16.04.2014 Views

Nanofarming (with algae): Multifunctional Mesoporous ...

Nanofarming (with algae): Multifunctional Mesoporous ...

Nanofarming (with algae): Multifunctional Mesoporous ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nanofarming</strong> (<strong>with</strong> <strong>algae</strong>):<br />

<strong>Multifunctional</strong> <strong>Mesoporous</strong> Nanoparticles for<br />

Biofuel Production<br />

Victor S.-Y. Lin<br />

Department of Chemistry<br />

Chemical & Biological Sciences Program<br />

U. S. Department of Energy Ames Laboratory<br />

Iowa State University<br />

Ames, Iowa 50011-3111<br />

U. S. A.


Global Warming?<br />

Upsala Glacier in Argentina


The Debate is Over …<br />

from Bob Willard<br />

www.sustainabilityadvantage.com


From Biological Feedstocks to Energy<br />

Different Resources<br />

New Technologies<br />

Different Applications<br />

Food<br />

Municipal Waste<br />

Animal Feed<br />

Short Rotation Trees<br />

Electricity<br />

Agricultural Crops,<br />

Grasses, Algae, and<br />

Residues (biomass)<br />

Biofuels (Ethanol<br />

& Biodiesel)<br />

Hydrogen<br />

Need new Refinery Methods for converting non-food resources into feedstocks.<br />

Need new Catalysts that works at new interfaces.


Conversion of Oil to Biodiesel<br />

Oil (Triglyceride)<br />

Methyl Esters<br />

Biodiesel<br />

Glycerol<br />

Glycerin


6<br />

Advantages of Biodiesel<br />

• Meets health effect testing (CAA – Clean Air Act)<br />

• Lower emissions (VERY low/no N or S)<br />

• High flash point (>300F)<br />

• Biodegradable, essentially non-toxic<br />

• Can be used in existing diesel engines<br />

• Excellent lubrication properties<br />

• Can use existing fuel distribution networks


Biodiesel Production Plants in 2006


U.S. Represents Two Billion Gallons of<br />

Biodiesel Capacity<br />

8<br />

ISU


Biodiesel Production Today<br />

Feed Oil<br />

Drying<br />

Esterification<br />

Transesterification<br />

Neutralization<br />

Water Wash<br />

Uses Non-renewable Catalyst<br />

(Sodium Methoxide or<br />

Sodium Hydroxide)<br />

Water washing<br />

and Neutralization<br />

is necessary<br />

Biodiesel<br />

Recovery<br />

Low quality<br />

Glycerin<br />

High quality<br />

Glycerin<br />

Catalyst contaminates<br />

glycerin co-product<br />

Methanol<br />

Residual water must be<br />

distilled from methanol<br />

Toxic Waste<br />

Not all methanol recovered


U.S. Produces Biodiesel from Vegetable Oils<br />

10


Problems of<br />

Free Fatty Acid (FFA)-Containing Feedstock<br />

Animal Fat, Algae<br />

or Waste Oil<br />

Base catalyst destroyed<br />

by FFA’s (soap formation)<br />

Biodiesel<br />

Esterification<br />

by acid catalyst<br />

FFA Free Oil<br />

Transesterification<br />

by base catalyst<br />

Free Fatty Acid<br />

We need a solid material that can catalyze both reactions!


Oil Feedstocks for Making Biodiesel<br />

Table from: Y. Chisti, Biotechnol. Adv. 2007, 25, 294-<br />

306.<br />

• U.S. currently uses ~970 million acres for crops & grazing<br />

• ~16.4 trillion acres of soybean would be needed for supplying ALL U.S.<br />

transportation fuel.<br />

• Only ~20 million acres of <strong>algae</strong> could supply the same amount of biodiesel, i.e., only<br />

2.2 % of the existing U.S. cropping area would be needed


Oil Content of Micro<strong>algae</strong><br />

Micro<strong>algae</strong><br />

Table from: Y. Chisti, Biotechnol. Adv. 2007, 25, 294-306.


Green Micro<strong>algae</strong>: Botryococcus braunii (Bb)<br />

14


Algae Continues to Garner R&D Interest and<br />

Funding<br />

15


Open Pond vs. Photobioreactor<br />

Paddle wheels for mixing<br />

General Atomics<br />

Cyanotech Corp. in Hawaii<br />

Solix Biofuels<br />

16


From Algae to Biodiesel<br />

Select<br />

Strain<br />

Picture modified from “The Fuel Cell”, Popular Science, 271(1), July 2007, Page 76-101.


Hydrocarbons from Green Micro<strong>algae</strong><br />

Ether Lipid & Triglyceride<br />

Fatty Acids<br />

Alkenes<br />

Sterols<br />

Botryococcus braunii (Bb)<br />

(Race-A from U.K.)<br />

Ref: (a) P. Metzger et al. Appl. Microbiol Biotechnol. 2005, 66, 486-496.<br />

(b) N. O. Zhila et al. Russ. J. Plant Physiol. 2005, 52, 357-365.


19<br />

Current Challenges<br />

• Only short chain (< C20), non-branched hydrocarbons<br />

are economical feedstocks for fuel production.<br />

• Current oil extraction methods cause fatal damages to the<br />

cell growth of most, if not all, <strong>algae</strong>.<br />

• Lack of efficient and economical refinery methods for<br />

the isolation of the suitable fuel feedstocks from the<br />

“alphabet soup” of hydrocarbons from <strong>algae</strong>.<br />

• Current commercial catalysts (e.g. NaOMe) for biodiesel<br />

production cannot handle the impurities, such as free<br />

fatty acids and lipid phosphoric acids, of <strong>algae</strong> oil.


Nanotechnology for<br />

Extraction, Separation, and Fuel Production<br />

20<br />

Select<br />

Strain<br />

<strong>Nanofarming</strong>


21<br />

Our Approach to Overcome these Challenges<br />

• Develop non-invasive oil extraction methods <strong>with</strong><br />

high recyclability and regrowthability of <strong>algae</strong>.<br />

• Design new sequestration method for selective<br />

isolation of the suitable fuel feedstocks from the<br />

hydrocarbons of <strong>algae</strong>.<br />

• Construct solid catalysts for efficient production of<br />

biodiesel from <strong>algae</strong> oils <strong>with</strong> fatty acids.


Our Approach:<br />

Introduce functional groups that are electrostatically or hydrophobically attractive to<br />

the ammonium surfactant head groups and able to compete <strong>with</strong> silicate anions.<br />

Aqueous Phase<br />

H 2 O<br />

H 2<br />

Hydrophobic Core<br />

of Surfactant Micelle<br />

Lin, V. S.-Y.; Lai, C.-Y.; Huang, J.; Song, S.-A.; Xu, S. J. Am. Chem. Soc. 2001, 123, 11510-11511.<br />

Huh, S.; Wiench, J. W.; Yoo, J.-C.; Pruski, M., Lin, V. S.-Y. * Chem. Mater. 2003, 15, 4247-4256.<br />

Huh, S.; Wiench, J. W.; Trewyn, B. G.; Pruski, M.; Lin, V. S.-Y. * Chem. Comm. 2003, (18), 2364 - 2365


Interfacial Hydrophobic and Electrostatic Interaction<br />

between Organosilicates and Micellar Surfactants (CTAB)<br />

R = Hydrophobic Functional Groups<br />

R 1 = Hydrophilic Functional Groups<br />

Lin, V. S.-Y.; Lai, C.-Y.; Huang, J.; Song, S.-A.; Xu, S. J. Am. Chem. Soc. 2001, 123, 11510-11511.<br />

Huh, S.; Wiench, J. W.; Yoo, J.-C.; Pruski, M., Lin, V. S.-Y. * Chem. Mater. 2003, 15, 4247-4256.<br />

Huh, S.; Wiench, J. W.; Trewyn, B. G.; Pruski, M.; Lin, V. S.-Y. * Chem. Comm. 2003, (18), 2364 - 2365


FE-SEM of Organically Functionalized <strong>Mesoporous</strong><br />

Silica Materials <strong>with</strong> Different Particle Morphologies<br />

Field Emission Scanning Electron Micrographs:<br />

APTMS AAPTMS AEPTMS UDPTMS<br />

CPTES ICPTES ATMS Pure MCM-41<br />

Huh, S.; Wiench, J. W.; Trewyn, B. G.; Pruski, M.; Lin, V. S.-Y. Chem. Comm. 2003, 2364-2365.<br />

Huh, S.; Wiench, J. W.; Yoo, J.-C.; Pruski, M., Lin, V. S.-Y. Chem. Mater. 2003, 15, 4247-4256.


Organically Functionalized <strong>Mesoporous</strong> Silica Nanosphere<br />

• Transmission Electron Micrograph:<br />

Lin, V. S.-Y.; Lai, C.-Y.; Huang, J.; Song, S.-A.; Xu, S. J. Am. Chem. Soc. 2001, 123, 11510-11511.<br />

Lai, C.-Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S.-Y. J. Am. Chem. Soc., 2003, 125, 4451-4459.


Morphology Control<br />

J. Am. Chem. Soc. 2003, 125, 4451<br />

Chem. Mater. 2003, 15, 4247<br />

<strong>Mesoporous</strong> Mixed<br />

Metal Oxide<br />

Catalysts<br />

New J. Chem. 2008, 32, 1311<br />

Gate-keeping:<br />

Selectivity Control<br />

J. Am. Chem. Soc. 2004, 126, 1010<br />

Nitroaldol<br />

Diels-Alder<br />

Aldol<br />

Michael Addition<br />

J. Am. Chem. Soc. 2005, 127, 13305<br />

Cooperative Catalysis<br />

Angew. Chem. Int. Ed. 2005, 44, 1826<br />

Calcium Silicate<br />

Catalyst<br />

Claisen<br />

Rearrangement<br />

Biodiesel Synthesis<br />

Dalton Trans. 2009, 3237<br />

<strong>Mesoporous</strong> Aluminum Silicate<br />

<strong>with</strong> Single-Type Active Sites<br />

J. Phys. Chem. C 2007, 111, 1480


Capped <strong>Mesoporous</strong> Silica Nanoparticles (MSN) as a<br />

<strong>Multifunctional</strong> Cell Membrane Permeable Delivery Carrier<br />

Intracellular Controlled Release<br />

Cell Membrane<br />

Enzyme or<br />

Chemicals<br />

Gene Expression<br />

Plasmid DNA<br />

Our recent review articles:<br />

Giri, S.; Trewyn, B. G.; Lin, V. S.-Y.* Nanomedicine. 2007, 2(1), 99-111.<br />

Trewyn, B. G.; Slowing, I. I.; Giri, S.; Lin, V. S.-Y.* Chem. Commun. (Feature Article), 2007, 3236-3245.<br />

Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S.-Y.* Adv. Funct. Mater. (Feature Article), 2007, 17, 1225-1236.


Animal versus Plant Cells


Gold Nanoparticle Capped MSN as a <strong>Multifunctional</strong><br />

Cell Wall Permeable Delivery Carrier for Plants<br />

MSN<br />

β-Estradiol<br />

DTT<br />

Gene Expression<br />

Plasmid DNA<br />

Torney, F.; Trewyn, B. G.; Lin, V. S.-Y.,* Wang, K.* Nature Nanotech. 2007, 2, 295-300.


GFP Expression in Tobacco by Gold Nanoparticle<br />

Capped MSN-mediated Delivery of β-Estradiol<br />

Bright field<br />

Non-transgenic Tobacco in DTT medium<br />

bombarded by gfp DNA-coated Type III<br />

(fluorescein loaded) or Type IV (β-estradiol<br />

loaded) MSNs.<br />

0.5 mm<br />

100.0<br />

90.0<br />

80.0<br />

DTT<br />

No DTT<br />

UV light/GFP filter<br />

Fluorescent foci per cotyledon<br />

70.0<br />

60.0<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

0.5 mm<br />

0.0<br />

MSN type Type IV Type IV<br />

Type III<br />

Type III<br />

MSN content β-Estradiol β-Estradiol FITC FITC<br />

Event<br />

B G B G<br />

Torney, F.; Trewyn, B. G.; Lin, V. S.-Y.,* Wang, K.* Nature Nanotech. 2007, 2, 295-300.


<strong>Mesoporous</strong> Carbon Nanosphere <strong>with</strong> Algae<br />

• MCN has very high affinity toward Algae:<br />

TEM of MCN:<br />

Green Micro<strong>algae</strong><br />

(Botryococcus braunii; Bb)<br />

Bb <strong>with</strong> MCN<br />

Kim, T.-W.; Chung, P.-W.; Slowing, I. I.; Tsunoda, M.; Yeung, E. S.; Lin, V. S.-Y.* Nano Lett, 2008, 8, 3724-3727.


MALDI Mass Spectroscopy Profile<br />

01.08<br />

C20:0<br />

311.33<br />

Filter Paper<br />

(+MCN)<br />

Hexane<br />

Aqueous solution<br />

(+MCN)<br />

333.25<br />

C22:0<br />

325.42 339.3<br />

300 320 340<br />

Relative Abundance<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

204.42<br />

204.25<br />

C14:0<br />

C16:1<br />

C16:3<br />

249.33<br />

227.50 241.50<br />

C16:3<br />

249.17<br />

255.50<br />

233.25 263.25<br />

C16:3<br />

249.25<br />

C16:0<br />

255.50<br />

277.33<br />

291.33<br />

281.50<br />

C18:3 C18:0<br />

C18:3<br />

C16:0<br />

C18:3<br />

C16:0<br />

C18:1<br />

277.25<br />

277.25<br />

291.25<br />

C18:0<br />

*<br />

*<br />

*<br />

291.25<br />

C18:0<br />

301.17<br />

301.08<br />

333.33<br />

351.08<br />

315.25<br />

325.42 339.33 359.33 375.33<br />

391.33<br />

333.25<br />

351.00<br />

317.17 339.25 367.17 377.25<br />

351.08<br />

391.33<br />

30<br />

301.08<br />

333.25<br />

20<br />

227.42 241.42 263.25 325.42 339.33<br />

213.25 311.33*<br />

10<br />

355.17 375.25 391.33<br />

0<br />

200 220 240 260 280 300 320 340 360 380 400<br />

m/z<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

NL: 2.56E3<br />

MCN_absorbed_TI_0802<br />

13151625#3-198 RT:<br />

0.11-3.19 AV: 190 T:<br />

ITMS - p MALDI Full ms<br />

[200.00-1000.00]<br />

NL: 2.88E2<br />

MCN_hex_neg_J19#2-<br />

120 RT: 0.02-2.01 AV:<br />

119 T: ITMS - p MALDI<br />

Full ms [150.00-1000.00]<br />

NL: 7.04E2<br />

MCN_H2O_neg_J22#2-<br />

82 RT: 0.02-1.32 AV: 81<br />

T: ITMS - p MALDI Full ms<br />

[150.00-1000.00]<br />

* Matrix<br />

* Polypropylene<br />

32


Selective Absorption of Fat Acid by MCN<br />

Name Structure Absorptivity Dimension*<br />

Myristic Acid<br />

(C14:0)<br />

Strong<br />

L:18.624Å<br />

W:3.101Å<br />

Palmitoleic Acid<br />

(C16:1)<br />

Strong<br />

L:18.899Å<br />

W:8.0Å<br />

Oleic Acid<br />

(C18:1)<br />

Strong<br />

L:21.919Å<br />

W:10.0Å<br />

* L and W represent length and width of molecule, respectively.


Selective Absorption of Fat Acid by MCN<br />

Name Structure Absorptivity Dimension*<br />

Palmitic Acid<br />

(C16:0)<br />

Weak<br />

L:21.172Å<br />

W:3.101Å<br />

Hexadecatrienoic<br />

Acid (C16:3)<br />

Weak<br />

L:19.407Å<br />

W:5.079Å<br />

Stearic Acid<br />

(C18:0)<br />

Weak<br />

L:23.731Å<br />

W:3.101Å<br />

Gamma-linolenic<br />

Acid<br />

(C18:3)<br />

Weak<br />

L:12.618Å<br />

W:12.521Å<br />

* L and W represent length and width of molecule, respectively.


Selective Absorption of Fat Acid by MCN<br />

Name Structure Absorptivity Dimension*<br />

Arachidic Acid<br />

(C20:0)<br />

None<br />

L:26.983Å<br />

W:3.101Å<br />

Behenic Acid<br />

(C22:0)<br />

None<br />

L:29.026Å<br />

W:3.101Å<br />

* L and W represent length and width of molecule, respectively.


MSN will Sequester Highly Valued Products<br />

(carotenoids, vitamins, polysaccharides, and essential fatty acids)<br />

Percentage of FFAs<br />

sequestered by MSN from<br />

hexanes<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

C16:1 C16 C18:2 C18:1 C18 C20 C22<br />

Procedure: A hexane solution of 7 common algal<br />

FFAs was passed through the column shown on<br />

right by gravimetric force. Graph above illustrates<br />

the percentage of FFAs sequestered by MSN from<br />

the hexane solution.<br />

MSN<br />

Sea Sand


Problems of<br />

Free Fatty Acid (FFA)-Containing Feedstock<br />

Animal Fat or<br />

Restaurant Oil<br />

Base catalyst destroyed<br />

by FFA’s (soap formation)<br />

Biodiesel<br />

Esterification<br />

by acid catalyst<br />

FFA Free Oil<br />

Transesterification<br />

by base catalyst<br />

Free Fatty Acid<br />

We need a solid material that can catalyze both reactions!


Free Fatty Acid<br />

Our Bifunctional Solid Nanoporous<br />

Catalytic System<br />

Biodiesel<br />

Triglyceride<br />

Biodiesel<br />

= FFA Catalyst<br />

= Oil Catalyst<br />

Glycerol<br />

Victor Lin Group, Iowa State University, U. S. A.


Our Approach: Modified Co-condensation<br />

Can we introduce “non-siliceous” species, such as metal oxides and metal<br />

complexes in the surfactant-templated co-condensation reaction?<br />

Aqueous Phase<br />

H 2 O<br />

Hydrophobic Core<br />

of Surfactant Micelle


Synthesis of <strong>Mesoporous</strong><br />

Calcium Silicate Catalyst<br />

CTAB = N Br<br />

n<br />

Feedstocks<br />

(Soybean Oil or<br />

Animal Fat)<br />

y = 6.50 for MCS-1 catalyst<br />

= 3.25 for MCS-2 catalyst<br />

= 1.62 for MCS-3 catalyst<br />

Biodiesel<br />

MCS<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Catalyst Performance for Soybean Oil<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Soybean Oil:<br />

Recyclability of MCS-1<br />

Poultry Fat:<br />

Recyclability for Soybean Oil: 20 recycles <strong>with</strong>out<br />

decrease in reactivity was observed.<br />

Recyclability for Poultry Fat: 8 recycles <strong>with</strong> small<br />

decrease in reactivity was observed.<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Are MCS Catalysts Basic or Acidic?<br />

Feedstocks<br />

(Soybean Oil or<br />

Animal Fat)<br />

Biodiesel<br />

CaO is a basic catalyst for Transesterification of Oil<br />

However, SiO 2 is not acidic enough to catalyze Esterification of FFA!<br />

How did the Esterification of Free Fatty Acids happen?<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Powder X-Ray Diffraction<br />

Commercial Calcium Oxide:<br />

As-synthesized MCS-1<br />

Catalyst:<br />

0.304<br />

0.279<br />

0.182<br />

0.166<br />

There is no crystalline CaO domain in MCS-1 material!<br />

Are MCS materials some kind of calcium silicate mixed oxides?<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Calcium Silicates (Cement)<br />

Portland Cement:<br />

Hydration of C 3 S:<br />

2(CaO) 3 (SiO 2 ) + 7H 2 O →<br />

(CaO) 3 (SiO 2 ) 2 •4(H 2 O) + 3Ca(OH) 2<br />

C-S-H<br />

Hydration of C 2 S:<br />

CH<br />

2(CaO) 2 (SiO 2 ) + 5H 2 O →<br />

(CaO) 3 (SiO 2 ) 2 •4(H 2 O) + Ca(OH) 2<br />

60% of Portland cement is tricalcium silicate, Ca 3 SiO 5 , (C 3 S)<br />

15% of Portland cement is β-dicalcium silicate, Ca 2 SiO 4 , (C 2 S)<br />

Hydration of C 3 S and C 2 S yield calcium silicate hydrate (C-S-H)


Can it be a C-S-H?<br />

C-S-H(I): Structure similar to the 1.4 nm Tobermorite, Ca 5 Si 6 O 16 (OH) 2 •7H 2 O<br />

Along [001] Along [210] Along [010]<br />

Calcium atom<br />

Silicate tetrahedra


Powder X-Ray Diffraction<br />

C-S-H(I) gels: a<br />

As-synthesized MCS-1<br />

Catalyst:<br />

0.304<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

0.279<br />

0.182<br />

0.166<br />

Sample (a) is a hydrated C 3 S. Peaks associated <strong>with</strong> CH (Ca(OH) 2 ) are marked <strong>with</strong> *.<br />

Samples (b-e) obtained from decomposition of C 3 S in NH 4 NO 3 (aq).<br />

a<br />

Jennings, M. M. et al.; Cement and Concrete Research, 2004, 34, 1499-1519.


Powder X-Ray Diffraction<br />

Calcined MCS Catalysts:<br />

As-synthesized MCS-1 Catalyst:<br />

0.304<br />

MCS-3<br />

0.279<br />

0.182<br />

0.304<br />

MCS-2<br />

0.166<br />

0.182<br />

MCS-1<br />

Peaks <strong>with</strong> d-spacing 0.304 and 0.182 are preserved after calcination.<br />

This indicated that the two-dimensional layers of calcium oxide and silicate<br />

chains did not get destroyed during the calcination.<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Solid State NMR<br />

Q 4<br />

MCM-41 Silica<br />

Calcined MCS-3<br />

Q 3<br />

Calcined MCS-2<br />

Calcined MCS-1<br />

Q 2<br />

As-synth MCS-1<br />

West Central Sample<br />

Q 1<br />

Portland Cement<br />

X = Ca or H<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Possible Structure Transformation<br />

From Q2 to Q3 silicates:<br />

How does the structural change impact the catalytic reactivity?<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Structure-based Reactivity<br />

Ca/Si Ratios of MCS Catalysts from 29 Si Spin Counting :<br />

MCS-1 MCS-2 MCS-3<br />

Ca/Si 1.7 1.0 0.2<br />

• Observations:<br />

– The reactivity against high FFA-containing oils is<br />

significantly enhanced as the ratio of Ca/Si increases.<br />

– Surface chemisorption analysis confirmed the presence of<br />

Lewis acidic sites.<br />

– The surface concentration of Lewis acidic sites increases as<br />

the Ca/Si ratio becomes higher.<br />

V. S.-Y. Lin, J. A. Nieweg, J. G. Verkade, C. R. V. Reddy, C. Kern, U.S. Patent Application (US 2008/0021232 A1), Jan. 24, 2008.


Catilin Inc.<br />

A Joint Venture Company of Biodiesel Catalyst Technology<br />

between Victor Lin, Iowa State University, and Mohr Davidow<br />

Ventures (Menlo Park, CA)<br />

http://www.catilin.com


Traditional Biodiesel Process<br />

Esterification<br />

Water<br />

Feed Tank<br />

Transesterification<br />

Methanol<br />

Methoxide<br />

Catalyst<br />

Methyl Ester<br />

Glycerol<br />

HCl<br />

MeOH +<br />

Gly + salts<br />

Methanol Strip<br />

Methanol Strip<br />

Water Wash<br />

Water Strip<br />

Water Strip<br />

Tech<br />

Glycerin<br />

Glycerin<br />

Purification<br />

Glycerin +<br />

salts<br />

Water +<br />

Gly + salts<br />

Finished<br />

Biodiesel


Catilin Biodiesel Process<br />

Feed Tank<br />

Transesterification<br />

Methanol<br />

T300<br />

Catalyst<br />

Methyl Ester<br />

Glycerol<br />

Methanol Strip<br />

Methanol Strip<br />

Filter<br />

Dry<br />

Wash<br />

Tech<br />

Glycerin<br />

Finished<br />

Biodiesel


Exceptional Value Proposition<br />

• Saves >10¢ per gallon<br />

• Lowers capital costs by 50%<br />

• Recyclable and non-toxic<br />

• Produces cleaner Biodiesel &<br />

Glycerol<br />

• Can be used in existing<br />

facilities <strong>with</strong> minimal<br />

modifications<br />

• Can be used <strong>with</strong> multiple<br />

feedstocks<br />

55


CATILIN: Commercializing ISU Technologies<br />

Team Catilin in front of Biodiesel Pilot Plant<br />

Catilin’s T-300 Biodiesel Catalyst<br />

Catilin’s Research Labs on ISU Campus<br />

Catilin’s Pilot Plant at BECON, Navada, IA


Catilin’s Continuous Flow Biodiesel Pilot Plant


• ISU Department of Chemistry:<br />

Lin Research Group:<br />

– Former Members:<br />

Dr. Cheng-Yu Lai<br />

Dr. Supratim Giri<br />

Dr. Carla Wilkinson<br />

Acknowledgement<br />

Dr. Dana Radu<br />

Dr. Jennifer Nieweg<br />

Dr. Yang Cai<br />

– Current Postdoctoral Researchers:<br />

Dr. Igor Slowing Dr. Brian G. Trewyn<br />

Dr. Hung-Ting Chen<br />

Dr. Tae-Wan Kim<br />

Dr. Tse-Min Hsin<br />

– Current Ph.D. Graduate Students:<br />

Mr. Juan Vivero-Escoto Mr. Cedric Chung<br />

Mr. Robert Roggers<br />

Ms. Wei Huang<br />

Mr. Chih-Hsiang Tsai<br />

Ms. Yannan Zhao<br />

Mr. Justin Valenstein<br />

Mr. Kapil Kandel<br />

Mr. Tianfu Wang<br />

• U.S. DOE, Ames Laboratory<br />

Mr. Yulin Huang<br />

Ms. Chorthip Peeraphatdit<br />

Ms. I-Ju Fang<br />

Ms. Enro Guo<br />

Mr. Nikola Knezevic<br />

Mr. Xiaoxing Sun<br />

Dr. Marek Pruski’s Research Group<br />

• $$$ Funding $$$:<br />

– U.S. DOE, Office of Basic Energy<br />

Sciences (AL-03-380-011)<br />

– U.S. DOE, EERE (DE-FG26-<br />

0NT08854 )<br />

– NSF: CAREER Award (CHE-<br />

0239570) and (CHE-0809521)<br />

– USDA NRI-Biorenewable<br />

– Pioneer Hi-Bred International, Inc

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!