07.04.2014 Views

lofar - Swedish Institute of Space Physics - Uppsala

lofar - Swedish Institute of Space Physics - Uppsala

lofar - Swedish Institute of Space Physics - Uppsala

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Physics</strong> in<br />

<strong>Space</strong><br />

Programme<br />

LOFAR<br />

Outrigger in<br />

Scandinavia<br />

LOFAR and LOIS<br />

Next-generation sensor networks and<br />

radio techniques for probing space<br />

Bo Thidé<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong><br />

and<br />

Dept. <strong>of</strong> Astronomy and <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong> University<br />

and<br />

LOIS <strong>Space</strong> Centre, Växjö University<br />

EISCAT Radar School, Kiruna, 2005


New HF-VHF digital radio system for space radio<br />

LOFAR<br />

Low Frequency Array (10–<br />

240 MHz)<br />

Test station at Exloo<br />

operational, full scale<br />

deployment in progress.<br />

Final antenna 10–100 times<br />

more sensitive than any<br />

existing comparable facility.<br />

LOIS<br />

LOFAR In Scandinavia<br />

Test station near Växjö<br />

operational, fast fibre<br />

network, supercomputer<br />

Transmitter in Hörby<br />

(Teracom)<br />

Bo Thidé 2<br />

EISCAT Radar School, Kiruna,, 2005


Hydrogen radiates at 1420.4 MHz (21 cm)<br />

Very important source <strong>of</strong> radiation from space<br />

Bo Thidé 3<br />

EISCAT Radar School, Kiruna,, 2005


The Westerbork array <strong>of</strong> 14 dishes, each 25 m in<br />

diameter sees nearby 1420.4 MHz (21 cm) objects<br />

M31 (Andromeda, Local group)<br />

Bo Thidé 4<br />

EISCAT Radar School, Kiruna,, 2005


Q1: How to observe 21 cm line radio<br />

emission from the Epoch <strong>of</strong> Re-Ionisation?<br />

M. Rees<br />

Bo Thidé 5<br />

EISCAT Radar School, Kiruna,, 2005


The cosmological redshift (z~8-10) Doppler shifts<br />

the 1420.4 MHz signal into the HF/VHF band!<br />

Bo Thidé 6<br />

EISCAT Radar School, Kiruna,, 2005


Predicted EoR spectrum to test Big Bang<br />

J. Briggs<br />

Bo Thidé 7<br />

EISCAT Radar School, Kiruna,, 2005


LOFAR<br />

Bo Thidé 8<br />

EISCAT Radar School, Kiruna,, 2005


Bo Thidé 9<br />

EISCAT Radar School, Kiruna,, 2005


LOFAR will be a very sensitive HF/VHF array<br />

Bo Thidé 10<br />

EISCAT Radar School, Kiruna,, 2005


Sensor field<br />

Fibre data transport<br />

Central supercomputer<br />

Integrate LOFAR network<br />

into regional fibre network,<br />

sharing costs with schools,<br />

health centres etc.<br />

LOFAR<br />

Phase 1<br />

- Radio telescope<br />

- Seismic imager<br />

- Precision weather<br />

for agriculture,<br />

wind energy<br />

Bo Thidé 11<br />

EISCAT Radar School, Kiruna,, 2005


LOFAR Initial Test Station (ITS) at Exloo<br />

Bo Thidé 12<br />

EISCAT Radar School, Kiruna,, 2005


First LOFAR ITS results<br />

Bo Thidé 13<br />

EISCAT Radar School, Kiruna,, 2005


The paradigm<br />

• Conjuncture <strong>of</strong> technologies<br />

• inexpensive environmental sensors<br />

• high capacity fibre, wireless networks<br />

• affordable supercomputers<br />

• Experience with LOFAR project<br />

• wide-area, large-scale, sensor network in Europe<br />

– financed through regional/national/structure funds<br />

– originated in the astrophysics community<br />

• Issues<br />

• extension <strong>of</strong> the concept to ERA activities <strong>of</strong> FP7<br />

• radio astronomy as a technology platform driver<br />

Bo Thidé 14<br />

EISCAT Radar School, Kiruna,, 2005


LOFAR<br />

Phase 2<br />

into<br />

Lower Saxony,<br />

Schleswig-Holstein,<br />

Nordrhein-Westfalen<br />

Ultimate LOFAR<br />

to<br />

Växjö SE<br />

Cambridge UK<br />

Potsdam DE<br />

Nançay FR<br />

etc<br />

Bo Thidé 15<br />

EISCAT Radar School, Kiruna,, 2005


LOIS – The LOFAR Outrigger in Scandinavia<br />

Bo Thidé 16<br />

EISCAT Radar School, Kiruna,, 2005


Three orthogonal linear dipole antennas<br />

probe the 3D electric field vectors<br />

Bo Thidé 17<br />

EISCAT Radar School, Kiruna,, 2005


Three orthogonal<br />

loop antennas<br />

probe the 3D<br />

magnetic field<br />

pseudovectors<br />

Bo Thidé 18<br />

EISCAT Radar School, Kiruna,, 2005


LOIS resources<br />

Supercomputer cluster (SUR grant from IBM) and<br />

Part <strong>of</strong> the LOIS Test Station outside Växjö, SE.<br />

Lars Daldorff, Axel Guthmann and the IBM system<br />

B.T. and Willem Baan (LOFAR)<br />

at the LOIS Test Station.<br />

Bo Thidé 19<br />

EISCAT Radar School, Kiruna,, 2005


Bo Thidé 20<br />

EISCAT Radar School, Kiruna,, 2005


LOIS and LOFAR<br />

Bo Thidé 21<br />

EISCAT Radar School, Kiruna,, 2005


LOIS first <strong>of</strong> a series <strong>of</strong> Science Operation Centres<br />

Bo Thidé 22<br />

EISCAT Radar School, Kiruna,, 2005


LOFAR and LOIS concept<br />

• Combine advances in enabling IT<br />

• inexpensive environmental sensors<br />

10.000’s <strong>of</strong> sensors<br />

• wide area optical broadband networks<br />

custom+Géant/Danté+SUNET+...<br />

• high performance computing<br />

IBM BlueGene/L, IBM JS20 Clusters, ...<br />

to sense and interpret the environment in<br />

innovative ways<br />

Bo Thidé 23<br />

EISCAT Radar School, Kiruna,, 2005


LOFAR and LOIS sensors<br />

Sensor type<br />

Applications<br />

LOFAR was<br />

conceived by the<br />

astrophysics<br />

community as a new<br />

way to build radio<br />

telescopes<br />

HF-antenna:<br />

VHF-antenna:<br />

Geophones:<br />

Weather:<br />

Water:<br />

Infra-sound:<br />

astrophysics, ionospheric/magnetospheric physics,<br />

astro-particle physics<br />

cosmology, early Universe<br />

solar effects on Earth, space weather<br />

ground subsidence<br />

micro-climate prediction<br />

gas/oil extraction<br />

precision agriculture<br />

wind energy<br />

precision agriculture<br />

habitat management<br />

public safety<br />

atmospheric turbulence,<br />

meteors, explosions, sonic booms<br />

Bo Thidé 24<br />

EISCAT Radar School, Kiruna,, 2005


Secondary radiation experiment setup<br />

Bo Thidé 25<br />

EISCAT Radar School, Kiruna,, 2005


1+2D EM Vlasov-Maxwell simulations<br />

Magnetised kinetic plasma model <strong>of</strong> the ionosphere. Pump at k = 0.05 kDebye<br />

injected for 600 plasma periods. Temporally i<br />

i<br />

moving Fourier transforms <strong>of</strong> E field<br />

in time (angular frequency; vertical) and space (wavenumber; horisontal)<br />

provides for the dynamic dispersion curves with colour-coded intensities shown.<br />

(Click for animation)<br />

(Click for animation)<br />

High (UH) frequency region<br />

Low frequency region<br />

[Bengt Eliasson, Ph.D. thesis, 2002 + several articles in Phys. Rev. Lett., J. Comput. Phys, …]<br />

Bo Thidé 26<br />

EISCAT Radar School, Kiruna,, 2005


LOIS/LOFAR beat-wave excitation model<br />

Bo Thidé 27<br />

EISCAT Radar School, Kiruna,, 2005


HF pump frequency dependence<br />

Pump frequency stepped around 4f ce<br />

, EISCAT/Heating, Norway<br />

Bo Thidé 28<br />

EISCAT Radar School, Kiruna,, 2005


HF pump frequency dependence<br />

Pump frequency stepped around 7f ce<br />

, Sura, Russia<br />

Bo Thidé 29<br />

EISCAT Radar School, Kiruna,, 2005


HF pump frequency dependence<br />

Pump frequency swept continuously up and down across 4f ce<br />

, Sura, Russia<br />

BUM hysteresis<br />

HF excited secondary radiation (SEE) as recorded at the radio facility SURA near Nizhniy Novgorod,<br />

Russia, 1999 when the HF pump frequency was swept across the ionospheric 4 th gyroharmonic<br />

60 kHz <br />

Pump<br />

(Click for animation)<br />

5340 kHz Bo Thidé 4f ce<br />

5540 kHz 30<br />

EISCAT Radar School, Kiruna,, 2005


Secondary ionospheric radiation/SEE pump<br />

frequency dependence: the big picture<br />

Sideband spectra for SEE in a stationary state as a function <strong>of</strong> pump frequency f 0<br />

.<br />

Data collected 1996–2005 at the SURA facility. Electron cyclotron harmonics (nf ce<br />

,<br />

n=4-7) are shown on the top <strong>of</strong> the figure. Sideband <strong>of</strong>fset Δf=f SEE<br />

–f 0<br />

.<br />

Bo Thidé 31<br />

EISCAT Radar School, Kiruna,, 2005


Pump frequency dependent Doppler<br />

radar returns<br />

Bo Thidé 32<br />

EISCAT Radar School, Kiruna,, 2005


SEE diagnostic <strong>of</strong> Langmuir turbulence<br />

NCM<br />

SEE spectrogram for the first 200 ms <strong>of</strong><br />

pumping. Left part: frequency resolution<br />

δF = 1 kHz, time step between Right<br />

part: δF = 0.2 kHz, time step 500 μs. The<br />

black line shows the temporal evolution<br />

<strong>of</strong> the reflected HF. September 26, 1998,<br />

14:52–15:26 LT; f 0<br />

= 6778 kHz ≈ 5f ce<br />

.<br />

Pump power ~ 180 MW.<br />

B.T. et al., Phys. Rev. Lett., in press, July, 2005<br />

A sequence <strong>of</strong> separate SEE<br />

spectra obtained at different<br />

times after HF turn-on.<br />

Conclusions: broadening <strong>of</strong><br />

the spectrum in time; an<br />

overshoot; appearance <strong>of</strong><br />

fine structure (NC m<br />

) possibly<br />

same as the DP feature.<br />

Bo Thidé 33<br />

EISCAT Radar School, Kiruna,, 2005


Statistical nature <strong>of</strong> radiation components<br />

A statistical analysis <strong>of</strong> numerous<br />

secondary radiation (SEE)<br />

components in their steady state<br />

has shown that they are all are<br />

non-sinusoidal and noise-like.<br />

Roger Karlsson, Ph.D. thesis, September 30, 2005<br />

Bo Thidé 34<br />

EISCAT Radar School, Kiruna,, 2005


Polarimetric signatures <strong>of</strong> the HF pump and secondary radiation<br />

Poincaré spheres <strong>of</strong> wave polarisation<br />

Essentially 2D<br />

Lie group: SU(2)<br />

Bo Thidé 35<br />

EISCAT Radar School, Kiruna,, 2005


3D vector polarimetry and radio imaging<br />

Bo Thidé 36<br />

EISCAT Radar School, Kiruna,, 2005


3D polarimetry utilising that E(t,x) is a polar vector and<br />

B(t,x) an axial vector (pseudovector)<br />

Bo Thidé 37<br />

EISCAT Radar School, Kiruna,, 2005


Use EM field symmetries and conserved<br />

quantities (Noether’s theorem)<br />

Bo Thidé 38<br />

EISCAT Radar School, Kiruna,, 2005


EM symmetries (continued)<br />

Bo Thidé 39<br />

EISCAT Radar School, Kiruna,, 2005


EM symmetries (continued)<br />

Bo Thidé 40<br />

EISCAT Radar School, Kiruna,, 2005


EM beam with spin (circular polarisation)<br />

No orbital angular momentum (OAM)<br />

Courtesy and © M. J. Padgett, J. Leach et al., U. Glasgow, UK; Royal Society<br />

Bo Thidé 41<br />

EISCAT Radar School, Kiruna,, 2005


Field vectors across an antenna array for a<br />

radio beam with spin (circular polarisation)<br />

Phase 0 deg<br />

B. T. et al., preprint, 2005<br />

Phase 45 deg<br />

Bo Thidé 42<br />

EISCAT Radar School, Kiruna,, 2005


Helical radio beams carry orbital<br />

angular momentum (OAM)<br />

B. Thidé et al., preprint, 2005<br />

Bo Thidé 43<br />

EISCAT Radar School, Kiruna,, 2005


Field vectors across an antenna array for a<br />

radio beam with orbital angular momentum<br />

Phase 0 deg<br />

Phase 45 deg<br />

B. Thidé et al., preprint, 2005<br />

Bo Thidé 44<br />

EISCAT Radar School, Kiruna,, 2005


EM beams with orbital angular<br />

momentum (OAM)<br />

l=+1<br />

l=+3<br />

l= -4<br />

Courtesy and © M. J. Padgett, J. Leach et al., U. Glasgow, UK; Royal Society<br />

Bo Thidé 45<br />

EISCAT Radar School, Kiruna,, 2005


OAM as turbulence diagnostic<br />

Bo Thidé 46<br />

EISCAT Radar School, Kiruna,, 2005


OAM as a new RF modulation technique?<br />

Bo Thidé 47<br />

EISCAT Radar School, Kiruna,, 2005


Cosmic ray radio flash candidates at LOIS (Dec 2004)<br />

Latest news: 27 Dec, 2004,<br />

magnetar gamma signatures<br />

tentatively observed.<br />

Bo Thidé 48<br />

EISCAT Radar School, Kiruna,, 2005


Bo Thidé 49<br />

EISCAT Radar School, Kiruna,, 2005


LOIS transmission tests<br />

Test transmissions (ionospheric<br />

interactions, space radar) will be<br />

made with Radio Sweden’s<br />

500kW HF transmitters and logperiodic<br />

antennas at Hörby, 200<br />

km south <strong>of</strong> the LOIS test station.<br />

Will try to include other highpower<br />

HF transmitters in Europe.<br />

Bo Thidé 50<br />

EISCAT Radar School, Kiruna,, 2005


Ultra-High Energy<br />

Particle Detection<br />

on the Moon<br />

Oscar Stål<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong><br />

<strong>Uppsala</strong>, Sweden<br />

To the Moon and Beyond<br />

2005-09-15<br />

Bo Thidé 51<br />

EISCAT Radar School, Kiruna,, 2005


Ultra-High Energy Cosmic Rays<br />

● CR mostly protons<br />

● Highest energy observed<br />

● F ~ E -2.75 up to 10 15 eV<br />

● After knee steeper, F ~ E -3<br />

● Origin <strong>of</strong> UHECR unknown<br />

● Flux obfuscated by B<br />

10 20 eV ≈ 16 J proton <br />

100 km/h Golf ball (!)<br />

Bo Thidé 52<br />

EISCAT Radar School, Kiruna,, 2005


Radio methods<br />

If wavelength is longer, output will be coherent<br />

P prop. Eprimary^2<br />

Radio transparent material required<br />

Askaryan proposed the use <strong>of</strong> ice, permafrost, very dry rock etc.<br />

Very dry rock is plentiful on the moon, at E=10^16 eV it becomes opaque<br />

Neutrino in moon -> Shower -> Emission<br />

Bo Thidé 53<br />

EISCAT Radar School, Kiruna,, 2005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!