05.04.2014 Views

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Genetic recombinati<strong>on</strong> in<br />

Eukaryotes: crossing over, part 1<br />

I. <str<strong>on</strong>g>Genes</str<strong>on</strong>g> <str<strong>on</strong>g>found</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>same</strong><br />

<strong>chromosome</strong> = <strong>linked</strong> <strong>genes</strong><br />

II. Linkage and crossing over<br />

III. Crossing over &<br />

<strong>chromosome</strong> mapping<br />

I. <str<strong>on</strong>g>Genes</str<strong>on</strong>g> <str<strong>on</strong>g>found</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>same</strong><br />

<strong>chromosome</strong> = <strong>linked</strong> <strong>genes</strong><br />

C<strong>on</strong>flicting cytological evidence, <strong>on</strong>ly a<br />

few dozen <strong>chromosome</strong>s/individual – so<br />

must be several <strong>genes</strong> per <strong>chromosome</strong><br />

Testcross experiments revealed gene<br />

linkage – observed deviati<strong>on</strong>s from <strong>the</strong><br />

expected 1:1:1:1 ratio based up<strong>on</strong><br />

independent assortment<br />

If a testcross is d<strong>on</strong>e<br />

and <strong>the</strong> <strong>genes</strong> are <strong>on</strong><br />

separate<br />

<strong>chromosome</strong>s:<br />

Chromosome is <strong>the</strong> unit of<br />

transmissi<strong>on</strong>, not <strong>the</strong> gene<br />

Aa/Bb x aa/bb<br />

Aa/Bb<br />

aa/bb<br />

Aa/bb<br />

aa/Bb<br />

2 <strong>genes</strong>, located<br />

<strong>on</strong> different<br />

<strong>chromosome</strong>s,<br />

will segregate<br />

independently.<br />

• Instead, <strong>the</strong> alleles at all loci of <strong>on</strong>e<br />

<strong>chromosome</strong>, should in <strong>the</strong>ory, be<br />

transmitted as a unit during gamete<br />

formati<strong>on</strong>.<br />

1:1:1:1 observed<br />

1


II. Linkage and crossing over<br />

When two <strong>genes</strong> are compeletely <strong>linked</strong>, no crossing over<br />

occurs <strong>the</strong>refore, each gamete receives <strong>the</strong> alleles present<br />

<strong>on</strong> <strong>on</strong>e chromatid or <strong>the</strong> o<strong>the</strong>r:<br />

AB or ab<br />

A. Crossing over – breakage<br />

and rejoining process<br />

between 2 NONSISTER<br />

chromatids<br />

• Crossing over produces<br />

recombinants<br />

• The % of recombinant<br />

gametes varies,<br />

dependent up<strong>on</strong> locati<strong>on</strong><br />

of <strong>the</strong> loci. The closer <strong>the</strong><br />

<strong>genes</strong> are, <strong>the</strong> less likely<br />

recombinati<strong>on</strong> will occur<br />

RECOMBINANT<br />

Breakage and rejoining process between two<br />

homologous n<strong>on</strong>-sister chromatids<br />

-<strong>the</strong>re can be <strong>on</strong>e or more cross-overs<br />

-<strong>the</strong> cross over can occur anywhere<br />

RECOMBINANT<br />

Recombinati<strong>on</strong> Frequency = <strong>the</strong> # of<br />

recombinants/total progeny<br />

2


B. Recombinati<strong>on</strong> Frequency, un<strong>linked</strong><br />

<strong>genes</strong> v. <strong>linked</strong> <strong>genes</strong><br />

1). In <strong>the</strong> case of un<strong>linked</strong> <strong>genes</strong>, independent<br />

assortment holds true…<br />

Testcross: Heterozygous x homozygous mutant<br />

AaBb x aabb<br />

Offspring:<br />

<strong>the</strong> # of recombinants = <strong>the</strong> # of parental types<br />

2). In <strong>the</strong> case of <strong>linked</strong> <strong>genes</strong>, no<br />

independent assortment<br />

• Offspring:<br />

• <strong>the</strong> # of recombinants < <strong>the</strong> # of parental<br />

types<br />

‣ (RF) < 1/2 or 50%<br />

Recombinati<strong>on</strong> Frequency =<br />

‣We can compare <strong>the</strong> RF to what <strong>on</strong>e would expect<br />

with independent assortment…<br />

RF Range – 0% to 50%<br />

RF significantly < 50% - Linkage<br />

RF = 50% - not <strong>linked</strong><br />

•Crossing between adjacent n<strong>on</strong> sister chromatids generates<br />

recombinants<br />

•The two chromatids not involved in <strong>the</strong> exchange result in n<strong>on</strong>parental<br />

gametes<br />

3


Recombinati<strong>on</strong> by Crossing Over – points<br />

to keep in mind:<br />

1. CO’s can occur between any two n<strong>on</strong>sister<br />

chromatids<br />

2. If <strong>the</strong>re is NO crossing over, <strong>on</strong>ly parental<br />

types will be observed<br />

3. If <strong>the</strong>re IS crossing over, RF will increase up<br />

to 50%<br />

4. when <strong>the</strong> loci of two <strong>linked</strong> <strong>genes</strong> are very<br />

far apart, <strong>the</strong> RF approaches 50%, 1:1:1:1<br />

ratio observed, thus transmissi<strong>on</strong> of <strong>the</strong><br />

<strong>linked</strong> <strong>genes</strong> is indistinguishable from that of<br />

two un<strong>linked</strong> <strong>genes</strong><br />

Morgan noted <strong>the</strong> proporti<strong>on</strong> of recombinant<br />

progeny varied depending <strong>on</strong> which <strong>linked</strong> <strong>genes</strong><br />

were being examined…<br />

Testcross F1 results:<br />

pr + pr vg + vg x pr pr vg vg<br />

pr + vg + 1339<br />

pr vg 1195<br />

pr + vg 151<br />

pr vg + 154<br />

RF = 11%<br />

y + y w + w x yy ww<br />

y w 43<br />

y + w 2146<br />

y w + 2302<br />

y + w + 22<br />

RF = 1.4%<br />

As Morgan studied<br />

more <strong>linked</strong> <strong>genes</strong>, he<br />

saw that <strong>the</strong> proporti<strong>on</strong><br />

of recombinant<br />

progeny varied<br />

c<strong>on</strong>siderably.<br />

III. Crossing over & <strong>chromosome</strong> mapping<br />

• Morgan thought <strong>the</strong> variati<strong>on</strong>s in RF might<br />

indicate <strong>the</strong> actual distances separating <strong>genes</strong><br />

<strong>on</strong> <strong>the</strong> <strong>chromosome</strong>s.<br />

• Sturtevant (Morgan’s student) compiled data <strong>on</strong><br />

recombinati<strong>on</strong> between <strong>genes</strong> in Drosophila test<br />

crosses<br />

‣ The closer <strong>the</strong> two <strong>linked</strong> <strong>genes</strong>, <strong>the</strong> lower <strong>the</strong><br />

recombinati<strong>on</strong> frequency- thus RF may be<br />

correlated with <strong>the</strong> map distance between two<br />

loci <strong>on</strong> a <strong>chromosome</strong><br />

A. Linkage Maps<br />

• Linkage of <strong>genes</strong> can be represented in <strong>the</strong><br />

form of a genetic map, which shows <strong>the</strong><br />

linear order of <strong>genes</strong> al<strong>on</strong>g a <strong>chromosome</strong>.<br />

Can also determine <strong>the</strong> distance between <strong>the</strong><br />

<strong>genes</strong>. The % recombinant offspring is<br />

correlated w/<strong>the</strong> distance between <strong>the</strong> two<br />

<strong>genes</strong><br />

4


B. Map Units<br />

• Map Unit (m.u.) = <strong>the</strong> distance between<br />

<strong>genes</strong> for which <strong>on</strong>e product of meiosis<br />

out of 100 is recombinant<br />

• [RF of 1% = 1 m.u. or 1 cM]<br />

• e.g. if RF 12% between A & B, and<br />

28% between B & C:<br />

A B C<br />

12 mu 28 mu<br />

RF – 1.3%, <strong>the</strong>refore y is 1.3mu from w<br />

w 37.2 mu from m<br />

In <strong>the</strong> garden pea, orange pods (orp) are recessive to normal<br />

pods (Orp), and sensitivity to pea mosaic virus (mo) is<br />

recessive to resistance to <strong>the</strong> virus (Mo). A plant with<br />

orange pods and sensitivity is crossed to a true-breeding<br />

plant with normal pods and resistance. The F1 plants<br />

were <strong>the</strong>n test-crossed to plants with orange pods and<br />

sensitivity. The following results were obtained:<br />

160 orange pods/sensitive<br />

165 normal pods/resistant<br />

36 orange pods/resistant<br />

39 normal pods/sensitive<br />

calculate <strong>the</strong> map distance between <strong>the</strong> two <strong>genes</strong><br />

5


C. Mapping multiple <strong>genes</strong> – Threepoint<br />

mapping & Alfred’s research<br />

• Hypo<strong>the</strong>sis = when<br />

multiple <strong>genes</strong> are<br />

located <strong>on</strong> <strong>the</strong> <strong>same</strong><br />

<strong>chromosome</strong>, <strong>the</strong><br />

distance between <strong>the</strong><br />

<strong>genes</strong> can be estimated<br />

from <strong>the</strong> proporti<strong>on</strong> of<br />

recombinant offspring.<br />

• Sturtevant’s First Genetic<br />

Map<br />

A. Sturtevant’s First Genetic Map<br />

• The linear order of <strong>the</strong>se <strong>genes</strong> can be determined using<br />

testcross data<br />

Examined 5 different <strong>genes</strong>: y, w, v, m, r<br />

• All alleles were <str<strong>on</strong>g>found</str<strong>on</strong>g> to be recessive and X <strong>linked</strong>.<br />

• Crossed <strong>the</strong> double heterozygote female with<br />

hemizygous male recessive for <strong>the</strong> <strong>same</strong> alleles.<br />

Example: y+y w+w x yw w+w r+r x wr<br />

y+w+<br />

yw<br />

y+w<br />

yw+<br />

w+r+<br />

wr<br />

w+r<br />

wr+<br />

RF = 214/21,736 = 0.0098<br />

RF = 2,062/6116 = 0.337<br />

1 mu between y & w, 33.7 mu between w & r<br />

<strong>genes</strong> are arranged <strong>on</strong> <strong>the</strong> <strong>chromosome</strong> in a linear<br />

order- which can be determined…<br />

The Complete Data:<br />

Alleles # R./total#<br />

y and w 214/21,736<br />

y and v 1,464/4,551<br />

y and r 115/324<br />

y and m 260/693<br />

w and v 471/1,584<br />

w and r 2,062/6116<br />

w and m 406/898<br />

v and r 17/573<br />

w and m 109/405<br />

RF<br />

1%<br />

32.2%<br />

35.5%<br />

37.5%<br />

29.7%<br />

33.7%<br />

45.2%<br />

3%<br />

26.9%<br />

6


y-w = 1 m.u.<br />

v-r = 3 m.u.<br />

y-m = 37.5 m.u.<br />

w-r = 33.7 m.u.<br />

w-v = 29.7 m.u.<br />

Suggesting that v is between r<br />

& w, but closer to r<br />

Map distances more accurate<br />

between <strong>genes</strong> that are closer<br />

toge<strong>the</strong>r, as <strong>the</strong> RF approaches<br />

50%, <strong>the</strong> value becomes more<br />

inaccurate as a measure of map<br />

distance…<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!