. Bockris<br />

& A.K.N. Reddy, Modern Electrochemistry, Plenum Press: (1970); [3] J.S. Newman, Electrochemical Systems, Prentice Hall (1991).<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 59


Dependence of i 0 on the Electrocatalyst<br />

exchange current densities vary by many order of magnitudes for different electrocatalysts<br />

e.g., for the H 2 evolution reaction (2H + +2e - H 2 ) in acid electrolytes:<br />

Pt<br />

Rh<br />

Re<br />

Au<br />

Ir<br />

Cu<br />

Ni<br />

Co<br />

Fe<br />

W<br />

Pb<br />

Tl<br />

Sn<br />

Zn<br />

Cd<br />

Bi Ag<br />

Ga<br />

Mo<br />

Nb<br />

Ti Ta<br />

from: S. Trasatti, J. Electroanal.<br />

Chem. 39 (1972) 163<br />

according to Sabatier’s Principle, high reaction rates (i 0 ’s) require bonding of<br />

the reaction intermediate (M-H) which is not too weak and not too strong<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 60


Temperature and Concentration Dependence of i 0<br />

as any rate constant of a chemical reaction, the exchange current density depends<br />

on temperature and reactant/products concentrations<br />

it is frequently based on the definition used in [3]:<br />

i<br />

i<br />

0 ( T , cO<br />

, cR<br />

)<br />

* * *<br />

0( T , cO<br />

, cR<br />

)<br />

<br />

<br />

<br />

<br />

c<br />

c<br />

R<br />

*<br />

R<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

c<br />

c<br />

O<br />

*<br />

O<br />

<br />

<br />

<br />

<br />

e<br />

E<br />

RT<br />

act<br />

with:<br />

<br />

i<br />

0( T<br />

*<br />

*<br />

*<br />

, c O , c R )<br />

[A/cm 2 real]: exchange current density at defined reference temperature and<br />

reference reactant/product (c * R , c * O ) concentrations<br />

, [dimensionless]: reaction orders, describing the concentration dependence of i 0<br />

E act [J/mol]: activation energy of the exchange current density<br />

[1] A.J. Bard & L.R. Faulkner, Electrochemical Methods, John Wiley & Sons (1980); [2] J. O’M. Bockris<br />

& A.K.N. Reddy, Modern Electrochemistry, Plenum Press: (1970); [3] J.S. Newman, Electrochemical Systems, Prentice Hall (1991).<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 61


Characteristics of the Butler-Volmer Reaction<br />

the Butler-Volmer equation is the summation of anodic and cathodic currents; this is shown<br />

for the example of the HOR/HER kinetics on low-index Pt single crystals:<br />

HOR/HER on Pt(hkl) (0.05M H 2 SO 4 at 60°C)<br />

Pt face (110) (100) (111)<br />

i 0 [mA/cm 2 ] 1.35 0.76 0.83<br />

b [mV/decade] 33 44 66<br />

(Markovic et al., J. Phys. Chem. B 101 (1997) 5405))<br />

where rf = 1 for flame-annealed Pt(hkl) single crystals<br />

i<br />

net<br />

i<br />

0( T , c<br />

O<br />

, c<br />

R<br />

)<br />

rf<br />

<br />

<br />

10<br />

<br />

<br />

<br />

b<br />

a<br />

i anodic<br />

<br />

10<br />

<br />

b<br />

c<br />

i cathodic<br />

at =0: i anodic<br />

= i cathodic<br />

=i 0(T,H2, H+)<br />

dynamic equilibrium<br />

<br />

<br />

<br />

<br />

2<br />

Pt ]<br />

current density [ mA/cm<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

i anodic : H 2 2H + + 2e - i net<br />

(i 0 rf )<br />

i cathodic : 2H + + 2e - H 2<br />

at +b a<br />

/2: i anodic<br />

10 i cathodic<br />

reverse reaction negligible<br />

-8<br />

-40 -30 -20 -10 0 10 20 30 40<br />

overpotential [mV]<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 62


2<br />

Tafel Slope Impact – HOR/HER Example<br />

for the HOR/HER on low-index Pt single crystal faces, nearly identical i 0<br />

’s were<br />

reported, while the Tafel slopes varied from 33 66 mV/dec:<br />

Pt ]<br />

current density [ mA/cm<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

HOR/HER on Pt(hkl) (0.05M H 2 SO 4 at 60°C)<br />

Pt face (110) (100) (111)<br />

i 0 [mA/cm 2 ] 1.35 0.76 0.83<br />

b [mV/decade] 33 44 66<br />

(Markovic et al., J. Phys. Chem. B 101 (1997) 5405))<br />

2H + + 2e - H 2<br />

Pt(111)<br />

Pt(100)<br />

Pt(110)<br />

Pt(110)<br />

-100 -80 -60 -40 -20 0 20 40 60 80 100<br />

overpotential [mV]<br />

Pt(100)<br />

Pt(111)<br />

H 2 2H + + 2e -<br />

from the definition of b:<br />

at 60ºC (333 K) and b HOR/HER<br />

from table<br />

2.303RT<br />

<br />

0.033V<br />

F<br />

HOR , HER<br />

<br />

2.303RT<br />

<br />

0.066V<br />

F<br />

HOR , HER<br />

<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 63<br />

<br />

<br />

the overpotential effect on current density<br />

is the stronger, the lower the Tafel slope<br />

near =0, i<br />

2<br />

1


Butler-Volmer: Linear Approximation<br />

in the region of small overpotentials, the Butler-Volmer equation can be linearized:<br />

for:<br />

a<br />

F<br />

RT<br />

c<br />

F<br />

<br />

1 and <br />

1<br />

RT<br />

i.e.,<br />

RT<br />

<br />

F<br />

a<br />

and<br />

RT<br />

<br />

F<br />

b<br />

<br />

e<br />

a<br />

F<br />

<br />

RT<br />

a<br />

F<br />

1<br />

RT<br />

<br />

and<br />

e<br />

c<br />

F<br />

<br />

RT<br />

1<br />

c<br />

F<br />

RT<br />

<br />

therefore:<br />

i i0(<br />

T , c , c )<br />

O<br />

R<br />

rf<br />

<br />

<br />

<br />

<br />

e<br />

a<br />

F<br />

<br />

RT<br />

<br />

e<br />

c<br />

F<br />

<br />

RT<br />

<br />

<br />

<br />

<br />

<br />

i i<br />

0( T , c<br />

O<br />

, c<br />

R<br />

)<br />

rf<br />

( a<br />

<br />

<br />

) F<br />

c<br />

RT<br />

<br />

<br />

i<br />

0( T , c<br />

O<br />

, c<br />

R<br />

)<br />

rf<br />

2.303<br />

<br />

<br />

<br />

1<br />

b<br />

a<br />

<br />

1<br />

b<br />

c<br />

<br />

<br />

<br />

<br />

special case as defined by Bard and Faulkner:<br />

(1<br />

) n<br />

a<br />

i<br />

i<br />

and<br />

0( T , c O , c )<br />

R<br />

rf<br />

<br />

n<br />

c<br />

F n<br />

<br />

RT<br />

<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 64


Butler-Volmer: Linear Approximation<br />

for the previous example of HOR/HER on Pt(110):<br />

2<br />

Pt ]<br />

current density [ mA/cm<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

HOR/HER on Pt(hkl) (0.05M H 2 SO 4 at 60°C)<br />

Pt face (110) (100) (111)<br />

i 0 [mA/cm 2 ] 1.35 0.76 0.83<br />

b [mV/decade] 33 44 66<br />

(Markovic et al., J. Phys. Chem. B 101 (1997) 5405))<br />

< 10% error at - < b /3<br />

< 10% error at < b /3<br />

-40 -30 -20 -10 0 10 20 30 40<br />

overpotential [mV]<br />

since:<br />

<br />

R<br />

ct<br />

i<br />

0(T,cO<br />

,cR<br />

)<br />

<br />

<br />

i<br />

rf<br />

(<br />

<br />

R T<br />

<br />

F i<br />

0(T,c<br />

<br />

O<br />

,c<br />

R<br />

)<br />

1<br />

rf<br />

(<br />

<br />

a<br />

<br />

obtain i 0 from the slope in the<br />

linear region, if a,c & rf are known<br />

rf from cyclic voltammetry,<br />

XRD, or TEM<br />

a,c from Tafel plots<br />

if simpler Eqn. on pg. 58 applies:<br />

a + c = + (1-) = 1<br />

<br />

R<br />

ct<br />

<br />

<br />

i<br />

a<br />

R T<br />

<br />

F i<br />

0(T,c<br />

c<br />

O<br />

R T<br />

) <br />

F<br />

1<br />

,c<br />

R<br />

)<br />

rf<br />

i<br />

<br />

c<br />

)<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 65


Butler-Volmer: Tafel Approximation<br />

at large overpotentials, one of the Butler-Volmer equation terms becomes negligible:<br />

for:<br />

<br />

<br />

1 and 1<br />

b a<br />

b c<br />

i.e.,<br />

<br />

b<br />

and<br />

<br />

a<br />

b c<br />

b<br />

a,c<br />

<br />

2.303RT<br />

F<br />

(where )<br />

a,<br />

c<br />

for anodic processes (b a,c ):<br />

i<br />

anodic<br />

i<br />

<br />

<br />

0(<br />

T , c , c )<br />

rf<br />

<br />

rf<br />

<br />

O<br />

R<br />

<br />

<br />

<br />

ba<br />

bc<br />

10 10 i0(<br />

T , cO<br />

, cR<br />

)<br />

10 0.1<br />

<br />

<br />

<br />

10<br />

<br />

b<br />

a<br />

or, more commonly:<br />

log( i ) log<br />

0( , , )<br />

anodic<br />

1<br />

i<br />

rf<br />

<br />

T<br />

c<br />

O<br />

c<br />

R<br />

b<br />

a<br />

for cathodic processes (b a,c ): i ) logi<br />

rf<br />

<br />

<br />

log(<br />

)<br />

cathodic<br />

0( T , c<br />

O<br />

, c<br />

R<br />

1<br />

b<br />

c<br />

the log(i) vs. relationship at high is commonly referred to as Tafel equation<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 66


Butler-Volmer: Tafel Approximation<br />

for the previous example of HOR/HER on Pt(110) and Pt(111):<br />

HOR/HER on Pt(hkl) (0.05M H 2 SO 4 at 60°C)<br />

Pt face (110) (100) (111)<br />

i 0 [mA/cm 2 ] 1.35 0.76 0.83<br />

b [mV/decade] 33 44 66<br />

(Markovic et al., J. Phys. Chem. B 101 (1997) 5405))<br />

log( | |i| i | ) [ mA/cm 2 Pt ]<br />

100<br />

10<br />

1<br />

0.1<br />

(b (b a ) -1<br />

c ) -<br />

Pt(110)<br />

Pt(111)<br />

2H + + 2e - H H 2 2H + + 2e -<br />

2<br />

(i 0 rf )<br />

-100 -80 -60 -40 -20 0 20 40 60 80 100<br />

overpotential [mV]<br />

the accuracy of the Tafel equation<br />

at || ½b a,c is better 10%<br />

from Tafel plots, both (i 0 rf) and<br />

b a,c can be determined<br />

for slow kinetics, determination of<br />

(i 0<br />

rf) requires extrapolation over<br />

many orders of magnitude<br />

large errors for ORR in PEMFCs<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 67


HOR/HER Kinetic Models<br />

possible HOR reaction mech.:<br />

(K. Krischer & E.R. Savinova; in: Handbook<br />

of Het. Catalysis; Wiley (2007): ch. 8.1.1.)<br />

Tafel: H 2<br />

+ 2Pt 2 Pt-H<br />

Volmer: Pt-H Pt + H + + e -<br />

Heyrovski:<br />

H 2<br />

+ Pt Pt-H + H + + e -<br />

04k - EC SS2013 (Hubert G., Tom N., Moniek T.) p. 68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!