01.04.2014 Views

Simulating galaxy formation: sub-grid models at the intermediate scale

Simulating galaxy formation: sub-grid models at the intermediate scale

Simulating galaxy formation: sub-grid models at the intermediate scale

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Simul<strong>at</strong>ing</strong> <strong>galaxy</strong> <strong>form<strong>at</strong>ion</strong>:<br />

<strong>sub</strong>-<strong>grid</strong> <strong>models</strong> <strong>at</strong> <strong>the</strong><br />

intermedi<strong>at</strong>e <strong>scale</strong><br />

Alexander Hobbs<br />

ETH Zürich<br />

Collabor<strong>at</strong>ors:<br />

Sergei Nayakshin, Chris Power, Justin Read,<br />

Seung-Hoon Cha, Andrew King


http://www.strw.leidenuniv.nl/~booth/movies/25mpc-object1-dens.avi


A pretty movie...<br />

...but wh<strong>at</strong> is actually<br />

going on here?


Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


M halo<br />

~ 10 14 M sun<br />

~ 500 kpc<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


M halo<br />

~ 10 14 M sun<br />

~ 500 kpc<br />

S<strong>at</strong>ellites/Dwarfs?<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


IGM<br />

M halo<br />

~ 10 14 M sun<br />

~ 500 kpc<br />

S<strong>at</strong>ellites/Dwarfs?<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


Wh<strong>at</strong> are <strong>the</strong><br />

“gastrophysical”<br />

processes?


Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


Star <strong>form<strong>at</strong>ion</strong><br />

and feedback<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


Accretion and outflow<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


Accretion and outflow<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)


~ 400 kpc


~ 400 kpc ~ 50 kpc<br />

Bulge<br />

Galactic disc


~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc


Molecular<br />

clouds<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc


Accretion<br />

disc<br />

Jet<br />

Molecular<br />

clouds<br />

Torus<br />

~ 50 pc<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc


Accretion<br />

disc<br />

Jet<br />

Molecular<br />

clouds<br />

Torus<br />

~ 10 -4 pc<br />

~ 50 pc<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc


Accretion<br />

disc<br />

Jet<br />

Molecular<br />

clouds<br />

Torus<br />

~ 10 -4 pc<br />

~ 50 pc<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

1 kpc<br />

Galactic disc<br />

1 kpc


In large-<strong>scale</strong> simul<strong>at</strong>ions we<br />

require “<strong>sub</strong>-<strong>grid</strong>” <strong>models</strong>!


Sub-<strong>grid</strong> <strong>models</strong><br />

Star <strong>form<strong>at</strong>ion</strong> (SF)<br />

- Sink particle cre<strong>at</strong>ion<br />

...locally enforce Schmidt law<br />

SMBH accretion<br />

- Bondi-Hoyle capture r<strong>at</strong>e<br />

SF feedback<br />

- Thermal energy coupling<br />

- “Blast-wave” feedback<br />

AGN outflow<br />

- Thermal energy coupling<br />

- Momentum coupling


Wh<strong>at</strong> improvements can<br />

we bring to <strong>the</strong> table?


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

“Accretion disc particle” method<br />

Power, Nayakshin & King (2010)


“Accretion disc particle” method (Power, Nayakshin & King 2010)<br />

- Angular momentum<br />

provides a n<strong>at</strong>ural<br />

barrier to accretion<br />

- Only m<strong>at</strong>erial with <strong>the</strong><br />

lowest angular momentum<br />

should accrete<br />

- Introduce <strong>sub</strong>-<strong>grid</strong> method<br />

to track and utilise <strong>the</strong><br />

angular momentum<br />

evolution of <strong>sub</strong>-<strong>grid</strong> disc:


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

Supernovae-driven turbulent<br />

feeding model<br />

Hobbs, Nayakshin, Power & King (<strong>sub</strong>mitted)


Supernovae-driven turbulent feeding model<br />

(Hobbs, Nayakshin, Power & King, <strong>sub</strong>mitted)<br />

- Turbulent flows ubiquitous in astrophysics<br />

- Evidence for supersonic turbulence in star<br />

forming regions of molecular clouds (Larson<br />

1981, Motte 1998, Padoan & Nordlund 2002)<br />

- Simul<strong>at</strong>ions of supersonic turbulence in AGN<br />

discs popular in <strong>the</strong> liter<strong>at</strong>ure (Wada & Norman<br />

2002, Chen et al. 2009, Brüggen & Scannapeico 2009)<br />

Projection of iso<strong>the</strong>rmal supersonic turbulence, v turb ~ 100<br />

km s -1 , seeded into constant density spherical shell with M ~<br />

10 7 M sun<br />

, v rot<br />

= 60 km s -1 , t ~ 10 5 yrs after starburst<br />

Star <strong>form<strong>at</strong>ion</strong> feedback<br />

<strong>at</strong> kpc <strong>scale</strong>s


Supernovae-driven turbulent feeding model<br />

(Hobbs, Nayakshin, Power & King, <strong>sub</strong>mitted)<br />

http://www.astro.le.ac.uk/~aph11/sweden_talk/turbulent_movie.avi


(2) AGN outflow <strong>models</strong><br />

- Injection of <strong>the</strong>rmal energy/momentum to BH particle neighbours<br />

simplistic and SPH-resolution dependant<br />

- Require a feedback method th<strong>at</strong> can be used regardless of<br />

geometry or optical depth, with independent resolution


(2) AGN outflow <strong>models</strong><br />

- Injection of <strong>the</strong>rmal energy/momentum to BH particle neighbours<br />

simplistic and SPH-resolution dependant<br />

- Require a feedback method th<strong>at</strong> can be used regardless of<br />

geometry or optical depth, with independent resolution<br />

Dynamic Monte-Carlo radi<strong>at</strong>ion<br />

transfer in SPH<br />

Nayakshin, Cha & Hobbs (2009)


Dynamic Monte-Carlo radi<strong>at</strong>ion transfer in SPH<br />

(Nayakshin, Cha & Hobbs 2009)<br />

- Radi<strong>at</strong>ive transfer equ<strong>at</strong>ion along a ray:<br />

continuous<br />

stochastic<br />

- Explicitly follow photon's trajectory:<br />

- Fraction of momentum absorbed (Δp γ<br />

)<br />

passed to SPH particles via kernel<br />

Photons emitted isotropically & stochastically<br />

- Re-emission of photons in random dir'n<br />

with probability Δp γ<br />

/ p γ0<br />

to ensure timeaveraged<br />

conserv<strong>at</strong>ion of photon energy


Dynamic Monte-Carlo radi<strong>at</strong>ion transfer in SPH<br />

(Nayakshin, Cha & Hobbs 2009)<br />

- Radi<strong>at</strong>ive transfer equ<strong>at</strong>ion along a ray:<br />

continuous<br />

stochastic<br />

- Explicitly follow photon's trajectory:<br />

- Fraction of momentum absorbed (Δp γ<br />

)<br />

passed to SPH particles via kernel<br />

Particles found will interact if <strong>the</strong>y contain <strong>the</strong><br />

photon within <strong>the</strong>ir own smoothing length<br />

- Re-emission of photons in random dir'n<br />

with probability Δp γ<br />

/ p γ0<br />

to ensure timeaveraged<br />

conserv<strong>at</strong>ion of photon energy


Combining <strong>sub</strong>-<strong>grid</strong> <strong>models</strong>: (1) + (2)<br />

“Accretion disc particle” method<br />

Power, Nayakshin & King (2010)<br />

+<br />

Dynamic Monte-Carlo radi<strong>at</strong>ion<br />

transfer in SPH<br />

Nayakshin, Cha & Hobbs (2009)


“Accretion disc particle” method + radi<strong>at</strong>ive feedback. Iso<strong>the</strong>rmal EQS:<br />

http://www.astro.le.ac.uk/~cbp1/research/feedback/rot_xy.vrot0.3.iso<strong>the</strong>rm.avi<br />

Bondi-Hoyle prescription + radi<strong>at</strong>ive feedback. Iso<strong>the</strong>rmal EQS:<br />

http://www.astro.le.ac.uk/~cbp1/research/feedback/rot_xy.vrot0.3.bondi.avi


“Accretion disc particle” method + radi<strong>at</strong>ive<br />

feedback. Iso<strong>the</strong>rmal EQS.<br />

Bondi-Hoyle prescription + radi<strong>at</strong>ive<br />

feedback. Iso<strong>the</strong>rmal EQS.


The goal:<br />

Embed <strong>sub</strong>-<strong>grid</strong> <strong>models</strong> in<br />

<strong>galaxy</strong> <strong>form<strong>at</strong>ion</strong> simul<strong>at</strong>ions


http://www.astro.le.ac.uk/~cbp1/research/merger/mw_merger.mpeg<br />

Simul<strong>at</strong>ion by Alexander Hobbs, Chris Power, Justin Read<br />

Movie by Chris Nixon


Summary<br />

Have developed / in <strong>the</strong> process of developing <strong>sub</strong>-<strong>grid</strong> <strong>models</strong>:<br />

(1) For accretion (2) For outflow<br />

“Accretion disc particle” method<br />

Supernovae-driven turbulent<br />

feeding model<br />

Dynamic Monte-Carlo<br />

radi<strong>at</strong>ive transfer


Conclusions<br />

- Development of better <strong>sub</strong>-<strong>grid</strong> <strong>models</strong> for large-<strong>scale</strong><br />

simul<strong>at</strong>ions is very important!<br />

- In particular, <strong>the</strong> development of physically motiv<strong>at</strong>ed <strong>models</strong><br />

th<strong>at</strong> take account of intermedi<strong>at</strong>e <strong>scale</strong> processes is a priority<br />

- Preliminary tests of such <strong>models</strong> in simul<strong>at</strong>ions have shown<br />

significant differences compared to previous results<br />

- There is a clear need for physical self-consistency in simul<strong>at</strong>ions<br />

of <strong>galaxy</strong> <strong>form<strong>at</strong>ion</strong> and evolution <strong>at</strong> large <strong>scale</strong>s<br />

- GPUs could help! More computing power means we can<br />

explore a gre<strong>at</strong>er number of physical processes


Thank you


<strong>Simul<strong>at</strong>ing</strong> <strong>galaxy</strong> <strong>form<strong>at</strong>ion</strong>:<br />

<strong>sub</strong>-<strong>grid</strong> <strong>models</strong> <strong>at</strong> <strong>the</strong><br />

intermedi<strong>at</strong>e <strong>scale</strong><br />

Alexander Hobbs<br />

ETH Zürich<br />

Collabor<strong>at</strong>ors:<br />

Sergei Nayakshin, Chris Power, Justin Read,<br />

Seung-Hoon Cha, Andrew King<br />

1


http://www.strw.leidenuniv.nl/~booth/movies/25mpc-object1-dens.avi<br />

2


A pretty movie...<br />

...but wh<strong>at</strong> is actually<br />

going on here?<br />

3


Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

4


M halo<br />

~ 10 14 M sun<br />

~ 500 kpc<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

5


M halo<br />

~ 10 14 M sun<br />

~ 500 kpc<br />

S<strong>at</strong>ellites/Dwarfs?<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

6


IGM<br />

M halo<br />

~ 10 14 M sun<br />

~ 500 kpc<br />

S<strong>at</strong>ellites/Dwarfs?<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

7


Wh<strong>at</strong> are <strong>the</strong><br />

“gastrophysical”<br />

processes?<br />

8


Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

9


Star <strong>form<strong>at</strong>ion</strong><br />

and feedback<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

10


Accretion and outflow<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

11


Accretion and outflow<br />

Simul<strong>at</strong>ion and movie credit: Craig Booth (Schaye et al., 2010)<br />

12


~ 400 kpc<br />

13


~ 400 kpc ~ 50 kpc<br />

Bulge<br />

Galactic disc<br />

14


~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc<br />

15


Molecular<br />

clouds<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc<br />

16


Accretion<br />

disc<br />

Jet<br />

Molecular<br />

clouds<br />

Torus<br />

~ 50 pc<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc<br />

17


Accretion<br />

disc<br />

Jet<br />

Molecular<br />

clouds<br />

Torus<br />

~ 10 -4 pc<br />

~ 50 pc<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc<br />

18


1 kpc<br />

Accretion<br />

disc<br />

Jet<br />

Molecular<br />

clouds<br />

Torus<br />

~ 10 -4 pc<br />

~ 50 pc<br />

~ 500 pc<br />

~ 400 kpc ~ 50 kpc ~ 5 kpc<br />

Bulge<br />

Galactic disc<br />

1 kpc<br />

19


In large-<strong>scale</strong> simul<strong>at</strong>ions we<br />

require “<strong>sub</strong>-<strong>grid</strong>” <strong>models</strong>!<br />

20


Sub-<strong>grid</strong> <strong>models</strong><br />

Star <strong>form<strong>at</strong>ion</strong> (SF)<br />

- Sink particle cre<strong>at</strong>ion<br />

...locally enforce Schmidt law<br />

SMBH accretion<br />

- Bondi-Hoyle capture r<strong>at</strong>e<br />

SF feedback<br />

- Thermal energy coupling<br />

- “Blast-wave” feedback<br />

AGN outflow<br />

- Thermal energy coupling<br />

- Momentum coupling<br />

21


Wh<strong>at</strong> improvements can<br />

we bring to <strong>the</strong> table?<br />

22


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

23


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

24


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

“Accretion disc particle” method<br />

Power, Nayakshin & King (2010)<br />

25


“Accretion disc particle” method (Power, Nayakshin & King 2010)<br />

- Angular momentum<br />

provides a n<strong>at</strong>ural<br />

barrier to accretion<br />

- Only m<strong>at</strong>erial with <strong>the</strong><br />

lowest angular momentum<br />

should accrete<br />

- Introduce <strong>sub</strong>-<strong>grid</strong> method<br />

to track and utilise <strong>the</strong><br />

angular momentum<br />

evolution of <strong>sub</strong>-<strong>grid</strong> disc:<br />

26


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

27


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

28


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

29


(1) Accretion <strong>models</strong><br />

- Current approach extremely idealised...and unphysical<br />

...takes no account of angular momentum<br />

...ignores presence of host dark m<strong>at</strong>ter halo<br />

- Accretion from large <strong>scale</strong>s ignores intermedi<strong>at</strong>e-<strong>scale</strong> processes<br />

...such as feedback from star <strong>form<strong>at</strong>ion</strong>, e.g., supernovae<br />

Supernovae-driven turbulent<br />

feeding model<br />

Hobbs, Nayakshin, Power & King (<strong>sub</strong>mitted)<br />

30


Supernovae-driven turbulent feeding model<br />

(Hobbs, Nayakshin, Power & King, <strong>sub</strong>mitted)<br />

- Turbulent flows ubiquitous in astrophysics<br />

- Evidence for supersonic turbulence in star<br />

forming regions of molecular clouds (Larson<br />

1981, Motte 1998, Padoan & Nordlund 2002)<br />

- Simul<strong>at</strong>ions of supersonic turbulence in AGN<br />

discs popular in <strong>the</strong> liter<strong>at</strong>ure (Wada & Norman<br />

2002, Chen et al. 2009, Brüggen & Scannapeico 2009)<br />

Projection of iso<strong>the</strong>rmal supersonic turbulence, v turb ~ 100<br />

km s -1 , seeded into constant density spherical shell with M ~<br />

10 7 M sun , v rot = 60 km s -1 , t ~ 10 5 yrs after starburst<br />

Star <strong>form<strong>at</strong>ion</strong> feedback<br />

<strong>at</strong> kpc <strong>scale</strong>s<br />

31


Supernovae-driven turbulent feeding model<br />

(Hobbs, Nayakshin, Power & King, <strong>sub</strong>mitted)<br />

http://www.astro.le.ac.uk/~aph11/sweden_talk/turbulent_movie.avi<br />

32


(2) AGN outflow <strong>models</strong><br />

- Injection of <strong>the</strong>rmal energy/momentum to BH particle neighbours<br />

simplistic and SPH-resolution dependant<br />

- Require a feedback method th<strong>at</strong> can be used regardless of<br />

geometry or optical depth, with independent resolution<br />

33


(2) AGN outflow <strong>models</strong><br />

- Injection of <strong>the</strong>rmal energy/momentum to BH particle neighbours<br />

simplistic and SPH-resolution dependant<br />

- Require a feedback method th<strong>at</strong> can be used regardless of<br />

geometry or optical depth, with independent resolution<br />

Dynamic Monte-Carlo radi<strong>at</strong>ion<br />

transfer in SPH<br />

Nayakshin, Cha & Hobbs (2009)<br />

34


Dynamic Monte-Carlo radi<strong>at</strong>ion transfer in SPH<br />

(Nayakshin, Cha & Hobbs 2009)<br />

- Radi<strong>at</strong>ive transfer equ<strong>at</strong>ion along a ray:<br />

continuous<br />

stochastic<br />

- Explicitly follow photon's trajectory:<br />

- Fraction of momentum absorbed (Δp γ<br />

)<br />

passed to SPH particles via kernel<br />

Photons emitted isotropically & stochastically<br />

- Re-emission of photons in random dir'n<br />

with probability Δp γ<br />

/ p γ0<br />

to ensure timeaveraged<br />

conserv<strong>at</strong>ion of photon energy<br />

35


Dynamic Monte-Carlo radi<strong>at</strong>ion transfer in SPH<br />

(Nayakshin, Cha & Hobbs 2009)<br />

- Radi<strong>at</strong>ive transfer equ<strong>at</strong>ion along a ray:<br />

continuous<br />

stochastic<br />

- Explicitly follow photon's trajectory:<br />

- Fraction of momentum absorbed (Δp γ<br />

)<br />

passed to SPH particles via kernel<br />

Particles found will interact if <strong>the</strong>y contain <strong>the</strong><br />

photon within <strong>the</strong>ir own smoothing length<br />

- Re-emission of photons in random dir'n<br />

with probability Δp γ<br />

/ p γ0<br />

to ensure timeaveraged<br />

conserv<strong>at</strong>ion of photon energy<br />

36


Combining <strong>sub</strong>-<strong>grid</strong> <strong>models</strong>: (1) + (2)<br />

“Accretion disc particle” method<br />

Power, Nayakshin & King (2010)<br />

+<br />

Dynamic Monte-Carlo radi<strong>at</strong>ion<br />

transfer in SPH<br />

Nayakshin, Cha & Hobbs (2009)<br />

37


“Accretion disc particle” method + radi<strong>at</strong>ive feedback. Iso<strong>the</strong>rmal EQS:<br />

http://www.astro.le.ac.uk/~cbp1/research/feedback/rot_xy.vrot0.3.iso<strong>the</strong>rm.avi<br />

Bondi-Hoyle prescription + radi<strong>at</strong>ive feedback. Iso<strong>the</strong>rmal EQS:<br />

http://www.astro.le.ac.uk/~cbp1/research/feedback/rot_xy.vrot0.3.bondi.avi<br />

38


“Accretion disc particle” method + radi<strong>at</strong>ive<br />

feedback. Iso<strong>the</strong>rmal EQS.<br />

Bondi-Hoyle prescription + radi<strong>at</strong>ive<br />

feedback. Iso<strong>the</strong>rmal EQS.<br />

39


The goal:<br />

Embed <strong>sub</strong>-<strong>grid</strong> <strong>models</strong> in<br />

<strong>galaxy</strong> <strong>form<strong>at</strong>ion</strong> simul<strong>at</strong>ions<br />

40


http://www.astro.le.ac.uk/~cbp1/research/merger/mw_merger.mpeg<br />

41<br />

Simul<strong>at</strong>ion by Alexander Hobbs, Chris Power, Justin Read<br />

Movie by Chris Nixon


Summary<br />

Have developed / in <strong>the</strong> process of developing <strong>sub</strong>-<strong>grid</strong> <strong>models</strong>:<br />

(1) For accretion (2) For outflow<br />

“Accretion disc particle” method<br />

Supernovae-driven turbulent<br />

feeding model<br />

Dynamic Monte-Carlo<br />

radi<strong>at</strong>ive transfer<br />

42


Conclusions<br />

- Development of better <strong>sub</strong>-<strong>grid</strong> <strong>models</strong> for large-<strong>scale</strong><br />

simul<strong>at</strong>ions is very important!<br />

- In particular, <strong>the</strong> development of physically motiv<strong>at</strong>ed <strong>models</strong><br />

th<strong>at</strong> take account of intermedi<strong>at</strong>e <strong>scale</strong> processes is a priority<br />

- Preliminary tests of such <strong>models</strong> in simul<strong>at</strong>ions have shown<br />

significant differences compared to previous results<br />

- There is a clear need for physical self-consistency in simul<strong>at</strong>ions<br />

of <strong>galaxy</strong> <strong>form<strong>at</strong>ion</strong> and evolution <strong>at</strong> large <strong>scale</strong>s<br />

- GPUs could help! More computing power means we can<br />

explore a gre<strong>at</strong>er number of physical processes<br />

43


Thank you<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!