15.04.2014 Views

the design & use of laboratory tests to reduce formation damage in ...

the design & use of laboratory tests to reduce formation damage in ...

the design & use of laboratory tests to reduce formation damage in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE DESIGN & USE OF LABORATORY<br />

TESTS TO REDUCE FORMATION DAMAGE<br />

IN OIL & GAS RESERVOIRS<br />

By<br />

Eric C. Crowell, Hycal Energy Research labora<strong>to</strong>ries Ltd.<br />

D. Brant Bennion, Hycal Energy Research Labora<strong>to</strong>ries Ltd.<br />

F. Brent Thomas, Hycal Energy Research labora<strong>to</strong>ries Ltd.<br />

Douglas W. Bennion, Hycal Energy Research Labora<strong>to</strong>ries Ltd<br />

Prepared for presentation 0 <strong>the</strong> 13th Annual Conference <strong>of</strong> <strong>the</strong> Ontario Petroleum Institute,<br />

1991, Toron<strong>to</strong>, Ontario.<br />

Abstract<br />

Fonnation <strong>damage</strong> ca<strong>use</strong>s substantial reductions <strong>in</strong> 011<br />

and gas productivity In many reservoirs. Due <strong>to</strong> <strong>the</strong><br />

mechanics <strong>of</strong> flow In<strong>to</strong> horizontal wells and <strong>the</strong> fact that<br />

most horizontal wells rema<strong>in</strong> as open hole completions,<br />

<strong>damage</strong> effects can be much more severe In horizontal<br />

wells than <strong>in</strong> equivalent vertical wells. Damage can be<br />

ca<strong>use</strong>d by mechanical effects (f<strong>in</strong>es mobilization, solids<br />

Invasion, emulsion <strong>formation</strong>, water block<strong>in</strong>g), chemical<br />

effects (clay swell<strong>in</strong>g, clay deflocculatlon, solids and wax<br />

precipitation, <strong>in</strong>soluble precipitates, acid sludges, chemical<br />

adsorption, wettability alterations), <strong>the</strong> action <strong>of</strong> bacteria or<br />

extreme temperatures associated with <strong>the</strong>rmal recovery<br />

processes. Stimulation procedures required <strong>to</strong> remove<br />

<strong>formation</strong> <strong>damage</strong> <strong>in</strong> horizontal wells are costly and are<br />

<strong>of</strong>ten unsuccessful or marg<strong>in</strong>ally successful. The <strong>use</strong> <strong>of</strong><br />

well <strong>design</strong>ed <strong>labora<strong>to</strong>ry</strong> programs can allow those<br />

associated with <strong>design</strong><strong>in</strong>g and conduct<strong>in</strong>g drill<strong>in</strong>g,<br />

completion or stimulation programs <strong>to</strong> evaluate <strong>the</strong><br />

effectiveness <strong>of</strong> specific programs, prior <strong>to</strong> <strong>the</strong>ir<br />

Implementation In <strong>the</strong> field. This paper provides a brief<br />

discussion <strong>of</strong> <strong>the</strong> mechanisms <strong>of</strong> <strong>formation</strong> <strong>damage</strong>, and<br />

<strong>the</strong>n provides details on recent advances <strong>in</strong> <strong>labora<strong>to</strong>ry</strong><br />

test<strong>in</strong>g and technology which allow almost any type <strong>of</strong><br />

drill<strong>in</strong>g, completion, workover, or stimulation program <strong>to</strong> be<br />

critically evaluated. The <strong>use</strong> <strong>of</strong> <strong>the</strong>se techniques can<br />

<strong>reduce</strong> completion costs and greatly Increase ultimate<br />

recovery and productivity <strong>of</strong> horizontal wells <strong>in</strong> many oil or<br />

gas reservoirs.<br />

Introduction<br />

Formation <strong>damage</strong> is def<strong>in</strong>ed as any type <strong>of</strong> a process<br />

which results <strong>in</strong> a reduction <strong>of</strong> <strong>the</strong> flow capacity <strong>of</strong> an oil,<br />

water or gas bear<strong>in</strong>g <strong>formation</strong>. Formation <strong>damage</strong> has<br />

long been recognized as a source <strong>of</strong> serious productivity<br />

reductions <strong>in</strong> many oil and gas reservoirs and as a ca<strong>use</strong><br />

<strong>of</strong> water <strong>in</strong>jectivity problems <strong>in</strong> many waterflood projects.<br />

This paper provides a brief overview <strong>of</strong> many <strong>of</strong> <strong>the</strong><br />

processes which can ca<strong>use</strong> <strong>formation</strong> <strong>damage</strong> and<br />

discusses <strong>labora<strong>to</strong>ry</strong> techniques which can be <strong>use</strong>d <strong>to</strong><br />

evaluate potential <strong>formation</strong> <strong>damage</strong> problems before <strong>the</strong>y<br />

occur <strong>in</strong> <strong>the</strong> reservoir and result <strong>in</strong> substantial <strong>damage</strong><br />

and/or costly stimulation or worf(over treatments.<br />

Ca<strong>use</strong>s Of Formation DamaQe<br />

Formation <strong>damage</strong> can potentially occur any-time nonequilibrium<br />

or solid bear<strong>in</strong>g fluids enter a reservoir, or when<br />

equilibria fluids are displaced at extreme velocities. Thus,<br />

most processes <strong>use</strong>d <strong>to</strong> drill, corr.,lete or stimulate<br />

reservoirs have <strong>the</strong> potential <strong>to</strong> ca<strong>use</strong> <strong>formation</strong> <strong>damage</strong>.<br />

Some <strong>of</strong> <strong>the</strong>se processes might <strong>in</strong>clude:<br />

1. Drill<strong>in</strong>g<br />

2. Cement<strong>in</strong>g<br />

3. Completions/Stimulation<br />

a) Perforat<strong>in</strong>g<br />

b) Acldiz<strong>in</strong>g<br />

c) Fractur<strong>in</strong>g<br />

1


4. Workovers<br />

a) Kill fluids<br />

b) Hot oil treatments<br />

5. Waterflood<strong>in</strong>g or water disposal<br />

6. Enhanced oil recovery processes<br />

a) Miscible flood<strong>in</strong>g<br />

b) Chemical flood<strong>in</strong>g<br />

c) Thermal flood<strong>in</strong>g (<strong>in</strong>-situ<br />

co mbu stion/steamflood <strong>in</strong>g)<br />

7. Excessive <strong>in</strong>jection or production rates<br />

Whv Prevent Formation Damaae?<br />

The philosophy varies with respect <strong>to</strong> <strong>formation</strong> <strong>damage</strong>.<br />

Many are <strong>of</strong> <strong>the</strong> op<strong>in</strong>ion that cheaper, easier <strong>to</strong> <strong>use</strong> drill<strong>in</strong>g<br />

and completion programs should be utilized, as wells can<br />

always be fractured or stimulated after <strong>the</strong> <strong>damage</strong> has<br />

occurred <strong>to</strong> <strong>in</strong>crease productivity.<br />

1. Reduc<strong>in</strong>g Formation Damage generally lowers<br />

ultimate completion costs. If <strong>the</strong> extra cost <strong>of</strong> fracture,<br />

acidiz<strong>in</strong>g and o<strong>the</strong>r, <strong>of</strong>ten unsuccessful, stimulation<br />

programs can be avoided, substantial sav<strong>in</strong>gs are<br />

realized. Often <strong>the</strong> cost <strong>of</strong> <strong>the</strong> <strong>design</strong> and<br />

implementation <strong>of</strong> a more effective drill<strong>in</strong>g and<br />

completion program is more than <strong>of</strong>fset by sav<strong>in</strong>gs<br />

realized by <strong>the</strong> greater productivity and lack <strong>of</strong> additional<br />

stimulation work required <strong>to</strong> obta<strong>in</strong> an effective well.<br />

Also, once an effective program is <strong>design</strong>ed, it can<br />

generally be applied <strong>to</strong> additional wells <strong>in</strong> <strong>the</strong> same<br />

reservoir without any extra <strong>design</strong> costs.<br />

2. Preserve Barriers. The success <strong>of</strong> many secondary and<br />

tertiary recovery process depends upon ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

<strong>in</strong>tegrity <strong>of</strong> permeability barriers <strong>in</strong> <strong>the</strong> <strong>formation</strong>,<br />

especially when adjacent zones <strong>of</strong> widely contrast<strong>in</strong>g<br />

permeability are present. Large volumes <strong>of</strong><br />

hydrocarbons have been lost <strong>in</strong> waterfloods, miscible<br />

floods and chemical floods <strong>in</strong> reservoirs where <strong>in</strong>jection<br />

or production wells have been fractured <strong>in</strong><strong>to</strong> high<br />

permeability zones.<br />

3. Improved Sweep Efficiency. Sweep efficiency is<br />

generally much higher <strong>in</strong> wells which have not been<br />

subjected <strong>to</strong> fracture treatments due <strong>to</strong> much better<br />

conformance <strong>of</strong> <strong>the</strong> <strong>in</strong>jected or produced fluids.<br />

a vertical well drill<strong>in</strong>g fluid may only be <strong>in</strong> <strong>the</strong> pay zone<br />

a matter <strong>of</strong> hours while <strong>in</strong> a horizontal well <strong>the</strong> time may<br />

be measured <strong>in</strong> weeks.<br />

2. Most horizontal wells are not cased and perforated and<br />

rema<strong>in</strong> as open hole completions. Relatively shallowly<br />

<strong>in</strong>vaded <strong>damage</strong> which would be easily perforated<br />

through on a standard vertical well, rema<strong>in</strong>s a major<br />

source <strong>of</strong> permeability reduction <strong>in</strong> many horizontal wells.<br />

3. High drawdowns are difficult <strong>to</strong> obta<strong>in</strong> on horizontal wells<br />

due <strong>to</strong> <strong>the</strong> length <strong>of</strong> <strong>the</strong> well <strong>in</strong> <strong>the</strong> pay zone. This<br />

makes it much more difficult <strong>to</strong> clean up <strong>damage</strong> due <strong>to</strong><br />

<strong>in</strong>vaded fluid and/or solids.<br />

4. Stimulation <strong>of</strong> horizontal wells is extremely difficult and<br />

expensive. Thus once <strong>formation</strong> <strong>damage</strong> occurs, it is<br />

usually permanent <strong>in</strong> nature and effect.<br />

Well ProductivitY<br />

The productivity equations which govern flow <strong>in</strong><strong>to</strong><br />

horizontal vs vertical wells are substantially different.<br />

If certa<strong>in</strong> simplify<strong>in</strong>g assumptions are made, equations<br />

for calculat<strong>in</strong>g <strong>the</strong> production <strong>of</strong> a horizontal well can be<br />

made. Joshi (1987), Ertek<strong>in</strong> et al (1988), Giger (1987),<br />

Joshi (1988), and Babu et al (1989) have all discussed<br />

horizontal well productivity calculations.<br />

The discussion <strong>of</strong> well productivity <strong>in</strong> this paper is taken<br />

from Joshi (1988).<br />

A vertical well generally dra<strong>in</strong>s volume <strong>in</strong> <strong>the</strong> shape <strong>of</strong> a<br />

regular cyl<strong>in</strong>der while <strong>in</strong> a horizontal well <strong>of</strong> length L <strong>the</strong><br />

dra<strong>in</strong>age volume is shaped like an elliptic cyl<strong>in</strong>der due <strong>to</strong><br />

<strong>the</strong> variation <strong>in</strong> vertical vs horizontal permeability. In both<br />

cases a reservoir <strong>of</strong> thickness h is be<strong>in</strong>g dra<strong>in</strong>ed. To solve<br />

for <strong>the</strong> rpessure distribution <strong>in</strong> both horizontal and vertical<br />

wells at steady-state conditions, <strong>the</strong> equation<br />

viPs 0<br />

11\<br />

must be solved. This will give <strong>the</strong> pressure distribution<br />

which can <strong>the</strong>n be <strong>use</strong>d <strong>in</strong> Darcy's law <strong>to</strong> calculate flow<br />

rates.<br />

ComDarlson Of Formation Damage In Horizontal Versus<br />

Vertical Wells<br />

Horizontal wells are much more susceptible <strong>to</strong> <strong>damage</strong><br />

than <strong>the</strong>ir vertical counterparts due <strong>to</strong> a number <strong>of</strong> reasons,<br />

<strong>the</strong>se be<strong>in</strong>g:<br />

(2)<br />

1. Substantially longer contact time with <strong>the</strong> drill<strong>in</strong>g fluid. In<br />

2


Where:<br />

.. (.f 2 )[~ + ~ I '/. +::~~:: T~ T7~~--::;- I<br />

(0.5<br />

~o = Formation Volume Fac<strong>to</strong>r<br />

h = Reservoir Thickness<br />

k = Permeability<br />

L = Horizontal Well Length<br />

A P = Pressure Drop<br />

qH = Flow rate<br />

reH = Dra<strong>in</strong>age Radius<br />

rw = Well Bore Radius<br />

~ = Viscosity<br />

H = Horizontal<br />

V = Vertical<br />

(3)<br />

~. ~ ~kv<br />

(4)<br />

The well productivity depends on reservoir pay,<br />

horizontal well length and reservoir anisotropy. The<br />

equation for steady-state flow with a vertical well is:<br />

q = 2nkHh (P. - P",)<br />

Bo/J. [In (rJr.. + 8)]<br />

To compare <strong>the</strong> effect <strong>of</strong> equivalent sk<strong>in</strong> <strong>damage</strong> for<br />

horizontal and vertical wells <strong>the</strong> follow<strong>in</strong>g data was <strong>in</strong>put<br />

<strong>in</strong><strong>to</strong> Equations 1 and 5.<br />

ky = 10 mD<br />

~ = 100 mD<br />

L = 50ft<br />

r. = 1000 ft<br />

rw = 0.3 ft<br />

(}o = 1.25<br />

~o = 0.8<br />

~p = 1000 psi<br />

Figure 1 provides an illustration <strong>of</strong> <strong>the</strong> relative production<br />

rates from horizontal vs vertical wells us<strong>in</strong>g <strong>the</strong>se<br />

assumptions. For an equivalent sk<strong>in</strong> fac<strong>to</strong>r it can be seen<br />

that <strong>formation</strong> <strong>damage</strong> ca<strong>use</strong>s more reduction <strong>in</strong><br />

productivity <strong>in</strong> a horizontal well than <strong>in</strong> a vertical well. As<br />

<strong>the</strong> severity <strong>of</strong> <strong>damage</strong> <strong>in</strong>creases, <strong>the</strong> actual productivity <strong>of</strong><br />

<strong>the</strong> horizontal well approaches that <strong>of</strong> <strong>the</strong> vertical well.<br />

(5)<br />

Formation <strong>damage</strong> falls <strong>in</strong><strong>to</strong> four broad categories based<br />

upon <strong>the</strong> mechanism <strong>of</strong> it's orig<strong>in</strong>, <strong>the</strong>se be<strong>in</strong>g:<br />

1. Mechanically Induced Formation Damage<br />

i) F<strong>in</strong>es migration<br />

ii) Solids entra<strong>in</strong>ment<br />

iii) Relative permeability (trapp<strong>in</strong>g) effects<br />

2. Chemically Induced Formation Damage<br />

i) Clay swell<strong>in</strong>g<br />

ii) Clay deflocculation<br />

iii) Wax deposition<br />

iv) Solids precipitation (asphaltenes. sulphur.<br />

diamondoids, hydrates. etc.)<br />

v) Incompatible precipitates and scales<br />

vi) Acid sludges<br />

vii) Stable emulsions<br />

viii) Chemical adsorption<br />

ix) Wettability alteration<br />

3. Biologically Induced Formation Damage<br />

i) Bacterial growth<br />

ii) Bacterial slimes<br />

iii) Corrosion products due <strong>to</strong> H2S from sulphate reduc<strong>in</strong>g<br />

bacteria (SRB's)<br />

4. Thermally Induced Formation Damage<br />

i) M<strong>in</strong>eral trans<strong>formation</strong>s<br />

ii) Rock solubility and dissolution phenomena<br />

iii) Wettability alterations<br />

It is not possible <strong>to</strong> discuss all <strong>the</strong>se phenomena <strong>in</strong><br />

detail, although a brief description <strong>of</strong> some <strong>of</strong> <strong>the</strong> major<br />

mechanisms follow <strong>to</strong> allow a basic understand<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

<strong>tests</strong>, which will be discussed later, which are utilized <strong>to</strong><br />

alleviate or diagnose specific <strong>formation</strong> <strong>damage</strong> problems.<br />

Mechanically Induced Damage<br />

It has been long accepted that severe permeability<br />

impairment can occur when fluid velocities become large<br />

enough <strong>to</strong> physically shear <strong>in</strong>terstitially bound particulates<br />

loose and move <strong>the</strong>m <strong>to</strong> bridg<strong>in</strong>g/block<strong>in</strong>g locations at pore<br />

throats. Gray and Rex (1966), Mungan (1965), Muecke<br />

(1979), Gabriel (1983), Gruesbeck (1982), Krueger (1986),<br />

Selby (1989) and Porter (1989) all provide more detailed<br />

descriptions on <strong>the</strong> problems associated with f<strong>in</strong>es<br />

mobilization.<br />

The <strong>in</strong>jection <strong>of</strong> fluids conta<strong>in</strong><strong>in</strong>g solids (i.e. unfiltered<br />

<strong>in</strong>jection waters or corrosion products from degenerat<strong>in</strong>g<br />

tub<strong>in</strong>g str<strong>in</strong>gs or surface equipment) can also ca<strong>use</strong> gradual<br />

plugg<strong>in</strong>g and loss <strong>of</strong> permeability. Barkman (1972) and<br />

Pat<strong>to</strong>n (1988) discuss this phenomena <strong>in</strong> greater detail.<br />

Deleterious relative permeability effects can also <strong>of</strong>ten<br />

have a severely reduc<strong>in</strong>g effect on effective permeability,<br />

Mechanisms Of Formation Damaae<br />

3


particularly <strong>in</strong> low penneability reservoirs. An example <strong>of</strong><br />

this is illustrated <strong>in</strong> Figure 2. The reservoir (gas <strong>in</strong> this<br />

example) is <strong>in</strong>itially at saturation Swl. The near wellbore<br />

region is <strong>the</strong>n <strong>in</strong>vaded by an aqueous based drill<strong>in</strong>g fluid,<br />

result<strong>in</strong>g <strong>in</strong> a much high irreducible water saturation Sw,<br />

(due <strong>to</strong> capillary trapp<strong>in</strong>g phenomena) near <strong>the</strong> wellbore.<br />

It can be seen that effective penneabillty <strong>to</strong> gas has been<br />

<strong>reduce</strong>d substantially due <strong>to</strong> <strong>the</strong> <strong>in</strong>creased trapp<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>vaded aqueous phase.<br />

Chemically Induced Damaae<br />

The phenomena <strong>of</strong> clay swell<strong>in</strong>g, def<strong>in</strong>ed as <strong>the</strong> direct<br />

substitution <strong>of</strong> water <strong>in</strong><strong>to</strong> hydratable clays such as smectite<br />

is <strong>the</strong> .classic. type <strong>of</strong> <strong>formation</strong> <strong>damage</strong> which most<br />

<strong>in</strong>dividuals are commonly aware <strong>of</strong>. Discussion on <strong>the</strong><br />

structure and mechanism <strong>of</strong> swell<strong>in</strong>g clays is presented by<br />

Wang (1988). Expansion <strong>of</strong> swell<strong>in</strong>g clays upon hydration<br />

can <strong>of</strong>ten ca<strong>use</strong> severe reductions <strong>in</strong> <strong>formation</strong><br />

permeability.<br />

A much more prevalent, but less widely unders<strong>to</strong>od,<br />

ca<strong>use</strong> <strong>of</strong> <strong>formation</strong> <strong>damage</strong> is deflocculation. Deflocculation<br />

occurs when <strong>the</strong> delicate ionic charge balance that<br />

electrostatically b<strong>in</strong>ds clays and particulates <strong>to</strong>ge<strong>the</strong>r and <strong>to</strong><br />

pore walls is disrupted result<strong>in</strong>g <strong>in</strong> migration and blockage<br />

<strong>of</strong> <strong>the</strong> clays, even though <strong>the</strong>y may not classically be<br />

thought <strong>of</strong> as "swell<strong>in</strong>g" clays. This phenomenon commonly<br />

occurs when a system is subjected <strong>to</strong> a sal<strong>in</strong>ity reduction or<br />

"shock" as illustrated <strong>in</strong> Figure 3. Mungan (1965) illustrates<br />

this phenomenon <strong>in</strong> greater detail.<br />

Solids and wax precipitation is <strong>of</strong>ten a problem <strong>in</strong><br />

production wells, particularly <strong>in</strong> miscible flood projects.<br />

Thomas (1991, 1991) and Fischer (1973) discuss <strong>the</strong>se<br />

phenomena <strong>in</strong> greater detail. O<strong>the</strong>r solids <strong>in</strong> <strong>the</strong> form <strong>of</strong><br />

<strong>in</strong>soluble precipitates and scales can occur due <strong>to</strong> chemical<br />

<strong>in</strong>compatibility between <strong>formation</strong> and <strong>in</strong>jected fluids. These<br />

would <strong>in</strong>clude <strong>in</strong>soluble precipitates such as barium or<br />

calcium sulphate which can <strong>of</strong>ten ca<strong>use</strong> severe long term<br />

permeability impairment <strong>in</strong> <strong>in</strong>jection and production wells.<br />

Many acids can also chemically precipitate <strong>in</strong>soluble acid<br />

"sludges" which can ca<strong>use</strong> block<strong>in</strong>g and plugg<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

pore system. Acids, and o<strong>the</strong>r aqueous fluids, can also<br />

ca<strong>use</strong> <strong>the</strong> <strong>formation</strong> <strong>of</strong> extremely high viscosity oil external<br />

emulsions which can become entrapped <strong>in</strong> <strong>the</strong> near<br />

wellbore region and form a viscous and immobile "Emulsion<br />

Block".<br />

The <strong>in</strong>jection <strong>of</strong> various types <strong>of</strong> chemical additives<br />

(surtactants, scavengers, Inhibi<strong>to</strong>rs, polymers, stabilizers,<br />

etc.) can result <strong>in</strong> both wettability changes, which can alter<br />

permeability, and also <strong>in</strong> physical adsorption which can<br />

permanently impair permeability.<br />

Bacterial Growth<br />

Entra<strong>in</strong>ment <strong>of</strong> bacteria <strong>in</strong> <strong>in</strong>jected fluid streams can be<br />

a source <strong>of</strong> severe <strong>formation</strong> <strong>damage</strong> and operation<br />

problems. Bacterial <strong>formation</strong> <strong>damage</strong> can occur both with<br />

and without oxygen present (aerobic and anaerobic) and a<br />

particular type <strong>of</strong> bacterial family, sulphate reduc<strong>in</strong>g<br />

bacteria, have been responsible for <strong>the</strong> sour<strong>in</strong>g <strong>of</strong> many<br />

previously sweet gas reservoirs. Hydrogen sulphide gas<br />

can create severe problems with corrosion, as well as its<br />

extreme <strong>to</strong>xicity <strong>to</strong> liv<strong>in</strong>g organisms (humans <strong>in</strong>cluded). The<br />

<strong>in</strong>-situ secretion <strong>of</strong> bacterial slimes by many types <strong>of</strong><br />

bacteria can be a ca<strong>use</strong> <strong>of</strong> substantial permeability<br />

i~airment. so much so that various companies have<br />

<strong>in</strong>vestigated <strong>the</strong> <strong>use</strong> <strong>of</strong> certa<strong>in</strong> types <strong>of</strong> bacteria <strong>to</strong> plug high<br />

permeability thief zones <strong>in</strong> certa<strong>in</strong> wells.<br />

Thermally Induced Formation Damaae<br />

This type <strong>of</strong> <strong>damage</strong> occurs almost exclusively at<br />

temperatu res exceed<strong>in</strong>g 150°C <strong>in</strong> hot water, steamflood or<br />

<strong>in</strong>-situ combustion projects and has been documented by<br />

authors such as Bennion (1992), McCorris<strong>to</strong>n (1981),<br />

Amaefule (1984), Waldorf (1965) and Hebner (1985). The<br />

major sources <strong>of</strong> <strong>damage</strong> can be attributed <strong>to</strong> <strong>the</strong><br />

temperature <strong>in</strong>duced trans<strong>formation</strong> <strong>of</strong> <strong>in</strong>ert clays such as<br />

kaol<strong>in</strong>ite <strong>in</strong><strong>to</strong> swell<strong>in</strong>g smectitic clay, <strong>the</strong> physical dissolution<br />

<strong>of</strong> portions <strong>of</strong> <strong>the</strong> rock matrix and release <strong>of</strong> encapsulated<br />

f<strong>in</strong>es due <strong>to</strong> high temperature solubility effects and<br />

wettability changes associated with steamfloodlng.<br />

Why Labora<strong>to</strong>ry Test<strong>in</strong>g<br />

The drill<strong>in</strong>g <strong>of</strong> horizontal wells <strong>in</strong> oil or gas <strong>formation</strong>s is<br />

an expensive proposition for any opera<strong>to</strong>r. Logically, any<br />

process which will provide a reasonable chance for<br />

improv<strong>in</strong>g <strong>the</strong> productivity or reduc<strong>in</strong>g <strong>the</strong> <strong>to</strong>tal cost <strong>of</strong> any<br />

horizontal well is economically viable and should be<br />

considered. Recent advances In <strong>labora<strong>to</strong>ry</strong> test<strong>in</strong>g<br />

procedures allow for <strong>the</strong> <strong>in</strong>-depth simulation and evaluation<br />

<strong>of</strong> almost any type <strong>of</strong> drill<strong>in</strong>g, completion or stimulation<br />

program considered for <strong>use</strong> <strong>in</strong> a horizontal well. This<br />

allows for considerable screen<strong>in</strong>g and optimization <strong>to</strong> be<br />

conducted, prior <strong>to</strong> implement<strong>in</strong>g an expensive and<br />

potentially unsuccessful program <strong>in</strong> <strong>the</strong> reservoir.<br />

Mechanically Induced Formation Damaae<br />

A comb<strong>in</strong>ation <strong>of</strong> core displacement studies and particle<br />

size distribution analyses are <strong>the</strong> major types <strong>of</strong> <strong>tests</strong><br />

beneficial <strong>in</strong> this area. Figure 4 illustrates <strong>the</strong> type <strong>of</strong><br />

equipment <strong>use</strong>d for this type <strong>of</strong> study. The core sample is<br />

encased <strong>in</strong> teflon shr<strong>in</strong>k tub<strong>in</strong>g and placed <strong>in</strong> a heavy lead<br />

or vi<strong>to</strong>n core sleeve. The shr<strong>in</strong>k tub<strong>in</strong>g is <strong>use</strong>d <strong>to</strong> ensure<br />

that no fluid slippage occurs between <strong>the</strong> sleeve and <strong>the</strong><br />

4


core and prevents direct fluid contact with <strong>the</strong> sleeve. The<br />

ductility <strong>of</strong> <strong>the</strong> sleeve allows a conf<strong>in</strong><strong>in</strong>g overburden<br />

pressure <strong>to</strong> be transferred <strong>to</strong> <strong>the</strong> core <strong>to</strong> simulate reservoir<br />

pressure. The core. mounted with<strong>in</strong> <strong>the</strong> sleeve is placed<br />

<strong>in</strong>side a 316 SS core holder which is capable <strong>of</strong> simulat<strong>in</strong>g<br />

reservoir pressures <strong>of</strong> up <strong>to</strong> 68.9 MPa (10.000 psi). This<br />

pressure is applied by fill<strong>in</strong>g <strong>the</strong> annular space between <strong>the</strong><br />

lead sleeve and <strong>the</strong> core holder with light oil and <strong>the</strong>n<br />

compress<strong>in</strong>g <strong>the</strong> oil with an hydraulic pump <strong>to</strong> obta<strong>in</strong> <strong>the</strong><br />

desired overburden pressure.<br />

The core holder ends each conta<strong>in</strong> two ports. One <strong>of</strong><br />

<strong>the</strong>se ports is for fluid feed or production and <strong>the</strong> second is<br />

for pressure measurement. The portions <strong>of</strong> <strong>the</strong> core holder<br />

directly adjacent <strong>to</strong> <strong>the</strong> <strong>in</strong>jection and production ends <strong>of</strong> <strong>the</strong><br />

core are equipped with radial distribution plates <strong>to</strong> ensure<br />

evenly distributed fluid flow <strong>in</strong><strong>to</strong> and out <strong>of</strong> <strong>the</strong> core<br />

specimen and elim<strong>in</strong>ate areas <strong>of</strong> localized high velocity.<br />

Pressure differential is moni<strong>to</strong>red us<strong>in</strong>g a pressure<br />

transducer. The transducer is mounted directly across <strong>the</strong><br />

core and measures <strong>the</strong> pressure differential between <strong>the</strong><br />

<strong>in</strong>jection and production ends. The pressure transducer<br />

range depends on <strong>the</strong> permeability <strong>of</strong> <strong>the</strong> sample be<strong>in</strong>g<br />

evaluated. The signal from <strong>the</strong> pressure transducer is<br />

directly connected <strong>to</strong> a strip chart recorder which provides<br />

a cont<strong>in</strong>uous pressure pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> test. A digital readout<br />

also appears on a multi-channel term<strong>in</strong>al from which <strong>the</strong><br />

test opera<strong>to</strong>r takes read<strong>in</strong>gs as a backup.<br />

A positive displacement pump is <strong>use</strong>d <strong>to</strong> <strong>in</strong>ject fluids <strong>in</strong><strong>to</strong><br />

<strong>the</strong> core. The pump is capable <strong>of</strong> <strong>in</strong>ject<strong>in</strong>g at rates from 1<br />

cm3/hr <strong>to</strong> 8,240 cm3/hr at pressures up <strong>to</strong> 68.9 MPa with an<br />

accuracy <strong>of</strong> t 0.01 cm3. The pump is filled with distilled<br />

water which displaces varsol. This varsol <strong>the</strong>n displaces<br />

<strong>the</strong> br<strong>in</strong>e <strong>to</strong> be <strong>use</strong>d <strong>in</strong> <strong>the</strong> test <strong>in</strong><strong>to</strong> <strong>the</strong> core. This<br />

arrangement is <strong>use</strong>d <strong>to</strong> avoid plac<strong>in</strong>g corrosive br<strong>in</strong>e<br />

solutions directly <strong>in</strong><strong>to</strong> <strong>the</strong> pump. Positive displacement<br />

pumps such as this provide a very smooth displac<strong>in</strong>g action<br />

which elim<strong>in</strong>ates pressure shocks <strong>to</strong> <strong>the</strong> core material.<br />

The entire system is conta<strong>in</strong>ed <strong>in</strong> a temperature<br />

controlled oven which duplicates precise reservoir<br />

conditions <strong>of</strong> temperature and elim<strong>in</strong>ates complication <strong>of</strong><br />

data analysis due <strong>to</strong> fluctuations <strong>in</strong> <strong>the</strong> external ambient<br />

temperature. The <strong>use</strong> <strong>of</strong> <strong>the</strong> correct reservoir temperature<br />

also ensures that <strong>the</strong> correct fluid viscosities, which will<br />

occur <strong>in</strong> <strong>the</strong> reservoir, are properly simulated.<br />

i) F<strong>in</strong>es Migration Tests<br />

The purpose <strong>of</strong> a f<strong>in</strong>e:s mobilization test is <strong>to</strong> determ<strong>in</strong>e<br />

<strong>the</strong> critical <strong>in</strong>terstitial velocity at which f<strong>in</strong>es migration beg<strong>in</strong>s<br />

<strong>to</strong> occur. This is expedited by displac<strong>in</strong>g a non-damag<strong>in</strong>g<br />

equilibrium br<strong>in</strong>e through <strong>the</strong> core sample at geometrically<br />

<strong>in</strong>creas<strong>in</strong>g flow rates. Injection rate is <strong>reduce</strong>d <strong>to</strong> <strong>the</strong><br />

basel<strong>in</strong>e level after each elevated rate level <strong>to</strong> elim<strong>in</strong>ate<br />

effects <strong>of</strong> non-Darcy flow due <strong>to</strong> turbulence at elevated flow<br />

rates. Figure 5 provides a plot <strong>of</strong> this type <strong>of</strong> a flow phase.<br />

Figure 6 provides an illustration <strong>of</strong> a plot <strong>of</strong> <strong>in</strong>terstitial<br />

velocity vs percent reduction <strong>in</strong> permeability. Most<br />

reservoirs will demonstrate a critical velocity at which f<strong>in</strong>es<br />

migration occurs. Permeability may ei<strong>the</strong>r <strong>in</strong>crease or be<br />

<strong>reduce</strong>d by f<strong>in</strong>es mobilization, depend<strong>in</strong>g on <strong>the</strong> size and<br />

quantity <strong>of</strong> <strong>the</strong> migrated f<strong>in</strong>es and <strong>the</strong> pore throat size<br />

distribution exist<strong>in</strong>g <strong>in</strong> <strong>the</strong> reservoir.<br />

S<strong>in</strong>ce f<strong>in</strong>es migrate only <strong>in</strong> <strong>the</strong> phase which wets <strong>the</strong>m,<br />

<strong>the</strong> <strong>use</strong> <strong>of</strong> representative native-state or res<strong>to</strong>red-state core<br />

samples is essential <strong>in</strong> <strong>the</strong>se types <strong>of</strong> <strong>tests</strong>. Scal<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

l<strong>in</strong>ear velocity data <strong>in</strong> <strong>the</strong> cyl<strong>in</strong>drical coreplugs back <strong>to</strong> <strong>the</strong><br />

more complex velocity pattern around a perforated<br />

completion a typical vertical well can be facilitated by <strong>the</strong><br />

<strong>use</strong> <strong>of</strong> a near perforation numerical simulation model as<br />

described by Eng (1991). The simulation <strong>in</strong> a typical<br />

horizontal well open hole completion can be accomplished<br />

us<strong>in</strong>g a less complex radial flow model.<br />

ii)<br />

Solids Entra<strong>in</strong>ment<br />

Equipment <strong>to</strong> evaluate solids entra<strong>in</strong>ment is identical <strong>to</strong><br />

that described for f<strong>in</strong>es mobilization <strong>tests</strong>, with <strong>the</strong> exception<br />

that <strong>the</strong> <strong>in</strong>-l<strong>in</strong>e filtration system is removed <strong>to</strong> allow <strong>the</strong><br />

direct <strong>in</strong>jection <strong>of</strong> <strong>the</strong> proposed <strong>in</strong>jection fluid, complete with<br />

its load <strong>of</strong> suspended solids, directly <strong>in</strong><strong>to</strong> <strong>the</strong> core sample.<br />

Several hundred pore volumes <strong>of</strong> proposed <strong>in</strong>jection fluid<br />

can be dynamically <strong>in</strong>jected <strong>in</strong><strong>to</strong> <strong>the</strong> core material and<br />

permeability cont<strong>in</strong>uously moni<strong>to</strong>red <strong>to</strong> note <strong>the</strong> gradual<br />

effect <strong>of</strong> solids entra<strong>in</strong>ment on <strong>the</strong> system. Various sizes <strong>of</strong><br />

<strong>in</strong>-l<strong>in</strong>e filtration can also be tested (i.e. 10 micron vs 5<br />

micron vs 1 micron, etc.) <strong>to</strong> determ<strong>in</strong>e <strong>the</strong> critical filtration<br />

level required for long term susta<strong>in</strong>ed <strong>in</strong>jectivity. Figure 7<br />

provides a plot <strong>of</strong> <strong>the</strong> permeability pr<strong>of</strong>ile from a critical<br />

filtration level study illustrat<strong>in</strong>g, for this test, a critical<br />

filtration limit <strong>of</strong> 2 microns.<br />

The coupl<strong>in</strong>g <strong>of</strong> laser refraction determ<strong>in</strong>ed suspended<br />

particle size analysis with pore size distribution data can<br />

also be an <strong>in</strong>formative screen<strong>in</strong>g method for critical filtration<br />

limits. In general particulates must be less <strong>in</strong> size than V3<br />

<strong>to</strong> 1/. <strong>the</strong> diameter <strong>of</strong> <strong>the</strong> average pore throat not <strong>to</strong> ca<strong>use</strong><br />

long term bridg<strong>in</strong>g effects.<br />

iii)<br />

Relative Permeability Effects<br />

Figure 8 provides a schematic <strong>of</strong> a typical reservoir<br />

condition relative permeability apparatus. The equipment<br />

is very similar <strong>to</strong> <strong>the</strong> f<strong>in</strong>es migration apparatus detailed<br />

previously (Figure 4) with <strong>the</strong> exception <strong>of</strong> <strong>the</strong> <strong>use</strong> <strong>of</strong> a<br />

backpressure regula<strong>to</strong>r <strong>to</strong> allow reservoir pore pressure <strong>to</strong><br />

be ma<strong>in</strong>ta<strong>in</strong>ed <strong>to</strong> facilitate <strong>the</strong> <strong>use</strong> <strong>of</strong> live gas charged<br />

reservoir fluids. Bennion (1991) discusses recent advances<br />

<strong>in</strong> techniques <strong>use</strong>d for <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> relative<br />

permeability data. In<strong>formation</strong> on phase block<strong>in</strong>g effects<br />

5


can be obta<strong>in</strong>ed by analysis <strong>of</strong> <strong>the</strong> relative permeability<br />

curves on a comb<strong>in</strong>ed dra<strong>in</strong>age-imbibition test. This would<br />

<strong>in</strong>clude:<br />

a)<br />

b)<br />

Water trapp<strong>in</strong>g <strong>in</strong> a gas reservoir (waterflood<br />

sequence from Swj followed by a gasflood <strong>to</strong> Sw,)<br />

Water trapp<strong>in</strong>g <strong>in</strong> an oil wet reservoir (waterflood<br />

sequence from Swj followed by an oilflood <strong>to</strong> SwJ<br />

Chemically Induced Formation Damage<br />

& ii) Clay Swell<strong>in</strong>g and Clay Deflocculation<br />

The coreflow equipment <strong>use</strong>d for <strong>the</strong>se types <strong>of</strong> <strong>tests</strong> is<br />

illustrated <strong>in</strong> Figure 9. The equipment is very similar <strong>to</strong> that<br />

described for <strong>the</strong> f<strong>in</strong>es migration test with <strong>the</strong> exception that<br />

<strong>the</strong> <strong>in</strong>let fluid manifold consists <strong>of</strong> multiple s<strong>to</strong>rage cyl<strong>in</strong>ders<br />

conta<strong>in</strong><strong>in</strong>g <strong>the</strong> different test br<strong>in</strong>es <strong>to</strong> be evaluated. These<br />

fluids are <strong>in</strong> pressure equilibrium allow<strong>in</strong>g for fluid changes<br />

<strong>to</strong> be conducted while under dynamic flow without<br />

disturb<strong>in</strong>g <strong>the</strong> system pressure equilibria.<br />

Both clay swell<strong>in</strong>g and clay deflocculation <strong>tests</strong> are<br />

conducted by <strong>in</strong>itially establish<strong>in</strong>g a basel<strong>in</strong>e permeability <strong>to</strong><br />

a non-damag<strong>in</strong>g reference fluid, generally clean <strong>formation</strong><br />

br<strong>in</strong>e, followed by displacement <strong>of</strong> <strong>the</strong> test fluid(s) and a<br />

dynamic measurement <strong>of</strong> <strong>the</strong> result<strong>in</strong>g change <strong>in</strong><br />

permeability. Figures 10 and 11 illustrate typical results for<br />

<strong>tests</strong> for clay swell<strong>in</strong>g and clay deflocculation respectively.<br />

Clay swell<strong>in</strong>g is a mass transfer limited process and hence<br />

is more gradual than clay deflocculation which represents<br />

an abrupt rupture <strong>of</strong> electrostatic bonds. Thus <strong>tests</strong> which<br />

exhibit clay swell<strong>in</strong>g problems are generally characterized<br />

by gradual reductions <strong>in</strong> permeability with time (Figure 10)<br />

<strong>in</strong> comparison <strong>to</strong> <strong>the</strong> case <strong>of</strong> clay deflocculation which is<br />

usually very abrupt and almost <strong>in</strong>stantaneous (Figure 11).<br />

IIi)<br />

Wax Deposition.<br />

Problems with wax deposition are commonly diagnosed<br />

on a prelim<strong>in</strong>ary basis by conduct<strong>in</strong>g a pour po<strong>in</strong>t<br />

determ<strong>in</strong>ation on <strong>the</strong> system. This provides a measurement<br />

<strong>of</strong> <strong>the</strong> temperature at which solid wax deposition beg<strong>in</strong>s <strong>to</strong><br />

occur. Operational strategies <strong>to</strong> keep <strong>the</strong> produc<strong>in</strong>g<br />

temperature elevated or <strong>the</strong> <strong>use</strong> <strong>of</strong> chemical suppression<br />

methods <strong>to</strong> lower <strong>the</strong> pour po<strong>in</strong>t temperature can <strong>the</strong>n be<br />

considered.<br />

iv)<br />

Solids Precipitation<br />

Depend<strong>in</strong>g on <strong>the</strong> type <strong>of</strong> system under consideration,<br />

<strong>tests</strong> <strong>to</strong> quantify and <strong>reduce</strong> solids precipitation vary widely.<br />

High pressure titrative and PVT techniques are <strong>use</strong>ful for<br />

determ<strong>in</strong><strong>in</strong>g critical solvent concentration limits and<br />

compositional limits for <strong>in</strong>cipient asphaltene precipitation<br />

due <strong>to</strong> contact by miscible flood solvents or from naturally<br />

asphaltic oils (Thomas, 1991). Detailed PVT experiments<br />

can also be undertaken <strong>to</strong> determ<strong>in</strong>e critical concentration,<br />

pressure and temperature levels <strong>to</strong> obviate elemental<br />

sulphur, diamondoid or hydrate <strong>formation</strong>. Detailed studies<br />

are specific <strong>to</strong> <strong>the</strong> type <strong>of</strong> system be<strong>in</strong>g studied, but <strong>of</strong>ten<br />

operat<strong>in</strong>g conditions <strong>of</strong> temperature and pressure <strong>in</strong><br />

production or <strong>in</strong>jection systems can be optimized <strong>to</strong> <strong>reduce</strong><br />

or <strong>in</strong> some cases elim<strong>in</strong>ate phenomena associated with<br />

<strong>the</strong>se types <strong>of</strong> solids deposition.<br />

Many problems with solids precipitation occur <strong>in</strong> <strong>the</strong><br />

production systems and surface facilities, ra<strong>the</strong>r than<br />

actually <strong>in</strong> <strong>the</strong> <strong>formation</strong>, due primarily <strong>to</strong> <strong>the</strong> sensitivity <strong>of</strong><br />

solids precipitation phenomena <strong>to</strong> lower temperatures and<br />

pressures. If <strong>in</strong>-situ problems <strong>in</strong> <strong>the</strong> reservoir are<br />

anticipated, detailed coreflow experiments which will<br />

duplicate <strong>the</strong> dynamic mix<strong>in</strong>g <strong>of</strong> <strong>the</strong> fluids with<strong>in</strong> <strong>the</strong><br />

reservoir porous medium at full reservoir operat<strong>in</strong>g<br />

conditions should be undertaken <strong>to</strong> quantify if permeability<br />

reductions will occur.<br />

v)<br />

Incompatible Precipitates and Scales<br />

Incompatible solid precipitates and scales generally occur<br />

when foreign fluids (generally br<strong>in</strong>es) are contacted with<br />

one ano<strong>the</strong>r. Basic turbidity (bottle <strong>tests</strong>) are a good<br />

prelim<strong>in</strong>ary <strong>in</strong>dica<strong>to</strong>r <strong>of</strong> fluid <strong>in</strong>compatibility. Detailed<br />

compatibility studies, complete with <strong>the</strong> calculation <strong>of</strong><br />

scal<strong>in</strong>g coefficients, should be undertaken for any large<br />

scale water <strong>in</strong>jection scheme. Fluids rich <strong>in</strong> divalent ions<br />

such as calcium, magnesium, barium and strontium <strong>of</strong>ten<br />

tend <strong>to</strong> be <strong>the</strong> worst <strong>of</strong>fenders <strong>in</strong> this area, even though<br />

<strong>the</strong>ir high divalent ion concentration may make <strong>the</strong>m<br />

desirable for <strong>in</strong>hibit<strong>in</strong>g <strong>formation</strong> <strong>damage</strong> from a clay<br />

swell<strong>in</strong>g or deflocculation viewpo<strong>in</strong>t.<br />

Long term coreflow <strong>tests</strong> conducted us<strong>in</strong>g a co-<strong>in</strong>jection<br />

apparatus, such as illustrated <strong>in</strong> Figure 12, can quantify <strong>the</strong><br />

effects <strong>of</strong> long term exposure <strong>of</strong> <strong>the</strong> <strong>formation</strong> <strong>to</strong><br />

precipitates. In this apparatus equal volumes <strong>of</strong> both <strong>the</strong><br />

equilibrium <strong>formation</strong> br<strong>in</strong>e and <strong>the</strong> <strong>in</strong>jection water are<br />

simultaneously displaced through <strong>the</strong> core sample. The two<br />

br<strong>in</strong>es m<strong>in</strong>gle directly at <strong>the</strong> sample face, allow<strong>in</strong>g <strong>in</strong>-situ<br />

precipitate <strong>formation</strong>. Co-<strong>in</strong>jection can cont<strong>in</strong>ue for an<br />

extended period <strong>of</strong> time (generally several hundred pore<br />

volumes) <strong>to</strong> note <strong>the</strong> long term effect <strong>of</strong> <strong>the</strong> precipitate<br />

deposition on permeability.<br />

vi)<br />

Acid Sludges<br />

Many acid blends can ca<strong>use</strong> <strong>the</strong> <strong>formation</strong> <strong>of</strong> <strong>in</strong>soluble<br />

sludges. The <strong>formation</strong> <strong>of</strong> <strong>the</strong> sludge is dependant on <strong>the</strong><br />

type <strong>of</strong> oil, acid, acid concentration, iron content and o<strong>the</strong>r<br />

fac<strong>to</strong>rs. Initial screen<strong>in</strong>g <strong>tests</strong> are generally conducted at<br />

bench conditions <strong>to</strong> note <strong>the</strong> effect <strong>of</strong> such phenomena on<br />

<strong>the</strong> <strong>formation</strong> <strong>of</strong> sludges and/or emulsions. Tests for <strong>to</strong>tal<br />

rock solubility <strong>in</strong> <strong>the</strong> acid are also vital as partial solubility<br />

may ca<strong>use</strong> <strong>the</strong> large scale release <strong>of</strong> acid <strong>in</strong>soluble f<strong>in</strong>es<br />

R


which can migrate, plug and ca<strong>use</strong> permeability impairment.<br />

ix)<br />

Wettability Alteration<br />

Once a suitable acid blend has been formulated based<br />

upon <strong>the</strong> results <strong>of</strong> <strong>the</strong> <strong>in</strong>itial screen<strong>in</strong>g test it blend should<br />

be evaluated on a core sample us<strong>in</strong>g a flow test. Simple<br />

<strong>tests</strong> would follow <strong>the</strong> pattern <strong>of</strong> <strong>the</strong> basic fluid sensitivity<br />

test, with <strong>the</strong> acid substituted <strong>in</strong> place <strong>of</strong> <strong>the</strong> test br<strong>in</strong>e.<br />

More complex <strong>tests</strong> <strong>to</strong> evaluate <strong>the</strong> actual effectiveness <strong>of</strong><br />

acid <strong>in</strong> <strong>the</strong> removal <strong>of</strong> <strong>formation</strong> <strong>damage</strong> are discussed later<br />

<strong>in</strong> <strong>the</strong> paper <strong>in</strong> <strong>the</strong> "Fluid Leak<strong>of</strong>f8 section.<br />

S<strong>in</strong>ce CO2 gas is generally liberated dur<strong>in</strong>g an acid<br />

reaction test with a core sample, it is recommended that<br />

<strong>the</strong>se types <strong>of</strong> <strong>tests</strong> be conducted under full reservoir<br />

backpressure. This will solubilize <strong>the</strong> produced CO2 gas <strong>in</strong><br />

<strong>the</strong> flow<strong>in</strong>g aqueous stream and elim<strong>in</strong>ate <strong>the</strong> <strong>formation</strong> <strong>of</strong><br />

a trapped residual gas saturation <strong>in</strong> <strong>the</strong> core material which<br />

could artificially <strong>reduce</strong> <strong>the</strong> effective fluid permeability due<br />

<strong>to</strong> deleterious relative permeability effects.<br />

vii)<br />

Stable Emulsions<br />

The <strong>formation</strong> <strong>of</strong> stable emulsions can ca<strong>use</strong> up <strong>to</strong><br />

tenfold <strong>in</strong>creases <strong>in</strong> fluid viscosity. This is a particularly<br />

prevalent problem <strong>in</strong> low gravity crude oil reservoirs (


specially <strong>design</strong>ed core head. The <strong>in</strong>jection fluid is<br />

conta<strong>in</strong>ed <strong>in</strong> a temperature controlled pis<strong>to</strong>n which is under<br />

cont<strong>in</strong>uous agitation which facilitates <strong>the</strong> circulation <strong>of</strong> a<br />

homogeneous fluid system, even when <strong>the</strong> test fluid may<br />

conta<strong>in</strong> suspended particulate bridg<strong>in</strong>g or fluid loss agents.<br />

Overbalance pressure can be precisely regulated by sett<strong>in</strong>g<br />

<strong>the</strong> backpressure regulation system at <strong>the</strong> <strong>in</strong>jection face <strong>of</strong><br />

<strong>the</strong> core (which is be<strong>in</strong>g subjected <strong>to</strong> <strong>the</strong> circulat<strong>in</strong>g fluid<br />

flow) at <strong>the</strong> desired bot<strong>to</strong>mhole pressure. Backpressure at<br />

<strong>the</strong> production side <strong>of</strong> <strong>the</strong> core is set at <strong>the</strong> reservoir<br />

pressure value, thus duplicat<strong>in</strong>g <strong>the</strong> net overbalance<br />

pressure forc<strong>in</strong>g fluid <strong>to</strong> leak <strong>of</strong>t <strong>in</strong><strong>to</strong> <strong>the</strong> reservoir.<br />

Dur<strong>in</strong>g <strong>the</strong> leak<strong>of</strong>f phase <strong>the</strong> dynamic leak<strong>of</strong>f rate as a<br />

function <strong>of</strong> time can be determ<strong>in</strong>ed, as well as <strong>the</strong> <strong>to</strong>tal<br />

depth <strong>of</strong> filtrate <strong>in</strong>vasion and time <strong>to</strong> fluid seal <strong>of</strong>f (if a fluid<br />

seal<strong>of</strong>f does <strong>in</strong> fact occur). Figure 16 provides examples if<br />

some typical pr<strong>of</strong>iles from a mud leak<strong>of</strong>f experiment on a<br />

given rock type.<br />

Once <strong>the</strong> leak<strong>of</strong>f has been completed, <strong>the</strong> permeability<br />

<strong>to</strong> oil or gas is redeterm<strong>in</strong>ed <strong>in</strong> <strong>the</strong> reverse flow direction <strong>to</strong><br />

simulate production back out <strong>of</strong> <strong>the</strong> reservoir after <strong>the</strong><br />

treatment. Figure 17 provides some sample plots <strong>of</strong> typical<br />

rega<strong>in</strong> permeability pr<strong>of</strong>iles. In this manner <strong>the</strong> amount <strong>of</strong><br />

<strong>to</strong>tal <strong>formation</strong> <strong>damage</strong> associated with <strong>the</strong> <strong>use</strong> <strong>of</strong> a specific<br />

mud system can be determ<strong>in</strong>ed.<br />

This type <strong>of</strong> test is extremely <strong>use</strong>ful for comparative<br />

evaluation <strong>of</strong> different drill<strong>in</strong>g mud systems <strong>in</strong> that it allows:<br />

a) Direct evaluation <strong>in</strong> field units <strong>of</strong> expected fluid loss<br />

b) Evaluation <strong>of</strong> effectiveness <strong>of</strong> fluid loss agents<br />

c) Determ<strong>in</strong>ation <strong>of</strong> depth <strong>of</strong> filtrate <strong>in</strong>vasion<br />

d) Degree <strong>of</strong> permanent permeability impairment ca<strong>use</strong>d<br />

by mud <strong>in</strong>vasion<br />

Although specifically well suited <strong>to</strong> drill<strong>in</strong>g fluids, <strong>the</strong><br />

leak<strong>of</strong>f apparatus and test as described is applicable <strong>to</strong> any<br />

type <strong>of</strong> <strong>in</strong>vasive whole fluid system. This would <strong>in</strong>clude<br />

gelled fluids, CO2 charged fluids, etc. Also once <strong>formation</strong><br />

<strong>damage</strong> has occurred due <strong>to</strong> mud or ano<strong>the</strong>r fluid <strong>in</strong>vasion,<br />

acid leak<strong>of</strong>f or squeeze <strong>tests</strong> or o<strong>the</strong>r stimulation treatments<br />

can also be duplicated us<strong>in</strong>g this same type <strong>of</strong> apparatus <strong>to</strong><br />

evaluate <strong>the</strong> effectiveness <strong>of</strong> specific stimulation programs<br />

<strong>in</strong> <strong>damage</strong> removal.<br />

Bioloaicallv Induced Formation Damaae<br />

Figure 18 provides a schematic <strong>of</strong> <strong>the</strong> apparatus which<br />

can be <strong>use</strong>d <strong>to</strong> evaluate <strong>formation</strong> <strong>damage</strong> due <strong>to</strong> bacterial<br />

action. This apparatus operates at reservoir conditions and<br />

<strong>use</strong>s rigorous sterilized l<strong>in</strong>es and equipment <strong>to</strong> generate<br />

representative growth pr<strong>of</strong>iles. The test core sample is<br />

generally pressure tapped <strong>in</strong> one or more locations <strong>to</strong><br />

determ<strong>in</strong>e <strong>the</strong> specific location <strong>in</strong> <strong>the</strong> sample where <strong>the</strong><br />

<strong>formation</strong> <strong>damage</strong> is occurr<strong>in</strong>g and also <strong>to</strong> facilitate test<strong>in</strong>g<br />

samples for compositional and bacterial analysis at different<br />

locations down <strong>the</strong> length <strong>of</strong> <strong>the</strong> sample. These <strong>tests</strong> are<br />

generally long term, low rate exposure runs (30 - 90 days<br />

<strong>in</strong> length) with cont<strong>in</strong>ual analysis <strong>of</strong> <strong>the</strong> sectional<br />

permeability as well as regular detailed analysis <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>fluent and effluent liquid streams for <strong>the</strong> presence <strong>of</strong><br />

bacterial agent products (pH changes, sulphide content,<br />

H2S content, etc.). Post test section<strong>in</strong>g <strong>of</strong> <strong>the</strong>se samples <strong>in</strong><br />

a microbiological lab <strong>in</strong>dicates how <strong>the</strong> bacteria propagates<br />

(i.e. whe<strong>the</strong>r is rema<strong>in</strong>s at <strong>the</strong> <strong>in</strong>jection face or <strong>in</strong>vades <strong>in</strong><strong>to</strong><br />

<strong>the</strong> <strong>formation</strong>) and how <strong>the</strong> bacterial colonies grow and<br />

block <strong>the</strong> <strong>formation</strong>.<br />

Thennallv Induced Formation Damaae<br />

Figure 19 provides a schematic <strong>of</strong> <strong>the</strong> apparatus <strong>use</strong>d <strong>to</strong><br />

conduct high temperature sensitivity studies. Special<br />

coreholders and alloy sleeves are utilized <strong>in</strong> <strong>the</strong>se <strong>tests</strong><br />

which can facilitate runn<strong>in</strong>g experiments at temperatures up<br />

<strong>to</strong> 340°C for hot water! steamflood <strong>tests</strong> and up <strong>to</strong> 1 ,200°C<br />

for <strong>in</strong>-situ combustion runs.<br />

Permeability reductions at elevated temperatures can<br />

occur due <strong>to</strong> a comb<strong>in</strong>ation <strong>of</strong> m<strong>in</strong>eral trans<strong>formation</strong>,<br />

dissolution and wettability effects as discussed previously.<br />

Coreflood experiments at high temperatures at reservoir<br />

conditions us<strong>in</strong>g preserved or res<strong>to</strong>red state core, reservoir<br />

fluids, reservoir <strong>in</strong>jection rates and steam are <strong>the</strong> only<br />

accurate methods <strong>of</strong> predict<strong>in</strong>g a reservoir's potential for<br />

<strong>the</strong>rmally <strong>in</strong>duced <strong>damage</strong>. Many high permeability<br />

reservoirs may produce reasonably well on primary<br />

production, but perform poorly under <strong>the</strong>rmal stimulation<br />

due <strong>to</strong> a comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> above phenomena. Prior <strong>to</strong> <strong>the</strong><br />

extensive capital <strong>in</strong>vestment for a <strong>the</strong>rmal recovery project<br />

it is <strong>the</strong>refore essential that sensitivity test<strong>in</strong>g <strong>in</strong> this area be<br />

conducted. Well <strong>design</strong>ed <strong>tests</strong> <strong>of</strong> this type can also yield<br />

valuable additional <strong>in</strong><strong>formation</strong> with respect <strong>to</strong> residual oil<br />

saturations and oil and water relative permeabilities as a<br />

function <strong>of</strong> temperature. Figure 20 illustrates <strong>the</strong> effect <strong>of</strong><br />

temperature on water permeability for a high permeability<br />

consolidated sands<strong>to</strong>ne <strong>formation</strong>.<br />

Conclusions<br />

Formation <strong>damage</strong> is a significant problem that has <strong>the</strong><br />

potential for reduc<strong>in</strong>g productivity <strong>in</strong> horizontal wells <strong>in</strong> oil<br />

and gas reservoirs dur<strong>in</strong>g almost any type <strong>of</strong> drill<strong>in</strong>g,<br />

completion or stimulation operation. Through <strong>the</strong> <strong>use</strong> <strong>of</strong><br />

high technology <strong>labora<strong>to</strong>ry</strong> studies, <strong>the</strong> effects and benefits<br />

or disadvantages <strong>of</strong> various proposed drill<strong>in</strong>g, completion or<br />

stimulation programs can be exam<strong>in</strong>ed and weighed <strong>in</strong> <strong>the</strong><br />

<strong>labora<strong>to</strong>ry</strong>, prior <strong>to</strong> <strong>the</strong> expense and risk <strong>of</strong> implement<strong>in</strong>g<br />

<strong>the</strong>m <strong>in</strong> <strong>the</strong> reservoir. The careful <strong>use</strong> <strong>of</strong> well <strong>design</strong>ed<br />

<strong>labora<strong>to</strong>ry</strong> programs can thus <strong>reduce</strong> costs and <strong>in</strong>crease<br />

productivity <strong>in</strong> many oil and gas reservoirs.<br />

8


Acknowledgements<br />

The authors would like <strong>to</strong> express appreciation <strong>to</strong> Hycal<br />

Energy Research Labora<strong>to</strong>ries Ltd. for <strong>the</strong> development <strong>of</strong><br />

<strong>the</strong> technology described <strong>in</strong> this paper and for permission<br />

<strong>to</strong> publish this data.<br />

References<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

Amaefule, J.O. and Masuo, S. T., .Use <strong>of</strong> Capillary<br />

Pressure Data For Rapid Evaluation <strong>of</strong> Formation<br />

Damage or Stimulation., SPE Prodn. Eng., (March<br />

1986).<br />

Babu, D.K. and Odeh, A.S.: "Productivity <strong>of</strong> a<br />

Horizontal Well", SPERE (Nov 1989) 417-21.<br />

Barkman, J.H. and Davidson, D.H.: "Measur<strong>in</strong>g<br />

Water Quality and Predict<strong>in</strong>g Well Impairment", J.Pet.<br />

Tech. (July 1972) 865-73.<br />

Bennion, D.B. and Thomas, F .B.: "Effective<br />

Labora<strong>to</strong>ry Coreflood Tests To Evaluate And M<strong>in</strong>imize<br />

Formation Damage In Horizontal Wells., To be<br />

presented at <strong>the</strong> 3rd <strong>in</strong>temational conference on<br />

Horizontal Well Technology, Nov. 12-14, 1991,<br />

Hous<strong>to</strong>n, Texas, U.S.A.<br />

Bennion, D.B., Thomas, F.B. and Sheppard D.A.:<br />

"Formation Damage Due To M<strong>in</strong>eral Alteration And<br />

Wettability Changes Dur<strong>in</strong>g Hot Water And Steam<br />

Injection In Clay Bear<strong>in</strong>g Sands<strong>to</strong>ne Reservoirs", SPE<br />

23783, To Be Presented at <strong>the</strong> SPE Formation<br />

Damage Symposium, Lafayette, Louisiana (Feb. 26-<br />

28, 1992).<br />

Bennion, D.B. and Thomas, F .B.: .Recent<br />

Improvements <strong>in</strong> Experimental and Analytical<br />

Techniques For <strong>the</strong> Detenn<strong>in</strong>ation <strong>of</strong> Relative<br />

Penneability from Unsteady State Flow Experiments,.<br />

Paper Presented at SPE Technical Conference at<br />

Tr<strong>in</strong>idad and Tobago, June 27,1991.<br />

Craig Jr., F.F.: ~he Reservoir Eng<strong>in</strong>eer<strong>in</strong>g Aspect <strong>of</strong><br />

Waterflood<strong>in</strong>g., SPE Monogram Series, 1971.<br />

Eng, J.H., Bennion, D.B., Strong, J.B.: "Velocity<br />

Pr<strong>of</strong>iles In Perforated Completions," Paper No.<br />

CIM/AOSTRA 91-50, presented at CIM Conference,<br />

Banff, April 21-24, 1991.<br />

Ertek<strong>in</strong>, T., Sung, W. and Schwerer, F .C.:<br />

.Production Perfonnance Analysis <strong>of</strong> Horizontal<br />

Dra<strong>in</strong>age Wells for <strong>the</strong> Degasification <strong>of</strong> Coal Seams.,<br />

fl (May 1988) 62532.<br />

10.<br />

11<br />

12.<br />

13.<br />

14.<br />

15.<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

21.<br />

Fischer, P.W., Ellis, M.M. and Bond, L.L.: "New Wax<br />

Inhibi<strong>to</strong>r Shows Promise" Oil and Gas J. (May 28,<br />

1973) 62-64.<br />

Gabriel, G.A. and Inamdar, G.R.: "An Experimental<br />

Investigation <strong>of</strong> F<strong>in</strong>es Migration <strong>in</strong> Porous Media",<br />

paper SPE 12168 presented at <strong>the</strong> 1983 SPE Annual<br />

Technical Conference and Exhibition, San Francisco,<br />

Oct. 5-8.<br />

Giger, F.M.: .Low Permeability Reservoir<br />

Development Us<strong>in</strong>g Horizontal Wells., paper SPE<br />

16406 presented at <strong>the</strong> 1987 SPE/DOE Low<br />

Permeability Reservoirs Symposium. Denver. May<br />

18-19.<br />

Gray, D.H. and Rex, R.W.: NFormation Damage <strong>in</strong><br />

Sands<strong>to</strong>nes Ca<strong>use</strong>d by Clay Dispersion and<br />

MigrationN, Clay and Clay M<strong>in</strong>., 26, 1966.<br />

Gruesbeck, C. and Coll<strong>in</strong>s, R.E.: "Entra<strong>in</strong>ment and<br />

Deposition <strong>of</strong> F<strong>in</strong>e Particles <strong>in</strong> Porous Media", SPEJ<br />

(Dec. 1982) 846-56.<br />

Hebner, B.A., Longstaffe, F.J. and Bird, G.W.: "Fluid-<br />

Pore M<strong>in</strong>eral Trans<strong>formation</strong> Dur<strong>in</strong>g Simulated Steam<br />

Injection: Implications For Reduced Penneability<br />

Damage", paper CIM 85-36-17 presented at <strong>the</strong> 1985<br />

Pet. Soc. <strong>of</strong> CIM Annual Technical Meet<strong>in</strong>g,<br />

Edmon<strong>to</strong>n, Alberta, Canada, June 2-5.<br />

Joshi, S.D.: "A Review <strong>of</strong> Horizontal Well and<br />

Dra<strong>in</strong>hole Technology" paper SPE 16868 presented<br />

at <strong>the</strong> 1987 SPE Annual Technical Conference and<br />

Exhibition, Dallas, Sept. 27-30.<br />

Joshi, S.D.: "Augmentation <strong>of</strong> Well Productivity With<br />

Slant and Horizontal Wells" JfI (June 1988)729-39;<br />

Trans.. AIME, 285.<br />

Krueger, A.F.: "An Overview <strong>of</strong> Formation Damage<br />

and Well Productivity <strong>in</strong> Oilfield Operations", JPT,<br />

(Feb. 1986).<br />

MCCorris<strong>to</strong>n, L.L., Demby, R.A. and Pease, E.C.:<br />

.Study <strong>of</strong> Reservoir Damage Produced <strong>in</strong> Heavy Oil<br />

Formation Due <strong>to</strong> Steam Injection., paper SPE 10077<br />

presented at <strong>the</strong> 1981 SPE Annual Technical<br />

Conference and Exhibition, San An<strong>to</strong>nio, Oct. 5-7.<br />

Muecke, T.W.: "Formation F<strong>in</strong>es and Fac<strong>to</strong>rs<br />

Controll<strong>in</strong>g Their Movement <strong>in</strong> Porous Media", JPT<br />

(Feb. 1979) 144-50.<br />

Mungan, N.: "Permeability Reduction Through<br />

Changes <strong>in</strong> pH and Sal<strong>in</strong>ity", JPT (Dec. 1965) 1449-<br />

53; Trans. AIME, 234.<br />

9


22.<br />

23.<br />

24.<br />

25.<br />

26.<br />

Pat<strong>to</strong>n, G.C.: "Water Quality Control and Its<br />

Importance <strong>in</strong> Waterflood<strong>in</strong>g Operations., JPT, (Sept.<br />

1988).<br />

Porter, K.E.: 8An Overview <strong>of</strong> Formation Damage8,<br />

JPT, (August 1989).<br />

Selby, R.J. and Ali, S.M.F., "Mechanics <strong>of</strong> Sand<br />

Production and <strong>the</strong> Flow <strong>of</strong> F<strong>in</strong>es <strong>in</strong> Porous Media",<br />

JCPT, (May 1988).<br />

Thomas, F.B., Bennion, D.B., Bennion, D.W., Hunter,<br />

B.E.: .Solid Precipitation From Reservoir Fluids:<br />

Experimental and Theoretical Analysis,. Paper<br />

presented at 10th SPE Technical Meet<strong>in</strong>g, Port <strong>of</strong><br />

Spa<strong>in</strong>, Tr<strong>in</strong>idad and Tobago (June 27, 1991).<br />

Thomas, F.B., Bennion, D.B., Bennion, D.W., Hunter,<br />

B.E.: "Experimental- Theoretical Studies <strong>of</strong> Solid<br />

Precipitation From Reservoir Fluid," Paper No.<br />

CIM/AOSTRA 91-54, presented at CIM Conference,<br />

Banff, April 21-24, 1991.<br />

27. Waldorf, D.M.: "The Effect <strong>of</strong> Steam on<br />

Permeabilities <strong>of</strong> Water Sensitivity Formations., JPT,<br />

(Oct. 1965).<br />

28.<br />

Wang, F .H.L.: "Effect <strong>of</strong> Wettability Alteration on<br />

Water/Oil Relative Permeability Dispersion and<br />

Flowable Saturation <strong>in</strong> Porous Media", SPE Res Eng,<br />

(May 1988).<br />

10


~<br />

I !i<br />

...1<br />

II<br />

a:~<br />

I ~<br />

I<br />

r:<br />

i<br />

I i<br />

pi<br />

I!<br />

I ~<br />

I


m<br />

ii ~I<br />

; ~


~<br />

I c<br />

il<br />

.<br />

~<br />

§i ~u<br />

'5<br />

~ ]<br />

J<br />

I<br />

j<br />

"'-- :.<br />

1<br />

ill<br />

~I<br />

i<br />

-<br />

!<br />

i 8 8 ~ ~<br />

~~JL~<br />

I8IIIUI ~<br />

~ ~<br />

~<br />

~<br />

!<br />

L-<br />

j,c :


~<br />

I<br />

,~<br />

I~ ~<br />

I<br />

i<br />

II<br />

~I<br />

F;<br />

:1<br />

I ~<br />

I !<br />

~i~<br />

~~<br />

~I<br />

I;<br />

II<br />

~<br />

II (<br />

I<br />

/'<br />

I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!