16.04.2014 Views

ANSYS Applications in Ocean Science and Engineering

ANSYS Applications in Ocean Science and Engineering

ANSYS Applications in Ocean Science and Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ANSYS</strong> <strong>Applications</strong> <strong>in</strong> <strong>Ocean</strong><br />

<strong>Science</strong> <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

1<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011<br />

Marsall Loewenste<strong>in</strong><br />

Ian Lockley<br />

8/10/2011


Perspective<br />

The Universe <strong>in</strong> One Year concept was <strong>in</strong>spired by the<br />

late Cornell astronomer, Carl Sagan. Sagan was the first<br />

person to expla<strong>in</strong> the history of the universe <strong>in</strong> one<br />

year—as a “Cosmic Calendar”—<strong>in</strong> his television series,<br />

Cosmos<br />

2<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Perspective<br />

3<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


0.5 Seconds of <strong>Ocean</strong>ographic History<br />

11:59:59.5 seconds….<br />

1769<br />

Benjam<strong>in</strong> Frankl<strong>in</strong>’s first scientific study of the Gulf Stream. He measured<br />

water temperatures dur<strong>in</strong>g several Atlantic cross<strong>in</strong>gs <strong>and</strong> effectively<br />

expla<strong>in</strong>ed the phenomena.<br />

4<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


5<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


0.5 Seconds of <strong>Ocean</strong>ographic History<br />

11:59:59.5 seconds….<br />

1769<br />

Benjam<strong>in</strong> Frankl<strong>in</strong>s first scientific study of the Gulf Stream. He measured<br />

the water temperatures dur<strong>in</strong>g several Atlantic cross<strong>in</strong>gs <strong>and</strong> effectively<br />

expla<strong>in</strong>ed tbe phenomena<br />

1855<br />

Physical Geography of the Sea, by Matthew Fonta<strong>in</strong>e Maury published <strong>in</strong><br />

1855 was the first textbook of <strong>Ocean</strong>ography.<br />

6<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Relevance to <strong>Science</strong> / Eng<strong>in</strong>eer<strong>in</strong>g / Product Design<br />

• The pace of academic endeavors, discovery <strong>and</strong> <strong>in</strong>formation cont<strong>in</strong>ues to<br />

grow at an exponential rate<br />

• Scientists <strong>and</strong> Eng<strong>in</strong>eers are constantly challenged or asked to do more<br />

with less<br />

• Time <strong>and</strong> expense of develop<strong>in</strong>g <strong>in</strong>dustrial <strong>and</strong> research equipment test<br />

must be reduced<br />

• Quality <strong>and</strong> safety must cont<strong>in</strong>ue to rise<br />

• We must all be stewards of our precious environment<br />

• “Cut <strong>and</strong> try” approaches <strong>in</strong> science <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g must be<br />

supplemented or replaced with simulation<br />

7<br />

• Many mature software tools exist from <strong>ANSYS</strong>, across an<br />

enormous range of physical discipl<strong>in</strong>es, which enable<br />

research <strong>and</strong> the development <strong>and</strong> test<strong>in</strong>g of both concepts<br />

<strong>and</strong> products through physics based numerical simulation<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Overview<br />

• Brief Introduction to <strong>ANSYS</strong><br />

• Selected Simulation <strong>Applications</strong><br />

– Environmental<br />

– Pollution dispersion, cleanup, scour<strong>in</strong>g,<br />

ocean currents, noise …<br />

– Energy<br />

– Wave energy, tidal energy, energy<br />

environmental impact<br />

– Mar<strong>in</strong>e<br />

– Hull design, propulsion, system design,<br />

sensor design ….<br />

8<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Overview<br />

• Brief Introduction to <strong>ANSYS</strong><br />

• Selected Simulation <strong>Applications</strong><br />

– Environmental<br />

– Pollution dispersion, cleanup, scour<strong>in</strong>g,<br />

ocean currents, noise …<br />

– Energy<br />

– Wave energy, tidal energy, energy<br />

environmental impact<br />

– Mar<strong>in</strong>e<br />

– Hull design, propulsion, system design,<br />

sensor design ….<br />

9<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Who is <strong>ANSYS</strong><br />

Focused<br />

This is all we do: Physics based software simulation tools for<br />

science <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

Capable<br />

2,000 employees<br />

60 locations, 40 countries<br />

Trusted<br />

96 of top 100 FORTUNE 500 <strong>in</strong>dustrials<br />

Proven<br />

Recognized as one of the world’s most <strong>in</strong>novative<br />

<strong>and</strong> fastest-grow<strong>in</strong>g companies*<br />

A 40 year track record of <strong>in</strong>novation<br />

Independent<br />

Long-term f<strong>in</strong>ancial stability<br />

CAD agnostic<br />

10<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011<br />

*Bus<strong>in</strong>essWeek, FORTUNE<br />

(image of eng<strong>in</strong>eer work<strong>in</strong>g through simulation problem)


One Picture of <strong>ANSYS</strong><br />

<strong>ANSYS</strong> is the lead<strong>in</strong>g provider of<br />

physics based eng<strong>in</strong>eer<strong>in</strong>g<br />

software tools<br />

Paramterization<br />

Fluids<br />

Mesh<strong>in</strong>g<br />

• Structural<br />

• Thermal<br />

• Electromagnetics<br />

<strong>and</strong><br />

• Fluids<br />

CAD<br />

Import<br />

Structural<br />

+<br />

-<br />

u(t)<br />

In-house<br />

D(s) Plant<br />

Solution<br />

y(t)<br />

Emag<br />

Thermal<br />

Workflow<br />

Postprocess<strong>in</strong>g<br />

11<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Industry Lead<strong>in</strong>g Customers<br />

12<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Selected Academic Customers<br />

13<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


<strong>ANSYS</strong> Academic Program<br />

Presence<br />

• Academic products used at 2,400 <strong>in</strong>stitutions<br />

worldwide, with nearly 87,000 licensed seats<br />

Value to Industry<br />

• Students tra<strong>in</strong>ed <strong>in</strong> <strong>ANSYS</strong> jo<strong>in</strong> <strong>in</strong>dustry with<br />

experience <strong>in</strong> simulation<br />

• Research use of <strong>ANSYS</strong> helps tackle next-generation<br />

<strong>in</strong>dustry challenges<br />

Software Technology<br />

• Academic partnerships ensure our product<br />

technology leadership<br />

14<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011<br />

“By embedd<strong>in</strong>g <strong>ANSYS</strong> technology <strong>in</strong> our eng<strong>in</strong>eer<strong>in</strong>g curriculum, Cornell is produc<strong>in</strong>g<br />

students who can go <strong>in</strong>to <strong>in</strong>dustry with a strong foundation <strong>in</strong> the application of<br />

advanced simulation.”<br />

Dr. Rajesh Bhaskaran<br />

Cornell University<br />

<strong>ANSYS</strong> Academic Program<br />

Professor Rajesh Bhaskaran<br />

Cornell University


Typical Mar<strong>in</strong>e CFD <strong>Applications</strong><br />

• Hydrodynamics<br />

• Ship hulls<br />

• Submar<strong>in</strong>es<br />

• Yacht hulls, keels<br />

• Appendages<br />

• Other underwater systems<br />

• Towed sonar arrays<br />

• Propulsion<br />

• Propeller / Hull<br />

<strong>in</strong>teractions<br />

• Water jets<br />

• Cavitation<br />

• Bubble wakes <strong>and</strong><br />

signature<br />

• Acoustics<br />

• Aerodynamics<br />

• Superstructures<br />

• Dispersion<br />

• Yacht Sails<br />

• Exhaust plumes<br />

• Ventilation<br />

• Heli Deck operations<br />

• Fire Suppression<br />

• Halon replacement<br />

• Blast <strong>in</strong>teractions<br />

• Fluid Structure Interaction<br />

• Float<strong>in</strong>g objects<br />

• Flexible objects<br />

• Vortex Induced Vibration<br />

• Swim suits<br />

• Heat transfer<br />

• Fuel Cells<br />

• Wave slam<br />

• Flood<strong>in</strong>g <strong>in</strong> Ro-Ro ferries<br />

• Cavitation<br />

• Torpedoes<br />

• Slosh<strong>in</strong>g <strong>in</strong> tanks<br />

• Submar<strong>in</strong>e Reactors<br />

• Structural vibrations<br />

• Periscope / free surfaces<br />

• Pumps<br />

• Offshore Power<br />

generation<br />

• Chemical reactions<br />

• Free surface flows<br />

• Microfluidics<br />

• Hypersonics<br />

• CVD<br />

15<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Overview<br />

• Brief Introduction to <strong>ANSYS</strong><br />

• Selected Simulation <strong>Applications</strong><br />

– Environmental<br />

– Pollution dispersion, cleanup, scour<strong>in</strong>g,<br />

ocean currents, noise …<br />

– Energy<br />

– Wave energy, tidal energy, energy<br />

environmental impact<br />

– Mar<strong>in</strong>e<br />

– Hull design, propulsion, system design,<br />

sensor design ….<br />

16<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


17<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Overview<br />

• Brief Introduction to <strong>ANSYS</strong><br />

• Selected Simulation <strong>Applications</strong><br />

– Environmental<br />

– Pollution dispersion, cleanup, scour<strong>in</strong>g,<br />

ocean currents, noise …<br />

– Energy<br />

– Wave energy, tidal energy, energy<br />

environmental impact<br />

– Mar<strong>in</strong>e<br />

– Hull design, propulsion, system design,<br />

sensor design ….<br />

18<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Environmental: Scour<strong>in</strong>g<br />

19<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Scour<strong>in</strong>g: Challenges<br />

20<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Scour<strong>in</strong>g: Examples<br />

21<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


CFD model<strong>in</strong>g of scour around offshore w<strong>in</strong>d turb<strong>in</strong>es <strong>in</strong> areas with<br />

strong currents, Solberg et al, Conference on Offshore W<strong>in</strong>d<br />

Turb<strong>in</strong>es Situated <strong>in</strong> Strong Sea Currents, 2006<br />

22<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Advanced numerical model<strong>in</strong>g of the scour<strong>in</strong>g process<br />

around the piers of a bridge, Motta et al, Proc of the<br />

congress, IAHR, 2007<br />

23<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Illustration Problem<br />

24<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Model<strong>in</strong>g Approach<br />

25<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Initial Results<br />

26<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Numerical simulation of scour around pipel<strong>in</strong>es us<strong>in</strong>g an<br />

Euler-Euler coupled two-phase model, Zhao <strong>and</strong><br />

Fern<strong>and</strong>o, Environmental Fluid Mechanics, (2007)<br />

27<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Environmental: Oil Spill <strong>and</strong> Cleanup<br />

28<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Environmental: Oil Spill <strong>and</strong> Cleanup<br />

29<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


CFD Model<strong>in</strong>g of Oil Spill<br />

Past CFD studies employed VOF approach to study oil spill<br />

• Free surface was captured by VOF<br />

• L<strong>in</strong>ear wave profiles was used to describe wave boundary condition<br />

• Studies were limited to 2D<br />

• Studies were conducted for different wavelength <strong>and</strong> amplitude<br />

30<br />

30<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Current CFD Model<br />

Full 3-dimensional Model<br />

Volume of Fluid (VOF) – Approach<br />

• A s<strong>in</strong>gle set of momentum equations is solved <strong>and</strong> the volume<br />

fraction of each immiscible phase is tracked<br />

• Three phases – Air, Water <strong>and</strong> Oil is considered<br />

Open channel wave boundary condition -used<br />

to prescribe wave motion<br />

A fifth order stokes wave theory is used to<br />

describe a non-l<strong>in</strong>ear wave<br />

Turbulence – Realizable k-ε model<br />

31<br />

31<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


3D CFD Model<br />

2 Km<br />

Open Channel<br />

Boundary Inlet<br />

Top Surface - Outlet<br />

Open Channel<br />

Pressure Outlet<br />

Oil Spill Location<br />

Oil Inlet<br />

32<br />

32<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011<br />

Around 565,000 Grid Elements Used<br />

Grid ref<strong>in</strong>ed near sea surface to capture waves


Wave Profiles<br />

5m Amplitude <strong>and</strong> 500m Wavelength Wave<br />

10m Amplitude <strong>and</strong> 500m Wavelength Wave<br />

5m Amplitude <strong>and</strong> 750m Wavelength Wave<br />

33<br />

33<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Wave Profile - Animation<br />

5m amplitude <strong>and</strong> 500m Wavelength wave<br />

34<br />

34<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Wave Velocity Profiles<br />

5m Amplitude <strong>and</strong> 500m Wavelength Wave<br />

10m Amplitude <strong>and</strong> 500m Wavelength Wave<br />

5m Amplitude <strong>and</strong> 750m Wavelength Wave<br />

35<br />

35<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Observations - Velocity Profiles<br />

High velocity near surface due to waves<br />

As wave steepness <strong>in</strong>crease – Non l<strong>in</strong>ear waves results<br />

Coastal region or Shallow water region impacts the wave profile<br />

36<br />

36<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Oil Slick at Sea Surface<br />

5m Amplitude <strong>and</strong> 500m<br />

Wavelength Wave<br />

10m Amplitude <strong>and</strong> 500m<br />

Wavelength Wave<br />

5m Amplitude <strong>and</strong> 750m<br />

Wavelength Wave<br />

37<br />

37<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Time History of Spread<br />

5m amplitude <strong>and</strong> 500m Wavelength wave<br />

10m amplitude <strong>and</strong> 500m Wavelength wave<br />

38<br />

38<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Time History of Spread<br />

5m amplitude <strong>and</strong> 500m Wavelength wave<br />

5m amplitude <strong>and</strong> 750m Wavelength wave<br />

39<br />

39<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Time History of Spread<br />

5m amplitude <strong>and</strong> 500m Wavelength wave<br />

5m amplitude <strong>and</strong> 500m Wavelength wave<br />

0.1m/s - Wave Current<br />

40<br />

40<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Observations<br />

Spread pattern is different for different wave<br />

conditions<br />

Polluted area <strong>in</strong>creases with higher <strong>in</strong>teraction<br />

of wave <strong>and</strong> current<br />

Polluted area is more towards coastal area or <strong>in</strong><br />

shallow water<br />

High wave amplitude – oil traveled faster to the<br />

coastal area – thus not spread<strong>in</strong>g<br />

41<br />

41<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Conclusions<br />

Overview of the oil spill <strong>and</strong> its impact on oil <strong>and</strong> gas<br />

<strong>in</strong>dustry<br />

Physics of oil spill – Hydrodynamics of <strong>Ocean</strong> waves<br />

plays major role<br />

Focused on shallow water waves – Dispersion of oil<br />

slick is more<br />

Need higher order wave theories as wave steepness<br />

<strong>in</strong>crease<br />

42<br />

42<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Conclusions<br />

43<br />

43<br />

Presented a detailed 3D CFD based model for<br />

study of oil spill<br />

• Volume of Fluid (VOF)<br />

• Open channel wave boundary condition<br />

Spread pattern is different for different wave<br />

conditions<br />

Polluted area <strong>in</strong>creases with higher <strong>in</strong>teraction<br />

of wave <strong>and</strong> current<br />

Value of us<strong>in</strong>g CFD based simulations for oil spill<br />

scenarios<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Environmental/Mar<strong>in</strong>e: Noise<br />

44<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Environmental/Mar<strong>in</strong>e: Noise<br />

MENCK hydraulic hammer<br />

45<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Environmental/Mar<strong>in</strong>e: Noise<br />

46<br />

Comparison of measured <strong>and</strong> calculated underwater sound pressure at<br />

a distance of 245 meters from the pile. Know<strong>in</strong>g the sound propagation<br />

law for this region, the sound pressure at 750 meters can be calculated<br />

<strong>and</strong> converted <strong>in</strong>to decibels (dB).<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Environmental/Mar<strong>in</strong>e: Noise<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Underwater sound generation <strong>and</strong> propagation<br />

shown as a sequence of snapshots <strong>in</strong> time.<br />

With<strong>in</strong> a steel pile, the speed of sound is about<br />

5,000 meters per second, while the speed of<br />

sound <strong>in</strong> water is about 1,500 meters per<br />

second — result<strong>in</strong>g <strong>in</strong> radiation patterns <strong>and</strong><br />

specific <strong>in</strong>cl<strong>in</strong>ation angle.<br />

47<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Overview<br />

• Brief Introduction to <strong>ANSYS</strong><br />

• Selected Simulation <strong>Applications</strong><br />

– Environmental<br />

– Pollution dispersion, cleanup, scour<strong>in</strong>g,<br />

ocean currents, noise …<br />

– Energy<br />

– Wave energy, tidal energy, energy<br />

environmental impact<br />

– Mar<strong>in</strong>e<br />

– Hull design, propulsion, system design,<br />

sensor design ….<br />

48<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Energy: Wave Energy<br />

49<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Energy: Wave Energy<br />

1 2 3<br />

Wave direction<br />

4 5<br />

COLUMBIA POWER’s wave power system: The w<strong>in</strong>gs <strong>and</strong> vertical spar<br />

react to the shape of the pass<strong>in</strong>g ocean swell. Each w<strong>in</strong>g is coupled by a<br />

drive shaft to turn its own rotary generator.<br />

50<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Energy: Wave Energy<br />

COLUMBIA POWER eng<strong>in</strong>eers doubled<br />

efficiency of the buoy by us<strong>in</strong>g <strong>ANSYS</strong> AQWA to<br />

optimize its geometry.<br />

51<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Energy: Wave Energy<br />

Maxwell computational<br />

electromagnetics software<br />

from <strong>ANSYS</strong> was used to<br />

optimize the generator<br />

design.<br />

52<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Overview<br />

• Brief Introduction to <strong>ANSYS</strong><br />

• Selected Simulation <strong>Applications</strong><br />

– Environmental<br />

– Pollution dispersion, cleanup, scour<strong>in</strong>g,<br />

ocean currents, noise …<br />

– Energy<br />

– Wave energy, tidal energy, energy<br />

environmental impact<br />

– Mar<strong>in</strong>e<br />

– Hull design, propulsion, system design,<br />

sensor design ….<br />

53<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Propulsion Systems<br />

Rolls-Royce uses simulation for propeller design to reduce<br />

mar<strong>in</strong>e fuel consumption.<br />

Accord<strong>in</strong>g to a 2003 study from the University of Delaware, <strong>in</strong>ternational<br />

commercial <strong>and</strong> military shipp<strong>in</strong>g fleets consume approximately 289 million<br />

metric tons of petroleum per year, which is more than twice the consumption of<br />

the entire population of Germany. The <strong>ANSYS</strong> FLUENT simulations run on the<br />

modified propeller geometry predicted that the efficiency would <strong>in</strong>crease by 1<br />

percent to 1.5 percent, <strong>and</strong> physical experiments confirmed that this was, <strong>in</strong><br />

fact, the case.<br />

The new Kamewa<br />

CP-A propeller<br />

from Rolls-Royce<br />

Mar<strong>in</strong>e<br />

54<br />

Contours of pressure coefficient for the XF5 (left) <strong>and</strong> the new Kamewa CP-A (right). Insets: Photographs of the blade <strong>in</strong>dicat<strong>in</strong>g the locations of the<br />

simulation where cavitation is present (noticeable as pitt<strong>in</strong>g). <strong>ANSYS</strong> FLUENT results helped reduce pressure at the blade root <strong>in</strong> the CP-A design, <strong>in</strong>dicated<br />

by the lack of cavitation erosion present <strong>in</strong> the CP-A photo.<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Propulsion Systems<br />

Cavitation Effects<br />

For water pumps, mar<strong>in</strong>e propellers, <strong>and</strong> other<br />

equipment <strong>in</strong>volv<strong>in</strong>g hydrofoils, cavitation can cause<br />

problems such as vibration, <strong>in</strong>creased hydrodynamic<br />

drag, pressure pulsation, noise, <strong>and</strong> erosion on solid<br />

surfaces. Most of these problems are related to the<br />

transient behaviour of cavitation structures. To better<br />

underst<strong>and</strong> these phenomena, unsteady 3D simulations<br />

of cavitat<strong>in</strong>g flow around s<strong>in</strong>gle hydrofoils are often<br />

performed <strong>and</strong> the results are compared to experiments<br />

55<br />

Unsteady propeller cavitation <strong>in</strong> the wake of a ship<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011<br />

Courtesy SVA-Potsdam (Potsdam Model Bas<strong>in</strong>)


Propulsion (<strong>in</strong>clud<strong>in</strong>g Cavitation)<br />

Cavitat<strong>in</strong>g Flow Over a Hydrofoil<br />

Cavitat<strong>in</strong>g flow over a cambered two-dimensional w<strong>in</strong>g<br />

section was simulated us<strong>in</strong>g <strong>ANSYS</strong> Fluent CFD solver. The<br />

flow angle over the NACA 66 (MOD) hydrofoil is chosen to<br />

represent conditions that are common <strong>in</strong> water pump <strong>and</strong><br />

mar<strong>in</strong>e propeller applications. Excellent agreement with<br />

experimental data is obta<strong>in</strong>ed for mid-chord cavitation, <strong>and</strong><br />

satisfactory agreement is obta<strong>in</strong>ed at the trail<strong>in</strong>g edge of the<br />

cavitation region.<br />

Pressure coefficient as a function of normalized chord length<br />

show<strong>in</strong>g <strong>ANSYS</strong> Fluent results compared with experimental data<br />

Contours of vapour volume fraction show cavitation <strong>in</strong> the mid-chord region<br />

56<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Mar<strong>in</strong>e: Sensor Design<br />

57<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Mar<strong>in</strong>e: Sensor Design<br />

58<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Mar<strong>in</strong>e: Sensor Design<br />

59<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Mar<strong>in</strong>e: Sensor Design<br />

60<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Conclusions<br />

<strong>ANSYS</strong> offers a broad <strong>and</strong> technically deep set of<br />

physics based research <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

software tools which foster underst<strong>and</strong><strong>in</strong>g,<br />

<strong>in</strong>novation as well as save time <strong>and</strong> money<br />

<strong>ANSYS</strong> is a strong partner for both academic <strong>and</strong><br />

<strong>in</strong>dustrial organizations seek<strong>in</strong>g such goals<br />

61<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011


Thanks You!<br />

Questions?<br />

marshall.loewenste<strong>in</strong>@ansys.com<br />

Ian.lockley@ansys.com<br />

62<br />

© 2011 <strong>ANSYS</strong>, Inc. August 12, 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!