13.04.2014 Views

Surprising features of ultra cold atomic gases at BCS-BEC crossover

Surprising features of ultra cold atomic gases at BCS-BEC crossover

Surprising features of ultra cold atomic gases at BCS-BEC crossover

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Surprising</strong> <strong>fe<strong>at</strong>ures</strong> <strong>of</strong> <strong>ultra</strong> <strong>cold</strong><br />

<strong><strong>at</strong>omic</strong> <strong>gases</strong> <strong>at</strong> <strong>BCS</strong>-<strong>BEC</strong> <strong>crossover</strong>


<strong>Surprising</strong> <strong>fe<strong>at</strong>ures</strong> <strong>of</strong> <strong>ultra</strong><strong>cold</strong><br />

<strong><strong>at</strong>omic</strong> <strong>gases</strong> <strong>at</strong> <strong>BCS</strong>-<strong>BEC</strong> <strong>crossover</strong><br />

Piotr Magierski (Warsaw University <strong>of</strong> Technology/<br />

University <strong>of</strong> Washington, Se<strong>at</strong>tle)<br />

Collabor<strong>at</strong>ors: Aurel Bulgac<br />

Joaquin E. Drut<br />

Yuan Lung (Alan) Luo<br />

Kenneth J. Roche<br />

Gabriel Wlazłowski<br />

Yongle Yu<br />

(Se<strong>at</strong>tle)<br />

(Se<strong>at</strong>tle OSU LANL)<br />

(Se<strong>at</strong>tle)<br />

(PNNL/Se<strong>at</strong>tle)<br />

(Warsaw)<br />

(Se<strong>at</strong>tle Lund Wuhan)


Outline<br />

<strong>BCS</strong>-<strong>BEC</strong> <strong>crossover</strong>. Universality <strong>of</strong> the unitary u<br />

regime.<br />

Physical realiz<strong>at</strong>ion <strong>of</strong> the unitary regime: <strong>ultra</strong> <strong>cold</strong> <strong><strong>at</strong>omic</strong><br />

<strong>gases</strong>.<br />

Equ<strong>at</strong>ion <strong>of</strong> st<strong>at</strong>e for the uniform Fermi gas in the unitary<br />

regime. Critical temper<strong>at</strong>ure. Experiment vs. Theory.<br />

Unitary Fermi gas as a high-Tc superconductor: pseudogap<br />

phase<br />

Nonequilibrium phenomena: gener<strong>at</strong>ion and dynamics <strong>of</strong><br />

superfluid vortices.


Sc<strong>at</strong>tering <strong>at</strong> low energies<br />

(s-wave sc<strong>at</strong>tering)<br />

If<br />

ψ<br />

2π<br />

λ = > > R<br />

k<br />

R - radius <strong>of</strong> the interaction potential<br />

<br />

ikr<br />

ik⋅r<br />

e<br />

( r) = e + f ( k) ; f ( k) - sc<strong>at</strong>tering amplitude<br />

r<br />

k → 0<br />

1<br />

f ( k) = , a - sc<strong>at</strong>tering length, r 0 - effective range<br />

1 1 2<br />

− ik − + r0<br />

k<br />

a 2<br />

k → 0 then the interaction is determined by the sc<strong>at</strong>tering length alone.


Wh<strong>at</strong> is a unitary gas?<br />

A gas <strong>of</strong> interacting fermions is in the unitary regime if the average<br />

separ<strong>at</strong>ion between particles is large compared to their size (range <strong>of</strong><br />

interaction), but small compared to their sc<strong>at</strong>tering length.<br />

n r 3<br />

1 0<br />

n |a| 3 1<br />

n - particle density<br />

a - sc<strong>at</strong>tering length<br />

r 0<br />

- effective range<br />

NONPERTURBATIVE<br />

REGIME<br />

System is dilute but<br />

strongly interacting!


Thermodynamics <strong>of</strong> the unitary Fermi gas


Expected phases <strong>of</strong> a two species dilute Fermi system<br />

<strong>BCS</strong>-<strong>BEC</strong> <strong>crossover</strong><br />

Characteristic temper<strong>at</strong>ure:<br />

T C<br />

superfluid-normal<br />

phase transition<br />

T<br />

Strong interaction<br />

UNITARY REGIME<br />

Characteristic temper<strong>at</strong>ures:<br />

T C<br />

T<br />

T<br />

∗<br />

∗<br />

superfluid-normal<br />

phase transition<br />

break up <strong>of</strong> Bose molecule<br />

><br />

T<br />

c<br />

weak interaction<br />

<strong>BCS</strong> Superfluid<br />

?<br />

weak interactions<br />

Molecular <strong>BEC</strong> and<br />

Atomic+Molecular<br />

Superfluids<br />

1/a<br />

a0<br />

shallow 2-body bound st<strong>at</strong>e<br />

Bose<br />

molecule


Bertsch’s Many-Body X<br />

challenge, Se<strong>at</strong>tle, 1999<br />

Wh<strong>at</strong> are the ground st<strong>at</strong>e properties <strong>of</strong> the many-body system<br />

composed <strong>of</strong> spin ½ fermions interacting via a zero-range, infinite<br />

sc<strong>at</strong>tering-length contact interaction.<br />

Why? Besides pure theoretical curiosity, this problem is relevant to neutron stars!<br />

In 1999 it was not yet clear, either theoretically or experimentally,<br />

whether such fermion m<strong>at</strong>ter is stable or not! A number <strong>of</strong> people argued th<strong>at</strong><br />

under such conditions Fermionic m<strong>at</strong>ter is unstable.<br />

- systems <strong>of</strong> bosons are unstable<br />

- systems <strong>of</strong> three or more fermion species are unstable<br />

•<br />

Baker (LANL, winner <strong>of</strong> the MBX challenge) concluded th<strong>at</strong> the system is stable. See<br />

also Heiselberg (entry to the same competition)<br />

•<br />

Carlson et al (2003) Fixed-Node Green Function Monte Carlo<br />

and Astrakharchik et al (2004) FN-DMC provided the best theoretical<br />

estim<strong>at</strong>es for the ground st<strong>at</strong>e energy <strong>of</strong> such systems.<br />

Carlson et al (2003) have also shown th<strong>at</strong> the system has a huge pairing gap !<br />

•<br />

Thomas’ Duke group (2002) demonstr<strong>at</strong>ed experimentally th<strong>at</strong> such systems<br />

are (meta)stable.<br />

3<br />

Egs = ε<br />

F<br />

N × ξ ∆ = ε<br />

F<br />

× ς<br />

5<br />

ξ = 0.40(1), ζ = 0.50(1)


One fermionic <strong>at</strong>om in magnetic field<br />

F m F<br />

<br />

F = I + J ; J = L + S<br />

Nuclear spin<br />

Electronic spin<br />

Two hypefine st<strong>at</strong>es are<br />

popul<strong>at</strong>ed in the trap<br />

Collision <strong>of</strong> two <strong>at</strong>oms: At low energies (low density <strong>of</strong> <strong>at</strong>oms) only L=0<br />

(s-wave) sc<strong>at</strong>tering is effective.<br />

• Due to the high diluteness <strong>at</strong>oms in the same hyperfine<br />

st<strong>at</strong>e do not interact with one another.<br />

• Atoms in different hyperfine st<strong>at</strong>es experience interactions<br />

only in s-wave.


Effective Hamiltonian <strong>of</strong> an <strong>at</strong>om-<strong>at</strong>om system<br />

∆<br />

E<br />

Z<br />

V = ( γ J − γ I ) B<br />

e z n z


One open channel with one resonant bound st<strong>at</strong>e<br />

(s-wave sc<strong>at</strong>tering)


Evidence for fermionic<br />

superfluidity: vortices!<br />

system <strong>of</strong> fermionic<br />

6<br />

Li<br />

<strong>at</strong>oms<br />

Feshbach resonance:<br />

B=834G<br />

<strong>BEC</strong> side:<br />

a>0<br />

UNITARY REGIME<br />

<strong>BCS</strong> side:<br />

a


Superconductivity and superfluidity<br />

in Fermi systems<br />

20 orders <strong>of</strong> magnitude over a century <strong>of</strong> (low temper<strong>at</strong>ure) physics<br />

Dilute <strong><strong>at</strong>omic</strong> Fermi <strong>gases</strong><br />

T c<br />

10<br />

-12 – 10 -9 eV<br />

Liquid 3 He T c 10<br />

10 -7<br />

eV<br />

-7 eV<br />

Metals, composite m<strong>at</strong>erials<br />

Nuclei, neutron stars<br />

• QCD color superconductivity<br />

T c<br />

10<br />

-3 – 10 -2 eV<br />

T c<br />

10<br />

5 – 10 6 eV<br />

T c<br />

10<br />

7 – 10 8 eV<br />

units (1 eV 10 4 K)


a = ±∞<br />

Devi<strong>at</strong>ion from Normal Fermi Gas<br />

Normal Fermi Gas<br />

(with vertical <strong>of</strong>fset, solid line)<br />

Bogoliubov-Anderson phonons<br />

and quasiparticle contribution<br />

(dashed<br />

line )<br />

Bogoliubov-Anderson phonons<br />

contribution only (dotted(<br />

line)<br />

Quasi-particle contribution only<br />

(dotted<br />

line)


ς =e<br />

− µ β<br />

h(1, ς ) / 2 = P( µ , T ) / (2 P ( µ ,T))<br />

P ( µ ,T) - pressure <strong>of</strong> a single<br />

1<br />

component <strong>of</strong> the noninteracting<br />

Fermi gas<br />

1<br />

S. Nascimbene et al. N<strong>at</strong>ure 463, 1057 (2010)<br />

From a talk given by C. Salomon, June 2nd, 2010, Saclay


Comparison with experiment<br />

John Thomas’ group <strong>at</strong> Duke University,<br />

L.Luo, et al. Phys. Rev. Lett. 98, 080402, (2007)<br />

THEORY<br />

EXP.<br />

THEORY<br />

E<br />

0<br />

=<br />

Nε<br />

ho<br />

F<br />

Entropy as a function <strong>of</strong> energy (rel<strong>at</strong>ive to the ground st<strong>at</strong>e)<br />

for the unitary Fermi gas in the harmonic trap.<br />

Theory:<br />

R<strong>at</strong>io <strong>of</strong> the mean square cloud size <strong>at</strong> B=1200G to<br />

its value <strong>at</strong> unitarity (B=840G) as a function <strong>of</strong><br />

the energy. Experimental d<strong>at</strong>a are denoted<br />

by point with error bars.<br />

B = 1200G ? 1/ k a ≈ − 0.75<br />

F


Superfluidity in <strong>ultra</strong> <strong>cold</strong> <strong><strong>at</strong>omic</strong> gas<br />

Eagles (1960), Leggett (1980), Nozieres and Schmitt-Rink (1985),<br />

Randeria et al. (1993),…<br />

If a > 1<br />

2m<br />

T<br />

∆<br />

If |a|=∞ and nr 03<br />

>r 0<br />

) and na 3


Results in the vicinity<br />

<strong>of</strong> the unitary limit:<br />

-Critical temper<strong>at</strong>ure<br />

-Pairing gap <strong>at</strong> T=0<br />

Note th<strong>at</strong><br />

- <strong>at</strong> unitarity:<br />

- for <strong><strong>at</strong>omic</strong> nucleus:<br />

<strong>BCS</strong> theory predicts:<br />

∆ ( T = 0) T C ≈ 1.7<br />

At unitarity:<br />

∆ ( T = 0) T C ≈ 3.3<br />

∆<br />

∆<br />

/ ε ≈ 0.5<br />

F<br />

/ ε ≈ 0.03<br />

This is NOT a <strong>BCS</strong> superfluid!<br />

F<br />

Bulgac, Drut, Magierski, PRA78, 023625(2008)


N<strong>at</strong>ure <strong>of</strong> the superfluid-normal phase transition in the vicinity<br />

<strong>of</strong> the unitary regime


Pairing gap and pseudogap<br />

Outside the <strong>BCS</strong> regime close to the unitary limit, but still before <strong>BEC</strong>,<br />

superconductivity/superfluidity emerge out <strong>of</strong> a very exotic, non-Fermi<br />

liquid normal st<strong>at</strong>e<br />

pseudogap<br />

order parameter<br />

T<br />

C<br />

=<br />

0.15(1) ε<br />

F<br />

T<br />

*<br />

Monte Carlo calcul<strong>at</strong>ions<br />

<strong>at</strong> the unitary regime<br />

The onset <strong>of</strong> superconductivity occurs<br />

in the presence <strong>of</strong> fermionic pairs!


Gap in the single particle fermionic spectrum from MC calcs.<br />

Normal Fermi gas<br />

[ε ]<br />

F<br />

Crossover region<br />

Monte Carlo<br />

uncertainties<br />

Pseudogap phase<br />

Noncondensed bosons + fermions<br />

Tc<br />

Superfluid phase<br />

Paired fermions<br />

Condensed bosons<br />

F<br />

P. Magierski, G. Wlazłowski, A.Bulgac to be published


Unitary Fermi gas as a high-Tc superconductor<br />

The situ<strong>at</strong>ion in the <strong>ultra</strong><strong>cold</strong> <strong><strong>at</strong>omic</strong> <strong>gases</strong> is somewh<strong>at</strong> similar to this<br />

encountered in high-temper<strong>at</strong>ure superconductors.<br />

Despite <strong>of</strong> crucial differences between these two physical systems it seems<br />

as they share <strong>at</strong> least one common fe<strong>at</strong>ure - the presence <strong>of</strong> the pseudogap<br />

phase.<br />

Fermions are correl<strong>at</strong>ed but the long range is lost


Gener<strong>at</strong>ion and dynamics <strong>of</strong> superfluid vortices <strong>of</strong> exotic topologies


Density cut through a stirred unitary Fermi gas <strong>at</strong> various times.


Pr<strong>of</strong>ile <strong>of</strong> the pairing gap <strong>of</strong> a stirred unitary Fermi gas <strong>at</strong> various times.


Exotic vortex topologies: dynamics <strong>of</strong> vortex rings<br />

Heavy spherical object moving through the superfluid unitary Fermi gas


Applic<strong>at</strong>ions to unitary gas and nuclei and how all this was<br />

implemented on JaguarPf (the largest supercomputer in the world)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!