04.04.2014 Views

Guido Grundmeier

Guido Grundmeier

Guido Grundmeier

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Title<br />

Surface Analysis by means of Electron<br />

and Vibrational Spectroscopy<br />

Prof. Dr. <strong>Guido</strong> <strong>Grundmeier</strong><br />

University of Paderborn<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

1


Contents<br />

• Electron Spectroscopy of Surfaces<br />

• Theory<br />

• Applications<br />

• Optical Spectroscopy<br />

• FT-IR spectroscopy - Theory<br />

• Applications<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

2


Electron Beam - Sample Interaction<br />

5-50 nm<br />

X-ray<br />

Fluorescence<br />

Continuum X-rays<br />

(Bremsstrahlung – “breaking radiation”)<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

3


Energy distrib. of backscattered/emitted electrons<br />

Regions of interest:<br />

I. Elastically scattered primary electrons (structure, vibrational information)<br />

II. Electronic excitations (phonon and plasmon losses)<br />

III. Auger electrons (inelastic background)<br />

IV. Secondary electrons (“True” emission electrons)<br />

e - e -<br />

G.A. Somorjai, “Introduction to Surface Chemistry and Catalysis” (Wiley, New York, 1994), p.384<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

4


Mean free path of electrons in solid matter<br />

(1 ML ~ 2.5 Å)<br />

UPS<br />

XPS and AES<br />

Mean free path of electrons in the order of 1 nm surface sensitivity<br />

The surface sensitivity depends on the probability of the electron to reach<br />

the surface without a loss of energy (e.g. inelastic collisions). The<br />

penetration depth of the excited particles/radiation can be orders of<br />

magnitude higher!<br />

G.A. Somorjai, “Introduction to Surface Chemistry and Catalysis” (Wiley, New York, 1994), p.383<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

5


Photoelectron emission by means of X-rays<br />

Electron or X-ray<br />

photon<br />

Auger Electron<br />

Spectroscopy<br />

AES<br />

X-ray Photoelectron<br />

Spectroscopy<br />

XPS<br />

X-ray photon<br />

Ultraviolet Photoelectron<br />

Spectroscopy<br />

UPS<br />

UV photon<br />

E vac<br />

E vac<br />

V<br />

E L2,3<br />

2p 1/2 , 2p 3/2<br />

E L1<br />

E K<br />

2s 1/2<br />

1s 1/2<br />

E kin = E K -E L1 -E L23 -<br />

E kin = h -E K -<br />

E kin = h -E V -<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

6


Photoelectron spectroscopy<br />

Principles:<br />

• Ejection of electrons from atoms, molecules, amorphous or crystalline solids<br />

following a bombardment by monochromatic photons (compare: photoelectric effect)<br />

• Photoelectrons are emitted above a treshold frequency of the incoming photons<br />

h<br />

I<br />

1<br />

2<br />

2<br />

m e<br />

v<br />

For XPS/<br />

M h<br />

UPS:<br />

M<br />

e<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

7


Photoelectron emission by means of X-rays<br />

E kin<br />

0<br />

Now excitation with X-rays: h >><br />

Determination of core levels<br />

Reflect inner electronic structure<br />

Energy balance:<br />

h<br />

E vac = 0<br />

E F<br />

VB<br />

E B<br />

h<br />

h<br />

core level<br />

core level<br />

h<br />

I<br />

DOS<br />

E B<br />

E kinetic = h – E binding (solid)<br />

Since each element has unique set of core levels<br />

E kin can be used to fingerprint element<br />

Regarding the photoemission process:<br />

• Needed: monochromatic (X-ray) incident beam<br />

• Absorption very fast: t ~ 10 -16 s<br />

• No photoemission for hν <<br />

• No photoemission from levels with E B + > hν<br />

• E kin of photoelectron increases as E B decreases<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

8


Typical XP Spectrum<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

9


Binding Energy of Electrons<br />

Calculation of Binding Energies of Electrons:<br />

Determination of the binding energy (BE):<br />

KE = h – BE ↔ BE = h – KE<br />

The Binding Energy of electrons is normally is referred to the Fermi Level. (BE = E BF ).<br />

Attention: For the measurement, the work function of the spectrometer is relevant!<br />

Calibration via a reference of known binding energy!<br />

Usually the negative value of the BE is used leading to positive values in the spectra.<br />

Contributions to the binding energy:<br />

1.<br />

2.<br />

Atomic base-contribution : E 0 bind<br />

Chemical shift: E chem<br />

3. Relaxation term: E relax<br />

BE = E 0 bind + E chem + E relax<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

10


Primary PE structure: Contrib. of the atomic species<br />

Contribution of the atomic species E 0 bind:<br />

The binding energy represents strength of the electromagnetic interaction between the<br />

electron (n,l,m,s) and the charge of the nucleus<br />

• In gases: BE ≡ Ionization potential (n, l, m, s)<br />

• BE follows energy of levels: BE(1s) > BE(2s) > BE(2p) > BE(3s) …<br />

• BE of a selected orbital increases with Z: BE(Na 1s) < BE(Mg 1s) < BE(Al 1s)…<br />

• BE of a selected orbital is not affected by isotope effects: BE(7Li 1s) = BE(6Li 1s)<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

11


PE structure: Peak labeling<br />

Cu 2p 3/2<br />

Spin-orbit coupling: |j| = l + s<br />

Total angular momentum quantum number j<br />

Azimuthal quantum number l<br />

Principal quantum number n<br />

Chemical symbol<br />

E<br />

M<br />

L<br />

3<br />

2<br />

d (l=2)<br />

p (l=1)<br />

s (l=0)<br />

p (l=1)<br />

s (l=0)<br />

5/2<br />

3/2<br />

3/2<br />

1/2<br />

1/2<br />

3/2<br />

1/2<br />

1/2<br />

3d 5/2<br />

3d 3/2<br />

3p 3/2<br />

3p 1/2<br />

3s<br />

2p 3/2<br />

2p 1/2<br />

2s<br />

Binding Energy / eV<br />

K<br />

1<br />

s (l=0)<br />

1/2<br />

1s<br />

n l |j| BE / eV<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

12


PE structure: Binding energy of core electrons<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

13


Primary PE structure: Chemical shifts<br />

The chemical shift E chem :<br />

The energy of the core shell electron level is<br />

influenced by the atom´s electron density of the<br />

outer shells.<br />

Shielding of the core shell electrons!<br />

Influenced by the electro-negativity of the next<br />

neighbor atoms!<br />

The BE depends on the chemical state<br />

Chemical shift as a fingerprint<br />

Electron density of H 2 O<br />

(Calculated with density functional<br />

DFT)<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

14


Primary PE structure: Chemical shifts<br />

A simplified explanation:<br />

Remove a d shell electron, e.g. by bonding to oxygen<br />

Levels shift down (higher BE) simply by<br />

electrostatic reasons<br />

Core level chemical shifts:<br />

• related to the overall charge on the atom<br />

reduced charge increased B.E.<br />

• number of substituents<br />

• electronegativity of the substituent<br />

• formal oxidation state<br />

Chemical Shift is important for identifying:<br />

• functional groups<br />

• chemical environments<br />

• oxidation states<br />

M M +<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

15


Calculated BE / eV<br />

PE structure: Chemical shift as a fingerprint<br />

EffectivePauling's charge :<br />

q<br />

p,A<br />

AB<br />

i<br />

q<br />

e<br />

Ionicity:<br />

B<br />

i<br />

AB<br />

1 exp 0.25<br />

i<br />

EN<br />

A<br />

EN<br />

B<br />

i<br />

2<br />

Experimental BE / eV<br />

J.H. Scofield, J. Elect. Spec. 8 (1976) 129.<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

16


Classical example: Chemical shifts for the C1s peak<br />

Ethylene-trifluoroacetate:<br />

C 2 H 5 -O-CO-CF 3<br />

All four carbon atoms have a different<br />

neighboring atoms species that have different<br />

electro-negativities.<br />

All four carbon atoms have a different<br />

chemical environment.<br />

XPS spectrum shows 4 C1s peaks with<br />

three different chemical shifts.<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

17


Examples of XP-spectra<br />

Oxide covered Si:<br />

Si2p<br />

After removal<br />

of background<br />

and Si2p 1/2<br />

N-containing adsorbates on Si:<br />

N1s<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

18


XPS investigations on TiO 2 powder samples<br />

• chemical composition of particles?<br />

• oxidation state of Ti?<br />

• immobilization of nanoparticles (d = 110 nm) on an Indium foil<br />

detector<br />

X-ray source<br />

analyzer<br />

monochromator<br />

TiO 2 particles<br />

Indium foil<br />

In<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

19


Ti LMM<br />

Ti LMM1<br />

XPS investigations on TiO 2 powder samples<br />

• survey spectrum: XPS- and Auger-Peaks<br />

Ti3s Ti3p<br />

O KLL<br />

Ti2s<br />

O1s<br />

Ti2p<br />

C1s<br />

O2s<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

20


CPS<br />

CPS<br />

CPS<br />

XPS investigations on TiO 2 powder samples<br />

‣ quantification of sample composition via detail spectra<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

x 10 2<br />

Ti2p<br />

peak area of 1:2<br />

is fixed by spinorbit<br />

coupling!<br />

Ti2p1/2<br />

Ti2p3/2<br />

17.9 at%<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

x 10 2<br />

O1s<br />

OH<br />

13.3 at% 37.6 at%<br />

O<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

x 10 2<br />

C1s<br />

1.1 at%<br />

C-O<br />

C-C<br />

30,1 at%<br />

468 464 460 456 452<br />

Binding Energy (eV)<br />

Binding Energy (eV)<br />

534 531 528 525<br />

Binding Energy (eV)<br />

Binding Energy (eV)<br />

291 288 285 282<br />

Binding Energy (eV)<br />

Binding Energy (eV)<br />

‣ oxidation state of Ti is Ti 4+ as followed by the Ti2p doublet<br />

‣ significant amount of carbon: residues of particle synthesis and/or contaminations<br />

‣ oxides and hydroxides, in total excess in oxygen compared to the 1:2 stochiometry of TiO 2<br />

‣ no information about TiO 2 modification (Anatase vs. Rutile vs. amorphous) in XPS<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

21


Chemical shifts of Ti compounds<br />

5<br />

Ti 2p 3/2<br />

4<br />

TiO 2<br />

Ti valency<br />

3<br />

2<br />

10<br />

8<br />

Ti2p exp.<br />

Ti2p3 458.8 eV<br />

Ti 2<br />

O 3<br />

TiO<br />

6<br />

1<br />

CPS / 10 3<br />

4<br />

22.0 %<br />

2<br />

0<br />

0<br />

470 465 460 455<br />

Binding energy / eV<br />

44.8 %<br />

Ti (metallic)<br />

460<br />

458<br />

456<br />

454<br />

Binding Energy / eV<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

22


Secondary Structure: Surface charging<br />

Surface charging:<br />

‣ Electrical insulators cannot dissipate charge generated by<br />

the photoemission process!<br />

‣ Surface picks up excess positive charge!<br />

All peaks shift to higher binding energies<br />

‣ Especially: Organic compounds, oxides and ceramics<br />

‣ Uncritical: Metals, semiconductors, very thin films<br />

‣ Can be reduced by exposing the surface to a neutralizing<br />

flux of low energy electrons: “flood gun” or “neutralizer”<br />

‣ But the charge can be overcompensated by the neutralizer!<br />

‣ Good reference peak important!<br />

Often used C1s: C-C 284.5 eV<br />

- - - -<br />

-<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

Insulating<br />

sample<br />

Insulating<br />

sample<br />

23


Quantitative analysis: Photoelectron intensity<br />

I<br />

A<br />

A<br />

h<br />

D E<br />

KIN<br />

L<br />

A<br />

T<br />

E<br />

KIN<br />

N<br />

A<br />

M<br />

cos(<br />

)<br />

I S ( ) L<br />

A<br />

A<br />

A<br />

T<br />

E<br />

KIN<br />

N<br />

A<br />

z<br />

∞<br />

hν<br />

γ<br />

δ<br />

I A – Photoelectrons current from A-Element<br />

A – Element in Matrix M<br />

L A (γ) – Angular asymmetry of the intensity<br />

of the intensity of the photoemission from each atom<br />

T(xyγΦE A ) – analyzer transmission<br />

N A – atom density of the A atoms at (xyz)<br />

x<br />

θ<br />

Φ<br />

ē<br />

(hν) – cross-section for emission of a<br />

photoelectron from the relvant inner shell<br />

per atom of A by photon of enrergy hν<br />

z<br />

y<br />

S A ( ) – Sensitivity factor for element A<br />

– Take-off angle of photo electrons<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

24


Quantification: sensitivity factors<br />

Quantification:<br />

If is difficult to apply calculated cross sections directly to the measured data sets<br />

(e.g. other instrumental data sets need to be included, as well as loss processes lowering the<br />

intensity at the peak position)<br />

‣ Most analyses use empirical calibration factors<br />

(called atomic sensitivity factors) derived from<br />

standards:<br />

I measured = S A x N a<br />

‣ Note: Sensitivity for each element in a<br />

complex mixture can vary!<br />

‣ A typical accuracy of less that 15% can be reached<br />

by using sensitivity factors!<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

25


Quantification: Background subtraction<br />

How to determine I measured ?<br />

• Remember: “Stepped” structure of the<br />

background signal<br />

step background<br />

• Suitable background determination needed:<br />

Shirley background usually used!<br />

By using a suitable background:<br />

linear background<br />

• Accuracy better than 15 % using ASF's<br />

• Use of standards measured on same<br />

instrument or full expression above<br />

accuracy better than 5 %<br />

Shirley background<br />

• In both cases, reproducibility (precision)<br />

better than 2 %<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

[D.A. Shirley, Phys. Rev. B5, 4709, 1972]<br />

26


Ti LMM1<br />

Ti LMM<br />

O KLL<br />

Ti2s<br />

Quantification example: TiO 2 on top of stainless steel<br />

0.4<br />

0.2<br />

CPS / 10 5<br />

O1s<br />

Ti2p<br />

C1s<br />

O2s Ti3p Ti3s<br />

Atomic %<br />

Ti2p3 22.9<br />

O1s 50.8<br />

C1s 26.3<br />

c(<br />

at%)<br />

N<br />

1<br />

Area<br />

ASF<br />

Area<br />

ASF<br />

1<br />

Sample<br />

1<br />

Sample<br />

X<br />

Sample<br />

X<br />

Sample<br />

Peak ASF<br />

Ti2p3 1.385<br />

O1s 0.733<br />

C1s 0.314<br />

0.0<br />

1200<br />

1000<br />

800 600 400<br />

Binding energy / eV<br />

200<br />

0<br />

TiO 2 film covers the whole surface<br />

Ti oxidation state: Ti 4+<br />

Ti:O ratio ≈ 1:2<br />

sputtered TiO 2 film<br />

stainless steel<br />

23 nm<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

27


Mean free path / Å<br />

Quantification: Information depth<br />

‣ The Intensity of the photoelectrons is attenuated by the strong electron-electron interaction<br />

Universal mean free path curve!<br />

High surface sensitivity<br />

‣ The attenuation follows an exponential decay (Lambert-Beer):<br />

‣ The Intensity of the emitted PE can be calculated by integration:<br />

I<br />

x<br />

I ~ exp<br />

I<br />

b<br />

0<br />

x a<br />

exp<br />

x<br />

dx<br />

SiO 2<br />

-<br />

-<br />

suboxide<br />

Si-substrate<br />

-<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

28


Information depth: Native oxide on top Si<br />

Si2p<br />

Si-substrate<br />

-<br />

native oxide<br />

Si-substrate<br />

-<br />

2-3 nm<br />

native oxide<br />

Si2s<br />

native oxide<br />

Si-substrate<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

29


Angle resolved XPS: AR-XPS<br />

Detector<br />

Detector<br />

Detector<br />

-<br />

-<br />

-<br />

10 nm<br />

= 90°<br />

sampling depth: 10 nm<br />

= 35°<br />

sampling depth: 5.7 nm<br />

= 10°<br />

sampling depth: 1.7 nm<br />

I<br />

exp<br />

d<br />

sin<br />

d<br />

ln(I)<br />

sin<br />

3<br />

sin<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

30


Contents<br />

• Electron Spectroscopy of Surfaces<br />

• Theory<br />

• Applications<br />

• Optical Spectroscopy<br />

• FT-IR spectroscopy - Theory<br />

• Applications<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

31


Optical spectroscopy - Introduction<br />

Diffraction:<br />

Environment<br />

Layer<br />

External reflection:<br />

Material has to reflect<br />

the corresponding<br />

radiation<br />

Material<br />

Internal reflection:<br />

Material needs to be transparent in the<br />

corresponding wavelength region<br />

Information (can be gained most often in-situ):<br />

Layer thickness, optical constants, chemical composition, diffusion constants,<br />

reaction kinetics, orientation, adsorption, corrosion, …<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

32


Beer–Lambert–Bouguer law<br />

Assumptions:<br />

• Light has to be monochromatic and parallel<br />

• Molecules have to be molecularly dispersed<br />

• There is no diffraction or reflection<br />

dI x<br />

dx<br />

I<br />

x<br />

;<br />

I<br />

x<br />

I<br />

0<br />

e<br />

x<br />

Beer:<br />

dI is proportional to the concentration c!<br />

dI<br />

I x I0<br />

e<br />

c I<br />

dx<br />

c x<br />

I 0<br />

I<br />

molar absorptivity of the absorbing species<br />

Path length x<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

33


IR Fundamentals<br />

Section of the electromagnetic spectrum: 12500 – 10 cm -1 (0.8 – 1000 m)<br />

~<br />

in<br />

cm<br />

1<br />

Transmittance, T:<br />

Ratio of radiant power transmitted by the sample (I) to the radiant power<br />

incident on the sample (I 0 ).<br />

1<br />

in<br />

Absorbance, A:<br />

Logarithm to the base 10 of the reciprocal of the transmittance (T)<br />

m<br />

10<br />

4<br />

A<br />

log<br />

1<br />

T<br />

lg T<br />

lg<br />

10 I 0<br />

Measurement:<br />

1. Measure Reference Single Beam Spectrum (I 0 )<br />

2. Measure Sample Single Beam Spectrum (I)<br />

3. Divide I/I 0<br />

I<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

34


A Simple Spectrometer Layout<br />

Fourier Transform IR-Spectrometers: All frequencies are examined simultaneously<br />

Source: http://mmrc.caltech.edu/FTIR/FTIRintro.pdf<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

35


BRUKER Vertex 70<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

36


Attenuated Total Reflection (ATR) Spectroscopy<br />

D<br />

d p<br />

n 2 < n 1<br />

n 1<br />

ZnSe(n=2.4) or Ge (n=4.00)<br />

• The electric field of a wave reflected from an interface probes slightly beyond the<br />

interface.<br />

• This penetrating wave is called an evanescent wave.<br />

• It sends energy back and forth across the interface so that absorptions on one side<br />

are transmitted back to the other<br />

• The intensity decays exponentially away from the interface so the signal is<br />

weighted in favour of species closer to the interface.<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

37


Reflection FTIR-spectroscopy<br />

Attenuated Total Reflection (ATR) and Multiple Internal Reflection (MIR) Spectroscopy<br />

Characteristics of<br />

ATR-IR spectroscopy<br />

d p<br />

2<br />

n1 sin<br />

D<br />

2<br />

n<br />

n<br />

2<br />

1<br />

2<br />

• enables to measure surfaces as received without any<br />

further sample preparation.<br />

• permits characterisation of solid surfaces and thin<br />

layers<br />

• allows the in-situ-measurement of swelling of<br />

polymeric films<br />

• Penetration depth of the beam depends on diffraction<br />

index of the crystal and the angle of incidence<br />

d p<br />

n 1<br />

n 2 < n 1<br />

single reflection unit<br />

sample<br />

crystal<br />

sample<br />

Multiple reflection unit<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

38


ATR correction<br />

Depth of penetration correction for ATR<br />

spectra of PET: (a) spectrum as measured; (b)<br />

correction function by which the original<br />

spectrum is multiplied. The correction<br />

function is linear in wavenumber (the<br />

wavenumber scale is reproduced on the righthand<br />

axis); and (c) the corrected spectrum.<br />

This spectrum has been scaled after<br />

multiplication.<br />

Fourier Transform Infrared Spectrometry, PETER<br />

R. GRIFFITHS, JAMES A. de HASETH, A JOHN<br />

WILEY & SONS, INC., PUBLICATION<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

39


IR-Spectroscopy of fine NP powders and SAMs<br />

Diffuse Reflection Infra-Red FT-Spectroscopy (DRIFTS)<br />

Control of:<br />

• Humidity<br />

• Temperature<br />

• IR-Radiation<br />

• DRIFTS collects and analyzes scattered IR radiation<br />

• It is used for measurement of fine particles and powders, as well as rough surfaces<br />

(e.g., the interaction of a surfactant with the inner particle, the adsorption of<br />

molecules on the particle surface)<br />

• Sampling is fast and easy because little or no sample preparation is required<br />

[1]<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

[1] http://www.nuance.northwestern.edu/keckii/ftir7.asp<br />

40


IR-Spectroscopy of fine NP powders and SAMs<br />

Diffuse Reflection Infra-Red FT-Spectroscopy (DRIFTS)<br />

• Example 1: Organic phosphonate Monolayer (ODPA-SAM) on Al 2 O 3 (0001) single<br />

crystal<br />

Problem: Al 2 O 3 single crystals are non reflective IRRAS is not possible<br />

Water immersion cycle 1-4 = A-D<br />

Al 2 O 3<br />

[2]<br />

Desorption of ODPA from Al 2 O 3 (0001) could be observed<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

[2] Thissen, Valtiner, <strong>Grundmeier</strong>; Langmuir 2009, 26(1), 156-164<br />

41


IR-Spectroscopy of fine NP powders and SAMs<br />

Diffuse Reflection Infra-Red FT-Spectroscopy (DRIFTS)<br />

• Example 2: TiO 2 NP powder changes surface OH-group density during<br />

UV-light exposure<br />

UV-source ON<br />

UV-source OFF<br />

TiO 2 - OH<br />

TiO 2 - C x H y<br />

TiO 2 - OH<br />

TiO 2 - C x H y<br />

• observation of particle ensembles instead of immobilized particles (IRRAS)<br />

• reactor allows the simultaneous surface modification by UV-light and water<br />

adsorption and the control of the temperature<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

42


Conclusions<br />

Optical and electron spectroscopy allow the analysis of:<br />

• Surface and thin film composition (XPSE, AES)<br />

• Chemical states of elements (XPS, AES)<br />

• Chemical groups (FTIR, Raman)<br />

• Adsorbate formation (all)<br />

• Processes at interfaces in-situ (FTIR, Raman)<br />

PIKO Symposium, Bremen, 2011, Prof. Dr. G. <strong>Grundmeier</strong><br />

51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!