18.04.2014 Views

Analytical Properties of Power Series on Levi-Civita Fields 1 ...

Analytical Properties of Power Series on Levi-Civita Fields 1 ...

Analytical Properties of Power Series on Levi-Civita Fields 1 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

K. Shamseddine and M. Berz<br />

there exists a finite δ > 0 in R, and there exists a regular sequence (a n (x))<br />

in R such that, under weak c<strong>on</strong>vergence, f (y) = ∑ ∞<br />

n=0 a n (x) (y − x) n for all<br />

y ∈ (x − δ, x + δ) ∩ [a, b].<br />

Definiti<strong>on</strong> 4.2: Let a < b in R be such that t = λ(b − a) ≠ 0 and let<br />

f : [a, b] → R. Then we say that f is R-analytic <strong>on</strong> [a, b] if the functi<strong>on</strong><br />

F : [d −t a, d −t b] → R, given by F (x) = f(d t x), is R-analytic <strong>on</strong> [d −t a, d −t b].<br />

Lemma 4.3: Let a, b ∈ R be such that 0 < b − a ∼ 1, let f, g : [a, b] → R<br />

be R-analytic <strong>on</strong> [a, b] and let α ∈ R be given. Then f + αg and f · g are<br />

R-analytic <strong>on</strong> [a, b].<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the first part is straightforward; so we present here<br />

<strong>on</strong>ly the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d part. Let x ∈ [a, b] be given. Then there exist<br />

finite δ 1 > 0 and δ 2 > 0, and there exist regular sequences (a n ) and (b n ) in R<br />

such that f (x + h) = ∑ ∞<br />

n=0 a nh n for 0 ≤ |h| < δ 1 and g (x + h) = ∑ ∞<br />

n=0 b nh n<br />

for 0 ≤ |h| < δ 2 . Let δ = min {δ 1 /2, δ 2 / 2}. Then 0 < δ ∼ 1. For each n,<br />

let c n = ∑ n<br />

j=0 a jb n−j . Then the sequence (c n ) is regular. Since ∑ ∞<br />

n=0 a nh n<br />

c<strong>on</strong>verges<br />

∑<br />

weakly for all h such that x + h ∈ [a, b] and 0 ≤ |h| < δ 1 , so does<br />

∞<br />

n=0 a n [t] h n for all t ∈ ⋃ ∞<br />

n=0 supp(a n) . Hence ∑ ∞<br />

n=0 |(a n [t] h n ) [q]| c<strong>on</strong>verges<br />

in R for all q ∈ Q, for all t ∈ ⋃ ∞<br />

n=0 supp(a n) and for all h satisfying x + h ∈<br />

[a, b], 0 ≤ |h| < 3δ/2 and |h| ≉ 3δ/2.<br />

Now let h ∈ R be such that x + h ∈ [a, b] and 0 ≤ |h| < δ. Then<br />

∞∑<br />

|(a n h n ) [q]| =<br />

n=0<br />

≤<br />

∞∑<br />

∣<br />

n=0<br />

∑<br />

q 1 ∈ supp(a n ), q 2 ∈ supp(h n )<br />

q 1 + q 2 = q<br />

∑<br />

q 1 ∈ ⋃ ∞<br />

n=0 supp(a n), q 2 ∈ ⋃ ∞<br />

n=0 supp(h n )<br />

q 1 + q 2 = q<br />

a n [q 1 ] h n [q 2 ]<br />

∣<br />

∞∑<br />

|a n [q 1 ]| |h n [q 2 ]| .<br />

Since ∑ ∞<br />

n=0 |a n [q 1 ]| |h n [q 2 ]| c<strong>on</strong>verges in R and since <strong>on</strong>ly finitely many terms<br />

c<strong>on</strong>tribute to the first sum by regularity, we obtain that ∑ ∞<br />

n=0 |(a nh n ) [q]|<br />

c<strong>on</strong>verges for each q ∈ Q. Since ∑ ∞<br />

n=0 a nh n c<strong>on</strong>verges absolutely weakly,<br />

since ∑ ∞<br />

n=0 b nh n c<strong>on</strong>verges weakly and since the sequences ( ∑ n<br />

m=0 a mh m )<br />

and ( ∑ n<br />

m=0 b mh m ) are both regular, we obtain that ∑ ∞<br />

n=0 a nh n ·∑∞<br />

∑ n=0 b nh n =<br />

∞<br />

n=0 c nh n ; hence (f · g) (x + h) = ∑ ∞<br />

n=0 c nh n . This is true for all x ∈ [a, b] ;<br />

hence (f · g) is R-analytic <strong>on</strong> [a, b].<br />

14<br />

n=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!